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Chapter 1

Syntax of HoT'TO

For HoTT, most of the rules are standard. Here, we will go over them.
The Context Rules

T ctx ' A type I'z: Actx Iz: Actx 'ty:B
€ ctx I'z: Actx TFx:Abx: A I'z:AFy: B

The Pi Rules

I,x: A+ B(z) type Ix: AFb(x): B(x)
LT[, Bla) type  TEXa:A)b(a):]],. , Bla)
LEf:]l,.4Bla) F'kxz:A Ix: AFb(x) : B(x)
f(z): B(x) T,a: A Max: A).b(z)(a) = b(a) : B(a)
The Sigma Rules
Dyx: AF B(z) type Tha:A I'kb: B(a)
L3, Bl)type  TH(ab):3 , B@)
FFP:EI:AB@:) F"P:Z%AB(JU)
I'+fst(p): A I F snd(p) : B(fst(p))
'a:A I'b:B(a) T'Fa:A I'+b: Bla)
I+ fst({a,b)) =a: A '+ snd({a,b)) =b: B(a)
The Id Rules
l'Fa:A FEb: A I'Fa:A
'+ 1d,(a,b) type I+ refl(a) : Id 4(a, a)

Ioz:Ay:Au:Idy(z,y) - C(z,y,u) type Dix: Ab c(z) : C(z, z,refl(x))

va : Avy : A,U : IdA(xay) + J(az,y,u,c) : C’(aj,y,u)

The Universe
I ctx I'Fa:U

I'+Utype Tk El(a) type




I'a:U,z:El(a) Fb(z): U T,a:U,z:El(a)Fb(zx): U T,a:UkF a:Ela) I'a: Uk 5:El(a)

Ia:Uk nw(a,b(x)): U Ia:Uko(a,b(z)):U Ia:Ukua,p):U
I'a:U,z:El(a) Fb(z): U I'a:U,z:El(a) Fb(z):U
Tya: Uk El(n(a,b(z))) = HQJ:E](a> El(b(z)) type Tya: Utk El(o(a,b(z))) = Zw:m(a) El(b(z)) type

Definitions and Axioms

To simplify, we denote non-dependent products and functions with x and —. This
is not part of the type theory but improves readability.

Truncation Levels

isContr(A) := Z H id4(y, x)

A y:A
isProp(4) = H H idy(z,y)
A y: A
isSet(A) := [ [ [ [isProp(Id 4 (z,y))
Ay A

The Set Universe
Set := Z isSet(El(u))

u:U

Type Equivalence

a=B:= 3 3 3 ([Tdate@)a) < (TTids(f(m),b)

fiA5B g:B—Ah:B—A  aA b:B

Set Isomorphism

A= Bi=isSet(A)xisSet(B)x S 3 (HidA(g(f(a)),a>)x(HidB(f(g(b)),b))

ftA=-B gB—A a:A b:B

The Univalence Axiom

UA - [Ty (e, = (@) ~ El(y))

x:U y:U

The Univalence Axiom for Sets

UASet : [T [ 1dsec(e.y) = (El(m) %El(y))

x:Set y:Set

Function Extensionality

FunExt : H H H H ( H idE1(b)(f04’904)) >~ idgi(0)sm15) ([ 9)

a:U b:U f:El(a)—El(b) g:El(a)—El(b) «a:El(a)



Chapter 2

Natural Models

In this chapter we describe the categorical semantics of our syntax via natural
models. It follows previous work on natural models [Awol7], with the following
additional features

1. A more compact description of identity types exploiting the technology of
polynomial endofunctors.

2. A collection of N Russell-style nested universes.

3. universe-variable Il-types and X-types, i.e. with possibly different universe
level inputs, and landing in the largest universe (imitating the type theory of
Leand).

2.1 Interpretation of syntax

A very brief overview of the interpretation of syntax follows. We work in a presheaf
category Psh(C). A context I' is interpreted as an object [I'] € C. We often take
the image of the context under the Yoneda embedding y[I'] € Psh(C). If i < N is
a universe level, then a typing judgment I' I, a : A is interpreted as a commuting
triangle of the following form

Tm,
4 e
y[T] W Ty,

2.2 Natural model

Fix a small category C.

Definition 2.2.1 (Natural model). Following Awodey [Awol7], we say that a map
tp: Tm — Ty in Psh(C) is fiberwise representable or a natural model when every
fiber is representable. In other words, given any I" € C and any map A : y(T') — Ty,
there is some representable I' - A € C and maps disp, : I'- A — T' and var, :
y(I'- A) — Tm forming a pullback



var 4

y(T - A)*>Tm

d'SPA>J/ ltp

()T>Ty

Definition 2.2.2 (Russell universes). A collection of N + 1 natural models with
N Russell style universes and lifts consists of

e For each ¢ < N a natural model tp, : Tm, — Tyi

o Foreachi < N alift L' : Ty, — TY, 1

+ For each i <N a point U; : 1 — Ty, , such that

Ty.

3

IR

1-U, —— Tm,,,

P41

1 U, > 1Y

2.3 Product types

Definition 2.3.1. We will use Pt to denote the polynomial endofunctor 5.0.1
associated with a natural model tp - Then additional structure of II types on our
N universes consists of, for each ¢, 5 < N, a pullback square

max(i,j)

P, Tm; 2 Tm
P,

tp; ¢ l Jtpmaxu,j)

max(,5)

(2.3.1)

2.4 Sum types

Definition 2.4.1.

We will use the polynomial composition of two maps 5.0.6, tp, <tp, Q— Py (Tyj).
Then additional structure of ¥ types on our N universes consists of, for each i, j <
N, a pullback square

(2.4.1)

2.5 Identity types

Definition 2.5.1. Suppose tp : Tm — Ty is a natural model and we have a
commutative square (this need not be a pullback)



refl

Tm —— Tm

tp XTy tp T> Ty

s
& ><Tytp — Tm

Tm—>Ty

(2.5.1)

where ¢ is the diagonal:

Then let I be the pullback. We get a comparison map p

refl

Now (by 5.0.8) applying P_ : (Psh(C)/Ty)°® — [Psh(C),Psh(C)] to p : tp — ¢
gives us a naturality square (this also need not be a pullback).

PTm
P, Tm Iy PpTm

Pqtpl lPtptp

Pqu Tﬂ} PtpTy
(2.5.2)

Taking the pullback T and the comparison map £ we have



(2.5.3)

Then a natural model tp with identity types consists of a commutative square 2.5.1,
with a section J: 7" — P, Tm of e.

2.6 Binary products and Exponentials

It is convenient to specialize ¥ and II types to their non-dependent counterparts X
and Exp.

