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The (pre)simplicial category

Definition
The (pre)simplicial category ∆̄ is a category whose objects are finite ordinals
n = {0, 1, . . . , n − 1} and its morphisms are (weakly) monotone maps, i.e.
order-preserving maps.

Remark
• We note that we get empty ordinal. The ordinal number 0 is initial and the

ordinal 1 is terminal in ∆̄.

• It is sometimes useful to think of ∆̄ as a 2-category. The objects are
categories n = 0→ 1→ . . .→ n − 1, morphims are functors f : n→ m, and
2-cells are natural transformations. We have f ⇒ g iff f (i) ≤ g(i) for every
0 ≤ i ≤ n − 1
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∆̄ as strict monoidal category

Notice that addition of ordinals is a bifunctor.

+ : ∆̄× ∆̄→ ∆̄

n + m := {0, 1, . . . , n + m − 1}

If f : n→ n′ and g : m→ m′, then f + g : n + m→ n′ + m′.
where

(f + g)(i) =

{
f (i) , if i = 0, 1, . . . , n − 1
n′ + g(i − n) , otherwise

(∆,+, 0) is a strict monoidal category.
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Some calculation in ∆̄

We define µk to be the unique arrow k→ 1. So, µ0 = η, µ1 = 1 = id1
and µ2 = µ. From the uniqueness we get equations: for instance,

µ(µ+ 1) = µ(1 + µ) = µ3 : 3→ 1

Similar reasoning shows that

µn
(
µk1 + . . .+ µkn

)
= µ(k1+...+kn)
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A Simple Observation

Suppose f : m→ n is an arrow in the category ∆̄.
Let mi be the number of elements in the fibre f −1(i). Then, we have

f = µm0 + µm1 + . . .+ µmn

Example
Suppose f : 5→ 5 is given by the assignment below:

0 1 2 3 4

0 1 2 3 4

Then,
f = µ1 + µ1 + µ0 + µ3 + µ0 = 1 + 1 + η + µ3 + η
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Composition in ∆̄: by way of example

The above decomposition helps us to compose morphisms in ∆̄.

Example

6 4 3

0 0 0

1 1 1

2 2 2

3 3

4

f g

• f = µ1 + µ0 + µ1 + µ3

• g = µ0 + µ3 + µ1

• g ◦ f = µ0 + µ2 + µ3
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Universal monoid of ∆̄

• 〈1, η, µ〉 forms a monoid in the monoidal category ∆̄.
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Universal monoid of ∆̄

• 〈1, η, µ〉 forms a monoid in the monoidal category ∆̄.
• It is universal in the following sense: given any monoid 〈C , η′, µ′〉
in a strict monoidal category (C,⊗, I ), there is a unique (strict)
monoidal functor F : (∆̄,+, 0)→ (C,⊗, I ) such that F1 = C ,
Fη = η′, and Fµ = µ′.

0 1 1 + 1

I C C ⊗ C

η

η′

µ

µ′
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Universal monoid of ∆̄

• Proof of the claim:

Suppose a strict monoidal category (C,⊗, I ) and a monoid 〈C , η′, µ′〉 in it is given.
Define F (k) = C k := C ⊗ C ⊗ . . .⊗ C . In particular F (0) = I , and F (1) = C .
Also, define

F (µk ) : C k → C

to be the k-fold multiplication in C. For a general morphism f : m→ n in ∆̄,
decompose f as f = µm0 + µm1 + . . .+ µmn . Now, define

F (f ) = ⊗k F (µk )

It is easy to check that assignment F indeed defines a strict monoidal functor
(∆̄, η, µ)→ (C,⊗, I ). Moreover, any strict monoidal functor F with F (1) = C ,
F (η) = η′, and F (µ) = µ′ is uniquely determined essentially due to equations such
as µ(µ+ 1) = µ(1 + µ) = µ3 : 3→ 1 and f = µm0 + µm1 + . . .+ µmn .
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Injectives and surjectives

Question
How many injective monotone f : n→ n + 1 are there?
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Injectives and surjectives

Question
How many injective monotone f : n→ n + 1 are there?