Definition 2.6.1 (Products and exponentials). In the natural model we can con-
struct these by considering first the map

(fst,snd) : Ty, x Ty, — Py, Ty,

defined using the characterising property of polynomials 5.0.2, which we can visu-
alize in

snd

Ty, «—— Tm; x Ty, —— Tm;

fst*tpli ltpi

Tyi X Ty]. — Tyi

Then, respectively, the pullback of the diagrams 2.3.1 and 2.4.1 for interpreting II
and X rules along this map give us pullback diagrams for interpreting function types
and product types. (We simplify the situation to where i = j.)

A

—

F P,Tm —*— Tm

<dom,zd>J ptptpl ’ Jtp

Ty x Ty (fst,snd) PtpTy IT Ty

Exp

pair

(snd,fst,tposnd) Q pair

Tmx Tm Tm

tpxtpl tp<1tpl ltp




By the universal property of pullbacks and 5.0.2 we can write a map I' — F as a
triple (A, B, f) such that A, B:T" — Ty and

r-A—4Tm

dispAl ltp

T —g Ty

This gives us four equivalent ways we can view a function. Namely, as f : A — Tm
in the above diagram, Ao f : T' — Tm, as (A, B, f) : I' — F, or as a map between
the displays disp , — dispg

f

r-A
AESPAvf)
>

I'B——Tm

| a
disp 5 l
~

T —5 Ty

For the formalization, we need not prove that the pullback of tp < tp is tp X tp.
Rather, we can also use the universal property of pullbacks and 5.0.2 to classify a
map into the pullback (whatever it may be) as a pair («, 3), where o, 5 : T' — Tm.
This could then be adapted to a proof that the pullback is what the diagram claims
it to be.

Definition 2.6.2. The identity function id, : I' — Tm of type Expo(4,A4) : I' — Ty
can be defined by the following

_______ _idy
r-— R
\ \\\\

(A,A,var,) \\

S y
' A T Tm F————Tm
disp, ltp A (dom.:d) l"’
L —— Ty Ty x Ty = Ty

Viewed as a map between the display maps, this is simply the identity I'- A — I'- A.

Composition is also simplest when viewed as an operation on maps between fibers.
Given f : disp, — disp; and g : disp; — disp.,, the composition is go f : disp,, —
disp..

2.7 Univalence

For two types A, B : I' — Ty and two functions f,g: A — B we can define internally
a homotopy from f to g as

f ~gi= Ha:A Id(faaga>



We define the types of left and right inverses of f: A — B as
Biglinvf =X p 490 f~idy
BigRinvf : =X p 4 fog~idg

and the property of being an equivalence

IsBigEquivf := BigLinvf x BigRinvf

We could do the same for two small types A,B: " — U

IsEquivf := Linvf x Rinvf
EquivA B := X 4, glsEquivf

Again, internally we can define a function
IdToEquivA B : Id(A, B) — EquivA B
which uses J to transport along the proof of equality to produce an equivalence.

Definition 2.7.1. Univalence for universe U states that [dToEquiv itself is an equiv-
alence
ua : IsBigEquiv(ldToEquivA B)

Note that this statement is large, i.e. not a type in the universe U.

IdToEquiv

u-u-id U- U - Equiv

~

u-u

2.8 Extensional identity types and UIP

In this section we outline variations on the identity type in the natural model. We
will describe these as additional structure on Id, as opposed to introducing different
identity types.

Definition 2.8.1 (Extensional types). The first option is fully extensional iden-
tity types, i.e. those satisfying equality reflection and uniqueness of identity proofs
(UIP). Equality reflection says that if one can construct a term satisfying Id(a,d)
then we have that definitionally a = b, i.e. they are equal morphisms in the nat-
ural model. This amounts to just requiring that 2.5.1 is a pullback, i.e. p is an
isomorphism

Tm —=1 & Tm

5l ) J{tp

tp XTy tp T> Ty

Note that this means p* is an isomorphism, from which it follows that 2.5.2 is also
a pullback, i.e. € is an isomorphism.

PTm
P, Tm Iy PpTm

Pqth( J{Pmtp

Pqu Tﬂ) Ptme



We could only require UIP:

Definition 2.8.2 (Identity types satisfying UIP). Say an identity type in a natural
model satisfies UIP if I — tp X, tp is a strict proposition, meaning for any (a,b) :
I' = tp X, tp there it at most one lift

| PR
s
-
-
-~

I W tp XTy tp
One might wonder what other variations we could come up with by tweaking the
pullback conditions. In fact, only requiring that p has a section is equivalent to
requiring that p is an isomorphism. So this just the extensional case again.

If we require instead that e is an isomorphism then this is giving an 7-rule for
J, from which we can prove equality reflection and UIP [Hof95]. So this just the
extensional case again.



Chapter 3

HoTTO interpreted in
natural models
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Chapter 4

The Groupoid Model

In this chapter we construct a natural model in Psh(grpd) the presheaf category
indexed by the category grpd of (small) groupoids. We will build the classifier for
display maps in the style of Hofmann and Streicher [HS98] and Awodey [Awo23]. To
interpret the type constructors, we will make use of the weak factorization system
on grpd - which comes from restricting the “classical Quillen model structure” on
cat [Joy] to grpd.

4.1 Classifying display maps

Notation. We denote the category of small categories as cat and the large categories
as Cat. We denote the category of small groupoids as grpd.

We are primarily working in the category of large presheaves indexed by the (large,
locally small) category of small groupoids, which we will denote by

Psh(grpd) = [grpd®”, Set]

In this section, Tm and Ty and so on will refer to the natural model semantics in
this specific model.

Definition 4.1.1 (Pointed). We will take the category of pointed small categories
cat, to have objects as pairs (C € cat, ¢ € C) and morphisms as pairs

(F:Cy = Coy¢: Fey = ¢) + (Cqy¢q) = (Cps )

Then the category of pointed small groupoids grpd, will be the full subcategory of
objects (T', ¢) with " a groupoid.

Definition 4.1.2 (The display map classifier). We would like to define a natural
transformation in Psh(grpd)
tp: Tm — Ty

with representable fibers.

Consider the functor that forgets the point

U : grpd, — grpd in Cat.

11



If we apply the Yoneda embedding y : Cat — Psh(Cat) to U we obtain
Ue: [~ grpd,] — [~ grpd| in Psh(Cat).

Since any small groupoid is also a large category ¢ : grpd < Cat, we can restrict
Cat indexed presheaves to be grpd indexed presheaves. We define tp: Tm — Ty
as the image of Ue under this restriction.

Cat —— Psh(Cat) —=- Psh(grpd)
grpd —— [, grpd] ———— Ty
Note that Tm and Ty are not representable in Psh(grpd).
Remark 4.1.3. By Yoneda we can identify maps with representable domain into the

type classifier
A:yI' = Ty in Psh(grpd)

with functors
A:T' — grpd in Cat

Definition 4.1.4 (Grothendieck construction). From C a small category and F' :
C — cat a functor, we construct a small category [ F. For any ¢ in C we refer to
Fc as the fiber over ¢. The objects of [ F consist of pairs (¢ € C,z € Fe), and
morphisms between (¢, x) and (d,y) are pairs (f : ¢ — d,¢ : F fa — y). This
makes the following pullback in Cat

(c,z) —— (Fe,x)

(c, ) | F 4> cat, (C,e)
| | l |
c C——F— cat C

Definition 4.1.5 (Grothendieck construction for groupoids). Let I' be a groupoid
and A : I' — grpd a functor, we can compose F' with the inclusion i : grpd < Cat
and form the Grothendieck construction which we denote as

F-A::/iOA disp, : I'-A—=T

This is also a small groupoid since the underlying morphisms are pairs of morphisms
from groupoids I" and Ax for x € I'. Furthermore the pullback factors through
(pointed) groupoids.

A —— grpd, — cat,

“f T

r — grpd —— cat

12



Corollary 4.1.6 (The display map classifier is presentable). For any small groupoid
I and A : yI' — Ty, the pullback of tp along A can be given by the representable

map ydisp 4.

y[' A —— Tm

ydispAJ/ tpi

Proof. Consider the pullback in Cat

I'A—— grpd,

| !

r — grpd

We send this square along res oy in the following

Cat ——— Psh(Cat)

grpd ——— Psh(grpd)

The Yoneda embedding y : Cat — Psh(Cat) preserves pullbacks, as does res since
it is a right adjoint (with left Kan extension ¢, - res,). O

4.2 Groupoid fibrations

Definition 4.2.1 (Fibration). Let p : C;, — C, be a functor. We say p is a
split Grothendieck fibration if we have a dependent function lifta f satisfying the
following: for any object a in C; and morphism f : pa — y in the base C, we have
lifta f : @ — bin C, such that p(lifta f) = f and moreover liftago f = liftbgolifta f

g,
|

In particular, we are interested in split Grothendieck fibrations of groupoids, which
are the same as isofibrations (replace all the morphisms with isomorphisms in the
definition).

Unless specified otherwise, by a fibration we will mean a split Grothendieck fibration
of groupoids. Let us denote the category of fibrations over a groupoid I' as Fibp,
which is a full subcategory of the slice grpd/I". We will decorate an arrow with —»
to indicate it is a fibration.

13



Note that disp, : I'- A — I' is a fibration, since for any (zr € I';a € Ax) and
f:x — yin I' we have a morphism (f,ids,) : (z,a) = (y,A fa) lifting f.
Furthermore

Proposition 4.2.2. There is an adjoint equivalence

where for each fibration § : A — T" and each object x € T the fiber fibers x has objects
{a € Alda=x}

and morphisms f :a — b from A such that 0 f =id,. It follows that all fibrations
are pullbacks of the classifier U : grpd, — grpd, when viewed as morphisms in
Cat.

Pullback of fibrations along groupoid functors is not strictly coherent, in the sense
that for 7 : = — A and ¢ : A — I' and a fibration p € Fibp we only have an
isomorphism

T*o*p =2 (0o T)*p
rather than equality.
In order to interpret reindexing/substitution strictly, it is convenient to work with

classifiers [I', grpd] instead of fibrations.

Proposition 4.2.3 (Strictly coherent pullback). Leto : A — T be a functor between
groupoids. Since display maps are pullbacks of the classifier U : grpd, — grpd we
have the pasting diagram

/\

A. Ao e I'A —— grpd,
L I

disp 4, disp 4 J{
¥ ¥
A = r " grpd

This gives us a functor oo : [[,grpd] — [A, grpd] which is our strict version of
pullback.

Corollary 4.2.4 (Fibrations are stable under pullback).
[0, grpd] «+—™_ Fiby,

¥

I
! *
10

We can deduce a corresponding fact about fibrations: since fibrations are closed
under isomorphism, and since any pullback in grpd of a fibration p is isomorphic
to the display map dispﬁberpm, any pullback of a fibration is a fibration.

A strict interpretation of type theory would require ¥ and II-formers to be stable

under pullback (Beck-Chevalley). Thus we again define these as operations on
classifiers [, grpd].

14



Definition 4.2.5 (X-former operation). Then given A: T' — grpd and B: T"- A —
grpd we define ¥,B : I' — grpd such that ¥ 4B acts on objects by forming
fiberwise Grothendieck constructions

Y,B(z):=A(x) - Boxy
where x4 : A(z) = T'- A takes f: aq — aq to (i, f) : (z,a9) = (x,a9)

A(z) - Boxy ----- yTLAB—— e

dismeA disp 5
- +
A(z) ” I‘.‘A B, grpd
‘I : disp 4
N ¥
° — r " grpd

3 4B acts on morphism f: 2 — y in T and (a € A(x),b € B(z,a)) by
ZABf(aJ)) = (AfaaB(fa idAfa) b)
and for morphism (o : ay — a; € A(z),5: B(id,,a) by — b; € B(z,a,)) in X 4Bz

EABf(avﬂ) = (AfavB(f7 idAfal)ﬁ)

Let us also define the natural transformation fst : ¥ 4B — A by

fst, : (a,b) = a

xr

Proposition 4.2.6 (Fibrations are closed under composition). The corresponding
fact about fibrations is that the composition of two fibrations is a fibration.

We can compare the two fibrations
dispy o disp , and distA(B)

An object in the composition would look like ((x,a),b) for x € I', a € A(x) and
b € B(x,a), whereas an object in I"- ¥ ,(B) would instead be (z, (a,b)).

Proposition 4.2.7 (Strict Beck-Chevalley for ). Let 0 : A - T', A: T' — grpd
and B:T'-A — grpd. Then

(XpB)eo =% .,(Booy)
where o 4 is uniquely determined by the pullback in

A'AO"BOUA ﬁFAB
A-B |

dispBWA disp
~ ¥
A- Ao = r.A—= grpd
dis;‘)Aa ’ dis‘pA )
(X 4 B)oo ¥ ¥
grpd I A — r 5 grpd
S ac(Beoa)

15



Proof. By checking pointwise at € A, this boils down to showing
(02)y =040% 0y Aloz) =T - A
(o) 4

o Lo

, I
!‘ disp 4, disp 4
¢ ~ ¥
° — A > r " grpd

which holds because of the universal property of pullback. O

Definition 4.2.8 (II-former operation). Given A : ' — grpd and B : T A — grpd
we will define II4B : I' — grpd such that for any C' : I' — grpd we have an
isomorphism

[I'- A, grpd](disp, o C, B) = [I', grpd](C, 11 4, B)

natural in both B and C.
Proof. 11 4 B acts on objects by taking fiberwise sections
I, B(x) :={s € [A(z), EoB(x)] |fst, o s = id 4 ()}

Where we have taken the full subcategory of the functor category [A(z), X 4B(x)].
This is a groupoid since any natural transformation of functors into groupoids are
natural isomorphisms.