Answer
There are exactly n + 1. We denote them by δn

i where i = 0, . . . , n.

0 1 2 3 4 . . .δ0

δ0

δ1

δ0

δ1

δ2
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Injectives and surjectives

Question
How many injective monotone f : n→ n + 1 are there?

Answer
There are exactly n + 1. We denote them by δn

i where i = 0, . . . , n.

0 1 2 3 4 . . .δ0

δ0

δ1

δ0

δ1

δ2

Question
How many surjective monotone g : n + 1→ n are there?
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Injectives and surjectives
Question
How many injective monotone f : n→ n + 1 are there?

Answer
There are exactly n + 1. We denote them by δn

i where i = 0, . . . , n.

0 1 2 3 4 . . .δ0

δ0

δ1

δ0

δ1

δ2

Question
How many surjective monotone g : n + 1→ n are there?

Answer
There are exactly n. We denote them by σn

i where i = 0, . . . , n − 1.

1 2 3 4 5 . . .σ0
σ0

σ1

σ0

σ1

σ2
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Theorem (coface-codegeneracy decomposition)
Any morphism in ∆̄ can be written as a composition of morphisms δn

i , called
coface maps, and σn

j , called codegeneracy maps. More precisely, an arrow
f : n→ n′ has a unique decomposition as follows:

f = δi1 ◦ . . . ◦ δik ◦ σj1 ◦ . . . ◦ σjl

where
n′ > i1 > . . . > ik ≥ 0

0 ≤ j1 < . . . < jl < n − 1

and
n′ = n − l + k

We can apply this image factorization to measure the size of hom-sets
Hom∆([m], [n]).

|Hom∆([m], [n])| =
∑

k

|inj([k], [n])| × |surj([m], [k])| =

∑
k

(
n + 1
k + 1

)(
m

k

)
=
∑

k

(
n + 1
k + 1

)(
m

m − k

)
=(

n + m + 1
n

)
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Theorem (coface-codegeneracy decomposition)
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j , called codegeneracy maps. More precisely, an arrow
f : n→ n′ has a unique decomposition as follows:
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The Simplicial Category

Definition
The Simplicial category ∆ is the full subcategory of ∆̄ whose objects are all the
positive ordinals. So, the category ∆ does not possess the initial object, but it still
has the terminal object.
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The Simplicial Category

Definition
The Simplicial category ∆ is the full subcategory of ∆̄ whose objects are all the
positive ordinals. So, the category ∆ does not possess the initial object, but it still
has the terminal object.

Remark
In order to comply with the notations of topologists, we use different notation for
objects of the category ∆. We denote the object n + 1 of ∆̄ by [n] = {0, 1, . . . , n}
in ∆ for all n ≥ 0. Standard affine simplex functor ∆• : ∆→ Top which sends
numeral [n] standard affine n-simplex |∆n| establishes an equivalence between the
simplicial category and category of affine simplices.
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The Simplicial Category

In the simplicial category, for any integer n ≥ 1, and any 0 ≤ i ≤ n we
have δn

i : [n− 1]→ [n] as the injective order preserving map skipping i .
For any integer n ≥ 0, and any 0 ≤ j ≤ n we denote σn

j : [n + 1]→ [n]

the surjective order preserving map with (σn
j )−1({j}) = {j , j + 1}
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The Simplicial Category

In the simplicial category, for any integer n ≥ 1, and any 0 ≤ i ≤ n we
have δn

i : [n− 1]→ [n] as the injective order preserving map skipping i .
For any integer n ≥ 0, and any 0 ≤ j ≤ n we denote σn

j : [n + 1]→ [n]

the surjective order preserving map with (σn
j )−1({j}) = {j , j + 1}

Remark
For each n ≥ 0, there are exactly n + 1 coface maps δi : [n − 1]→ [n] and n + 1
codegenracy maps σi : [n + 1]→ [n]. These maps, as we have seen already,
generate all morphisms in the simplicial category.
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The Simplicial Category
Furthermore, for each n ≥ 0, we have a string of adjunctions:

δn+1 a σn a δn a . . . a σ0 a δ0
where unit of δk+1 a σk and counit of σk a δk are identities. From
these one obtains:

δk+1 = δk+1 ◦ σk ◦ δk ≤ δk

Similarly, one obtains:

σk−1 = σk ◦ δk ◦ σk−1 ≤ σk

Note: It follows that δk is a section of both σk and σk+1. Similarly, δk

and δk+1 are both sections of σk .