II 4B acts on morphisms via conjugation

x I1,B(x) A(z) s— %, B(x)
M, B T ‘
f ’ SaB(flo—eA(f) A(f) TaB(f)
y I1,B(y) Aly) WO AB(y)
Note that conjugation is functorial and invertible. O

Corollary 4.2.9 (Fibrations are closed under pushforward). Stated in terms of
fibrations, we have

Io,.m

io*‘r

A—— T

2

with the universal property of pushforward
Fiba (0*p, ) = Fibp(p, 0,7)

natural in both T and p.

16



Proposition 4.2.10 (Strict Beck-Chevalley for IT). Let c: A - T, A: T — grpd
and B:T'- A — grpd. Then

(IIyB)oo =1l,,,(Beooy)
where o 4 is uniquely determined by the pullback in

AAO'BOO'AﬁFAB
A-B |

dismeA dispp
v ¥
A-Ac o r.4—=2 grpd
! s -
disp 4 disp ,
II 4 Boo ¥ ¥
grpd IT—— A — r grpd
O g6 (Boo 4) A
Proof. By checking pointwise, this boils down to Beck-Chevalley for 3. O

Proposition 4.2.11 (All objects are fibrant). Let o denote the terminal groupoid,
namely that with a single object and morphism. Then the unique map I' — o is a
fibration.

Definition 4.2.12 (Interval). Let the interval groupoid [ be the small groupoid
with two objects and a single non-identity isomorphism. There are two distinct
morphisms d,,d; : @ = [ and a natural isomorphism ¢ : §; = J;. Note that J, and
0, both form adjoint equivalences with the unique map !: [ — eo.

Denote by e 4 e the small groupoid with two objects and only identity morphisms.
Then let O : ® +  — [ be the unique map factoring §, and 9,.

Proposition 4.2.13 (Path object fibration). Let A be a small groupoid. Recall
that grpd is Cartesian closed, so we can take the image of the above diagram under
the functor A~.

Then the indicated morphisms are fibrations, and A%, A% form adjoint equivalences
with A' : A — Al

We can use this to justify the interpretation of the identity type later, where we
will have the strictified versions (as in strictly stable under substitution) of the
above

17



var 4

A—=—> 0. A —"— grpd, grpd,
\ J
l Ap! p‘/ / JU
+ ~
Al — >~ s e A-Ald— T’ grpd
\ o s o
13:) dlspld/\oVU*varA J/ P |d/
AxA —=— 0 A-A—— UxXgpqgU — grpd,
[ 4 n
fstJ diSpy/yar , fs‘t ’ UJ
+ +
— ~ v e-A

vary — grpd, — grpd

dispAl J,U

—_
. " grpd

In general, we will want to build a pathspace for a type in any context, which
requires us to pull back the interval along the context, and rebuild the required
fibration by exponentiation in the slice.

4.3 Classifying type dependency

Proposition 4.3.1 (P, classifies type dependency). Specialized to tp : Tm — Ty

in Psh(grpd), the characterizing property of polynomial endofunctors 5.0.2 says
that a map from a representable I' — P, X corresponds to the data of

A: T — Ty and B:T-A—-X

The special case of when X is also Ty gives us a classifier for dependent types; by
Yoneda the above corresponds to the data in Cat of

A:T — grpd and B:T-A— grpd

Furthermore, precomposition by a substitution o : A — T' acts on such a pair by

o
al Ngv “to'e

r v P X

where tp*o is given by

A-Aog P14 grpd,

l L

A — r I grpd

4.4 Pi and Sigma structure

Lemma 4.4.1. X € Psh(grpd) be a presheaf. Let F be an operation that takes
a groupoid T, a functor A: T — grpd and B : T'- A — X and returns a natural
transformation FyB: T' — X.

18



Then using Yoneda to define F P, X — X pointwise as
Fp. : Psh(grpd)(T, P,,X) — Psh(grpd)(T', X)
(A,B)— F,B

gives us a natural transformation if and only if F satisfies the strict Beck-Chevalley

condition
(FAB) °og = FAOU(B o tp*J)

for every o : A — T in grpd.

Proof. Using 4.3.1

(A7B> k FAB

Psh(grpd)(T, Pth) i Psh(grpd)(T, X)

’°"l foa

Psh(grpd)(A, P, X) — Psh(grpd)(A, X)
A

(Aoo,Botp o) Fy.,Botp*c =====: (F4B)oo

Definition 4.4.2 (Interpretation of IT types). We define the natural transformation
IT: P, Ty — Ty as that which is induced (4.4.1) by the II-former operation (4.2.8).

Then we define the natural transformation A : P, Ty — Ty as the natural transfor-
mation induced by the following operation: given A : I' — grpd and §: '+ A —
grpd,, A 6 : ' = grpd, will be the functor such that on objects x € I

B (z) :== (4B (x),s, : at+> (a,b(z,a)))

where B:=Uof:T'- A — grpd and b(x,a) is the point in B(z,a). On morphisms
fi:x— yin I we have

AaB(f) == T4B(f),n)

where 7 : I, B f s, — s, is a natural isomorphism between functors A, — (¥ ,4B),
defined on objects a € A, by

N = (id g pq, b(f,id 4 54))

and where b(f,id4p,) : B(f,id 44,)(b(x,a)) = b(y, Afa) is the morphism in B(y, Afa)
induced by the map between pointed groupoids 3(f,id ,)-

These combine to give us a pullback square

PpTm —2 5 Tm

Ptptpl : Jtp

PtpTy 11 Ty
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Proof. We should check that the A operation satisfied Beck-Chevalley. This follows
from the II satisfying Beck-Chevalley and extensionality results for functors.

The square commutes and is a pullback if and only it pointwise commutes and
pointwise gives pullbacks, i.e. for each groupoid I

Psh(grpd)(T, P, Tm) 2r D, grpd,]
PSh(grpd)(F»Ptptp)l ) JUO?

Psh(grpd)(I', Py Ty) —— [, grpd]

(A,Uoﬁ)% MU o === UoAyp

where we have used 4.3.1. That this commutes follows from the definitions of II
and .

To show it is pullback it suffices to note that for any f:I' — grpd, and (4, B) :
I' = P, Ty such that U o f =11, B, there exists a unique (4, ) : I' = P, Tm such
that Uo 8 = B and A48 = f. Indeed [ is fully determined by the above conditions
to be

B:I'-A— grpd,
(z,a) = (B(z,a), fza)

O

Lemma 4.4.3. This is a specialization of 5.0.3. Use R to denote the fiber product

Pp
R —— P Ty
tp*tp*Tm*TFmeJ ltp*Tm*Ty

Tm — Ty

By the universal property of pullbacks, The data of a map from a representable
e : ' = R corresponds to the data of a: ' — Tm and (Uea, B) : T' — P, Ty. Then
by 4.3.1 this corresponds to the data of a: T'— Tm and B: T -Uoa — Ty.

I' = (Uea,B)

AN
(a,B) \
N

R P Ty

o S
PTm ltp*Tm*Ty

Tm 4>tp Ty

Precomposition by a substitution o : A — T" then acts on such a pair by
A
l \ajav&tp*o)
ag
' — R
(a,B)

20



Definition 4.4.4 (Evaluation). Define the operation of evaluation ev, B to take
a:I'—=grpd, and B:I'-U o a — grpd and return ev, B : I' — grpd, described
below.

I (evy B, R —— P,Ty
1 ‘ g
| *
ol counit J ltp*Tm Ty
¥ K
\
vV Ty x Tm Tm o Ty

where we write A := Uo« and treat a map I' — grpd as the same as a map I' — Ty.

More concisely, evaluation is a natural transformation ev : R — Ty, given by

ev = Ty, o counit

Lemma 4.4.5. The functor ev, B:I' — grpd can be computed as

ev,B=DBoa
where
A —— grpd,
r — grpd
Proof. This is a specialization of 5.0.5 with liberal applications of Yoneda. O

Definition 4.4.6 (Classifier for dependent pairs). Recall the following definition
of composition of polynomial endofunctors, specialized to our situation

QQ—————  R=——R —— PtpTy
. | s
l coinit l ltp*Tm*Ty
TmxTm — Ty x Tm Tm o Ty
Tm o Ty .

By the universal property of pullbacks, the data of a map with representable domain
e : ' = @ corresponds to the data of a triple of maps o, 8 : ' — Tm and (A, B) :
I' = P, Ty such that tpo 8 = my, o counit o (o, B) and A =tpoa.
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R—— PtpTy
counit \L ltp*Tm*Ty
? TmxTm —— Ty x Tm Tm o Ty
Tm o Ty o

This in turn corresponds to three functors o, 8 : I' = grpd, and B : I'-Uca — grpd,
such that U o § = ev, B. So we will write

e=(B,a,B)

Type theoretically o« = (A,a : A) and evy, B = Ba and § = (Ba,b : Ba). Then

composing € with tp <itp returns -y, which consists of (A, B). It is in this sense that
Q@ classifies pairs of dependent terms, and tp <1 tp extracts the underlying types.

Precomposition with a substitution o : A — I' acts on this triple by

A
Ul Ya,aoa,Botp*a)
r ( ) @

B,a,B

Definition 4.4.7 (Interpretation of 3). We define the natural transformation
P PtpTy — Ty

as that which is induced (4.4.1) by the ¥-former operation (4.2.8).

To define pair : @ — Tm, let T be a groupoid and (§,«,B) : T' — Q (such that
Uop =ev, ). We define a functor pair..(3,a, B) : I' = grpd, such that on objects
x € T, the functor returns (3 4Bz, (a,,b, )), where (using 4.4.5 Uo fz = ev, Bx =
B(x,a,)) w

ax=(Azx,a,) and fz= (B(x7am),baz)

and on morphisms f : x — y, the functor returns (¥ 4B f, (¢,1)), where (using
445U Bf = ev, Bf = B(f,¢;))

af=(Af¢p Afa,—a,) and Bf= (B(f,¢f)7’(/Jfl B(f,¢¢)b, — bu!/)

3. and pair combine to give us a pullback square

Q pair Tm

tp<1tpl ltp

PtpTy » Ty

Proof. To show naturality of pair, suppose o : A — I is a functor between groupoids.

22



pair 5

Psh(grpd)(A, Q) (A, grpd,]

(Boo,a00,Botpc) — 7

o I ] w

(ﬁ,OZ,B) _— pairl“(ﬂ7a7B)

Psh(grpd)(I', Q)

[I',grpd,]

pairp
So we check that for any z € T,

pair,(Beo,ac0,Boo,)x
=X ppBooyz,(ay,b, )

) Ya,

=((XaB) oo, (ayb,,))

=pair.(B,a,B)cox

where
aocox = (Aoox,a,) and PBoox=(ev,Boouw,b, )

and so on.

It follows from the definition of pair that the square commutes. To show that it is
pullback, it suffices to show that for each T,

Psh(grpd)(T’, Q) — [I', grpd,]

tp<tpo{ onf

Psh(grpd)(I', P, Ty) —— [I', grpd]

is a pullback. Since we are in Set, it suffices to just show the universal property
applied to a point: so for any A : I' — grpd, any B : I'- A — grpd, and any
p:I' — grpd,, such that
U op = EF (A, B)
there exists a unique (8, a, B) : I' = @ such that
pairp(8,a,B) =p and tp<tpe(B,«a,B)=(A,B)
Indeed if we write
pr= (X, Bz, (a,c Av,b€ Blx,a,)))

this uniquely determines o and 3 as

ax = (Az,a,) and pz=(ev,Bz,b,)
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4.5 Identity types

Definition 4.5.1 (Identity formation and introduction). To define the commutative
square in Psh(grpd)

Tm —1  Tm

j Js
tp Xqytp —5—= Ty

We first note that both § and tp in the are in the essential image of the composition
from 4.1.2

Cat —— Psh(Cat) —= Psh(grpd)

since the composition preserves pullbacks. So we first define in Cat

(4.5.1)

grpd, —refl grpd,

s v
U Xgppa U T> grpd

Then obtain Id and refl in Psh(grpd) by applying res oy to this diagram.

To this end, let Id" : U Xgrpa U — grpd act on objects by taking the set - the
discrete groupoid - of isomorphisms

(A, a9,a1) = Alag, ay)
and on morphisms (f, ¢y, ¢1) : (4, ag,a;) — (B, by, by) by
(f+A— Bygg: fag — by = fay — b)) s dyo f(=) o by’

Let refl” : grpd, — grpd, act on objects by
(4,a) — (A(a,a),id,)
and on morphisms (f,¢) : (A,a) — (B,b) by
(f: A= B¢ (Aa) = (B.D) = (¢o f(=) ¢ ¢o f(id,) 07! =id,)

where the second component has to be the identity on the object id,, since B(b, b)
is a discrete groupoid. So we need a merely propositional proof that the two maps
are equal, which in this case is clear.

Proof. Since §(A,a) = (A, a,a), it follows that the square in 4.5.1 commutes. [

Lemma 4.5.2. We can then construct the pullback I’

’
refl

r— grpd,

J s

U Xgrpa U 7 grpd
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as the groupoid with objects (A, ay,aq, h) where A is a groupoid with ag,a; € A and
h:ag — ay, and morphisms

(f7¢0?¢1aAh:k) : (A7a07al?h:a0 —)(11) — (B7b07bl’k:b0 _>b1)

where f: A — B, ¢, : fa; = b, and Ah = k represents a merely propositional proof
of equality. Then we can also compute

p'(A;a) = (A a,a,id,)

Lemma 4.5.3. Specialized to q : I — Ty in Psh(grpd), the characterizing property
of polynomial endofunctors 5.0.2 says that a map from a representable € : I' — P X
corresponds to the data of

A:T—Ty and C:T-A-A-ld—> X
where A = qoe and
X+ T1-4-A-1d r grpd,
I
rra-A——— ngrdeTgrpd

fstJ/

r-A—— grpd,

a

Lemma 4.5.4. \\ T — P_ Tm

(A,0) :
AN J{Ptptp
“x

PTy —— PpTm
The data of a map (A,C,Y,en) : I — T corresponds to the data of

A:T — grpd
C:T'-A-A-ld - grpd
Yeen : '+ A — grpd,
such that C o A*p" =U o7,
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var 4

grpd, Ve r-A grpd, grpd,

\ ’ ‘
UJ{ Ap! o’ / J{U

< v

grpd «—c¢c—T-A-A-d —— ' "> grpd

di5P|d/aU*varA ) l Id’ -
—
A A —— U XgpaU — grpd,
APy o v|

-

r-A vary — grpd, — grpd

disp 4 ’ lU

_
r 3 grpd

Then precomposition with o : A — T" acts on such a triple via

A
UJ( \i"mc"q*aﬂreﬂ"tp*ﬂ

' — T
(A,CYren)
_________ (A77ref|)
r- -
| \\ N
\ N Nt
Proof. \ T —— P, Tm

\
(A,C)
N J/Ptptp
|

BTy —— PpTm

By the universal property of pullbacks, The data of a map from a representable
I' = T corresponds to the data of (4,C) : ' = P, Ty and (A’,7,q) : I' = P,Tm
such that

pfl'y ° (A7 C) = Ptptp ° (A/7’7refl)

By 5.0.8 and 5.0.2 this says
(A,C o A"p) = (AP o Yyep)
so the above is equivalent to having A = A’, C, v,. such that
CoA'p=1tpo7.q in Psh(grpd)
By Yoneda this is equivalent to requiring

OOA* /:UOFYrefI in Cat

Proposition 4.5.5. We can compute € : P, Tm — T via

er : Psh(grpd)(T', P,Tm) — Psh(grpd)(T,T')
(A7) = (AU oy,v0 A%p')

Proof. This follows from the computation for 7" 4.5.4, the polynomial action on slice
morphisms 5.0.8, and 5.0.2. [
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Definition 4.5.6 (Identity elimination). We want to define J : T'— P, Tm
Jr : Psh(grpd)(I', T') — Psh(grpd)(T’, P,Tm)
<A7 C(7 ’Vrefl) = (Aa FY)

for some y:I'- A- A-ld — grpd, which we will define below. We first use 1" 4.5.4
to describe the given data:

grpd, by Yref r ‘ A J A grl?d. grpd,
o Ty .
grpd «—c—T1-4-A-d — I > grpd
['"A-A—— U XgpaU — grpd,
disproyar , ) fs‘t ’ Ul
r-A vary —» gr;d_ — grpd
disp 4 lU

_
r 3 grpd

Let us name the fibers over the diagonal
Creﬂ i=Uo Vrefl = Co A*p, A — gl‘pd
and its given points

Vrefl = (Crefla Crefl)

(Note that ¢, is not a functor, but will give us an object per object (z,a), and

morphism Crefl(fa ¢) : Crefl(fa ¢>Crefl (1’, a) - Crefl(ya b) per morphism (fv ¢)) Then 0
will be defined by using C' to lift the path

(idx,id%,h,i) i (z, a9, ag,id,) = (x,09,a,,h) €T-A-A-Id

that starts on the diagonal, to give us a point in any fiber, using c,.q. Note that
we unfolded I'- A - A - Id as the domain of the nested display maps so that = € T',
ay € Az,
a, € Uovary(z,ay) = U(Az,ay) = Ax
and
h € Id o U*var 4(x,ay,a,) = Id" (Az, ay, a;) = Az(ay, a;)

We also check (id,,id, ,h, )isapathinI'-A-A-Id by proving “ ", the omitted
equality

(Id" o U*var 4 (id,, id,_, h))id, = (Id'(Aid,,id,_,h))id

o’ a

= ho Aid,id, oid,' =h
0 0 0
So we define y: I'- A- A-1d — grpd, on objects by
(l‘, Qg, Ay, h) = (C(.’L‘, Qg, a1, h)’ C(idw, ida07 hv 7) Crefl<xa ao))
noting that from the computation of p’ given in 4.5.2 it follows that

Crefl(xaao) €Co A*p/(xva’O) = C(xaQOaalah>

Define v on morphism (f, ¢q, 1,0, o Afho gt = k) : (z,a4,a1,h) — (y,by, by, k)
by

(fa ¢07 (151,7) = (C(fa ¢O’ (;517*)7 C<idya idbo’ k7—) Crefl(fv ¢0))
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We type check C(id,,id, , k, ) ¢ren(f, dp)

Clidy,idy  ky _)een(f,d0) = CUf, 00,015 ) 0 Clidy,id, by ) cren(, ag)
fs¢o, b1 0 Afh, ) cen(@, a0)

fid0,k 0 @y, ) Cren(; ag)

idy,idy .k, ) o C(f, ¢0s b0, ) Cren(, ap)
dy,idy . k, —) o Cren(f, Do) Cren(@; ag)

dy, idboa k, ) ceen(y, bo)

=C
=C

Il
QQQ

1

(
(
(
(i
(i

Proof. Functoriality of v is routine. We show naturality of J. Suppose 0 : A —» T’
is representable

(Aoo,Coq o, Yeqotp'o) — (Ao, va)

(Aoo,ypoqo)

Psh(grpd)(A,T) s, Psh(grpd)(A, P,Tm)

_D,{ }og

Psh(grpd)(I',T) ———— Psh(grpd)(I', P, Tm)
r

(A, C Vrept) (A7)
So we want to show that on objects (z,aq,a,,h) € A-Aoo-Aoc-Id
Va (@,a9,a1,h) =p o g0 (x,a9,a1,h)
Let us denote q*o(z,ay,aq,h) = (0z,a(,ay,h’). Then

Va (@, a0,a1,h)
=(Coqio(z,ag,a1,h),(Ceqio(id,,id, ,h,_))(cen(tpo(z, ag))))
=(C (o, a9, a1, 1), (C(idyy, iy, 1, ))(creﬂ (ox,ag)))
=7r(ox,ag, a1, h')

=qpeqo(z, Qg, Ay, h)
and similarly for morphisms. O

Proposition 4.5.7. J: T — P, Tm, as defined above is a section of €.

Proof. Let (A,C,7,n) : I' = T be a map from a representable. Then using the
definition of J and the computation of € 4.5.5

er o Jr (A, C,Yen) = er(A,7) = (A, U o,y 0 A*p')

28



By definition of v from J we can see that U o v = C| so it suffices to show that
vo A*p" = 7. On an object (z,ag)

~—

vo A*p'(x, ay
=7(, A, A, idao)
($7 Qgp, A, ida0)7 C(idaw ida07 idao) creﬂ)

refl(zv a0)7 Crefl (SC, aO))

e
c

4.6 Universe of Discrete Groupoids

In this section we assume three different universe sizes, which we will distinguish
by all lowercase (small), capitalized first letter (large), and all-caps (extra large),
respectively. For example, the three categories of sets will be nested as follows

set & Set — SET

We shift all of our previous work up by one universe level, so that we are working
in the category PSH(Grpd) of extra large presheaves, indexed by the (extra large,
locally large) category of large groupoids. We would then have Ty = [—, Grpd] and
Tm = [—, Grpd,].

Definition 4.6.1 (Universe of discrete groupoids). Let U be the (large) groupoid
of small sets, i.e. let U have set as its objects and morphisms between two small
sets as all the bijections between them. This gives us "U": @ — Ty.

Then we define El : yU — Ty by defining El : U — Grpd as the inclusion - any
small set can be regarded as a large discrete groupoid.

U—— grpd

RN

Grpd
Then we take 7 := dispg,, giving us

E—— Tm

wl ) f"

U — Ty

We can compute the groupoid F as that with objects that are pairs (X, z) where
x € X € set, and morphisms

E(X,2),(Y,y) ={f: X =Y |fz=y}
Then 7 : E — U is the forgetful functor (X, z) — X.

Showing that this universe is closed under II, ¥, Id formation depends on how we
formalize set <> Set. In both cases we need to check that discreteness is preserved
by the type formers, which is straightforward. If we are working with sets and
cardinality, i.e. taking set = Set_, C Set_, = Set for some inaccessible cardinals
A < kK, then it is straightforward to check that the type formers do not make
“larger” types. If we are working with type theoretic universes with a lift operation
ULift : set — Set then it may not be true that ULift commutes with our type
formers.
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Chapter 5

Polynomial Endofunctors

In this section we develop some of the definitions and lemmas related to polynomial
endofunctors that we will use in the rest of the notes.

Definition 5.0.1 (Polynomial endofunctor). Let C be a locally Cartesian closed
category (in our case, presheaves on the category of contexts). This means for each
morphism ¢ : B — A we have an adjoint triple

C/B

-

tl 4t At

C/A
where ¢* is pullback, and ¢, is composition with ¢.
Let t : B — A be a morphism in C. Then define P, : C — C be the composition
P, :=A 0t oB*

c-Zs¢c/B-sc/Aa-2 ¢

Proposition 5.0.2 (Characterising property of Polynomial Endofunctors). The
data of a map into the polynomial applied to an object in C

I — RY
corresponds to a pair of morphisms
a:I'—= A and 6:T-a—Y

and this correspondance is natural in both I and Y.
Given any such ¢ we can extract o : I' — A by composition

r— % . py

N

N
\\

A
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Applying the adjunction t* 4 t,, and viewing ¢ : o — t,B*Y as a map in the slice
over A, this corresponds to

Applying the adjunction By 4 B*, this corresponds to
a:I'— A and

Henceforth we will write
(,8): T = PY
for this map, since it is uniquely determined by this data.

This is natural in T'. Precomposition by o : A — T, acts on such a pair by

ﬁ (aoo,Bot* o)
. \ozjcr, ot'o

r (a.8) Y

It is also natural in f: X —Y, meaning the morphism P,f acts on such a pair by

r % px
(. foB) lp of
PY

Lemma 5.0.3. Use R to denote the fiber product
R, B
PPJ/ ) lt
PY BV A

By the universal property of pullbacks and 5.0.2, The data of a map I' — R corre-
sponds to the data of B : T — B and (tof,y) : ' = BY, or just 5 : T — B and
y:Itof—=Y

T B
~
(B.y)
~
R —re— B
(toB,y) lpp‘ ti
py “2% 4

By uniqueness in the universal property of pullbacks and 5.0.2, Precomposition by
a map o : A — I' acts on such a pair by

A
NG

r (B,y) R
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Definition 5.0.4 (Evaluation). Let counit : pg — B — B*Y denote the counit
of the adjunction f* - f, at the object B*Y, recalling that pp = t*t,B*Y. Then
viewing the object B*Y in the slice as the object Y x B in the ambient category,
we define ev : R — Y as the composition

|
E

counit Ty

e

Lemma 5.0.5 (Evaluation Computation). Suppose (8,y) : T — R, as in 5.0.3

PB

——

sy

B:I' =B and y:T'-tof—Y
Then the evaluation of y at B can be computed as

evo(B,y)=yob

where
Y
s it
— A
and

AN
N
\
\
_/
>
<

)
, R—— PY
/ : ~ J .
/ i counit t,B'Y
N ~+ K

Proof. Tt suffices to show (counit o (8,y)) = (y o b, B) instead.

counit o (8,y)

= counit o (vob,yot*dot*h) 5.1
= counit o (v,yot*d)ob 5.0.3,5.2
= counit o t*(to B,y) o b 5.3
:m 5.4
= (y,v) o 5.5
=(yebvob)
=(yeb,p)
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R |

Figure 5.1: t*dot*b = idF-to,B

r
bl (vob,yot*dot*b)

T'top ﬁyot*d) R
Figure 5.2: (v,yot*d)ob = (vob,yot*dot*d)

Definition 5.0.6 (Polynomial composition). Let f : B — A and g : D — C.
Define the polynomial composition f < g: () — P;C' as the composition of the two
vertical maps in the following

D+—Q
J A
1 I
C+—R ,‘ B
ISl
b€ 55e A
Then the two functors
Pf<lg = Pf o Pg
are naturally isomorphic.
Proof. O

Definition 5.0.7 (Mate). Suppose

c—- B

NoA

Then we have a mate u, : py o s* = t*. This is given by the universal property of
pullbacks: given f: z — y in the slice C/A we have

QLU N

FERT

o — e —— Y x

L Py
s yl t*yl J{y

CT>B*t>A
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using 5.0.2, 5.0.3
Figure 5.3: t*(to 8,y) = (v,y o t*d)

t*(to B) tof
Sl (e tof3,
t*(toﬂ,y)l ) H (tc@y)J wm
>\
t't,BY —— B'Y £t t. B'Y —— t,B*Y
uni counit

Figure 5.4: counit ot*(to 8,y) = (to 5,y)

By the calculus of mates we also have a reversed mate between the right adjoints
w*:t, — s, 0p*. Explicitly u* is the composition
unitt, s.p I t, s,.p* counit %

t, —— s, p'ps't, —— s ptt, —— s.p

Definition 5.0.8 (Contravariant action of P_ on aslice). Let P_: (C/A)°? — [C, C]
be defined by taking s P, on objects and act on a morphism by

B P,
e
A \ p — p*
C P,

where
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(toB,y) PY

. I
v=t*(to to3
ot B)J BY H J A*Y

B e, A

Figure 5.5: m = (y,v)

where p = p* is the mate from 5.0.7, and 7 is the natural isomorphism given by
pullback pasting.

Pointwise, this natural transformation acts on a pair (o, ) : I' = P,X by
r % px
(aﬁoam l”*x
P.X

where o*p is defined as

=

Q
m—w
R

Q
)

t o

—
= —
U:HTQ

[ ]

—
~+

We prove this now.

Proof. Firstly p% = A(s,nx°tp-x), so the first component o : I' — A is preserved
by p% and it suffices to show, in C/A

—>tB*

S
aﬁom l «Nx°HB* X

5,0 X

By the adjunction s* - s,, it suffices to show, in C/C
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i R e

S«Nx°H B x
Oé Bom J/

Now we calculate 5,1y o fig.x = 1y © ig-x- S0 that our goal is to show

st LOB oy pex BEX, epey

7(%50% %
C*X

Since ny is an isomorphism between two limits of the same diagram, namely X xC' =~
C\C*X = C\p*B*X, it suffices to show that both fig.x o s*(«, 8) and (o, 5o a*p)
are uniquely determined by the same two maps into X and C.

By the characterising property of polynomial endofunctors (5.0.2) we calculate

(@, Boawp) = (Boa'p,s'a)

a<a’ﬁ—oa>p)s*C*X s* (a’ﬁ—oa)p)C*X Cs*'a —— X
oarp sta) 15 ey

More formally, this means S0 a*p : C\s*a = X and s*a : C;s*a — C are the two
maps that uniquely determine the map Ca, foa*p: Cis*a — X x C.

On the other hand,

(o, B) unit, grx s.p t B X s5,p* counit g« x
o —7> t, B*X —— % s*p*p!s*t*B*X - S*p*t*t*B*X . S*p*B*X

HB*x

s s

*

*(a,) —_— prut,B*X p*counit g« x
sfa — s*t,B*X 4> p*ps*t, B X —— p't't, B*X —— p*B*X

HBpxx
prp*
unit, psx . )
p.S a 18" (a,3) !S*t*B*X p!s*t*B*X wt,B*X t*t*B*X counit gx x B*X
I « S R X x B

S
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The mate p, is calculated via the universal map into the pullback R (dotted below).

ra——sTya——T

s*(a,ﬁ)l l l(aﬁ)

s« S **ﬂ!*t;é;)}*} R J4> PtX «
s*t*B*XJ lt*t*B*X J{t*B*X
C ——B—— 4

Using the characterization of maps into R from 5.0.3 we can calculate
mt,B* X o s* (o, B) = (pos’a,Beotia’s)

since the first component is simply the map I' -, &« — B and the second component
is the second component of the map

(aoa’s,fot*a’s) = (a,f)oa*s: T, a— PX

Then using 5.0.5

g x °s*(a,f) (5.0.1)
= counit g. y o pt, B*X o s*(av, B) (5.0.2)
= counit g.x o (po s*a, Bot a*s) (5.0.3)
=(Botra*sor,posta) (5.0.4)
=(Boa’p,posia) (5.0.5)
‘T a—XxB (5.0.6)
where
and
-« F,a-—2%C
r% J{a*pJ J{P
Fgataoas————;>F-ta—>B s
! |-
F S @ QxS F @ A

Moving back along the adjunction p, 4 p* 5.0.1 tells us that
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So that, as required, fig. x o s* (e, 8) and («, 8 o a*p) are uniquely determined by the
same two maps into X and C. O

Definition 5.0.9 (Covariant action of P_ on a cartesian square). We can also view

taking polynomial endofunctors as a covariant functor on the category of arrows
with cartesian squares as morphisms

P_: CartArr(C) — [C,C]
where the action on a cartesian square is

C=——==C

A
D*J{ n 1 J{B*
X

C/D «p—C/B

AN
| w] Ser e
~

C/C 5 C/A

LN

given by the whiskered natural transformations

C=———=C

X
C*l n 1 JB*
At

C/D «p—C/B

NS
P, s*l pt lt* P,
~

T

Furthermore, the natural transformation P, is cartesian. meaning each naturality
square is a pullback square.

PNY
PX —"Y PX

P, fl i l&f

BY —— RY

The natural transformation P, computes in the following way

38



=)

—r3 B r

Box, 30
wﬂ \ )

A PX — PX
Poy

w»
—
L
o~

Q

0

using the fact that I' -, « and I' -, o « are limits of the same diagram.

Proof. We can use the computation of P, and P,f to show that the natural
transformation P, is cartesian. Essentially, the first component of a map I' = P, X
is determined by its composition with P, f and its second component is determined
by its composition with P, .. O
Corollary 5.0.10. If we have

D —— B

b

| D—— B |&

b

then the two possible ways of obtaining composing the covariant and contravariant
actions of P_ form a (strictly commuting) pullback square in [C,C].

PH
P —— P
a1 92

Pfl lpz*

Pq’l P PQQ

Proof. To check that it commutes and is a pullback, it suffices to do this pointwise,
for some X € C. Then we simply unfold the computation for each of P, and p*. O
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