[n]

[n + 1]

[n]

[n + 1]

σkδk
σk+1 δkσkδk+1
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Cosimplicial identities

Following diagrams commute:

[n] [n + 1]

[n − 1] [n]

δn
j−1

δn
i

δn+1
j

δn+1
i

when

0 ≤ i < j ≤ n + 1

[n] [n − 1]

[n + 1] [n]

σn
j+1

σn
i

σn−1
j

σn−1
i

when

0 ≤ i ≤ j ≤ n − 1

Sina Hazratpour The simplicial category 23



Cosimplicial identities

And also:

[n − 2] [n − 1]

[n − 1] [n]

σn−2
j

δn
i

σn−1
j

δn−1
i−1

when

0 < j + 1 < i ≤ n

[n − 2] [n − 1]

[n − 1] [n]

σn−2
j−1

δn
i

σn−1
j

δn−1
i

when

0 ≤ i < j ≤ n − 1
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Cosimplicial identities

And finally,

[n] [n − 1]

[n − 1] [n]

δn
j+1

δn
j

σn−1
j

σn−1
j

id

when

0 ≤ j ≤ n − 1
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Cosimplicial identities

Theorem
The category ∆ is the universal category with objects [n], n ≥ 0 and coface and
codegeneracy morphisms such that:
• Every morphism is a composition of coface and codegeneracies.

• The cosimplicial identities are satisfied and any identity relation among the
morphisms is generated by these identities.
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Pushout in simplicial category

For each n ≥ 2, the object [n + 1] can be constructed as the pushout

[n] [n + 1]

[n − 1] [n]

δn−1

δ0

δn

δ0

What’s more, this diagram is in fact a 2-categorical limits, that is a
bipushout as was observed in
Ross Street (1980). “Fibrations in bicategories”. In: Cahiers de
Topologie et Géométrie Différentielle Catégoriques 21.2, pp. 111–160
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Pushout in simplicial category

Remark
This means that ∆̄ is generated as a 2-category by these pushouts and by taking for
each n ≥ 0, successive adjoints of morphisms in Hom(n, n + 1), starting from δn+1.
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Simplicial objects

Definition
• The presheaf category Psh(∆) = Fun(∆op, Set) is called category of

simplicial sets and its objects are called simplicial sets. Traditionally one
denotes the category of simplicial sets by sSet.

• Generally, sA = Fun(∆op,A) denotes the category of simplicial objects in a
category A .

Example
• s2Set = s(sSet) is the category of bisimplicial sets.

• sGrp is the category of simplicial groups.

• sRing is the category of simplicial rings.

• And so on.

To know more about these categories, see Peter May’s Simplicial objects in
algebraic topology , University of Chicago Press, 1967.
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Unwinding the information of a simplicial object

Let C be a category.
• Given a simplicial object X in C we obtain a sequence of objects

Xn = X [n] endowed with the morphisms dj = X (δj ) : Xn → Xn−1
and sj = X (σj ) : Xn → Xn+1. These morphisms satisfy the dual of
the relations between cofaces and codegeneracies. So, we call di

and sj face maps and degeneracy maps respectively.
• Conversely, given a sequence of objects Xn and morphisms dj , sj

satisfying these relations there exists a unique simplicial object U
in C such that Xn = X [n], dj = X (δj ), and sj = X (σj ).

• A morphism between simplicial objects X and X ′ is a natural
transformation between them.
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Density theorem

Theorem
Every simplicial set is canonically a colimit of the standard simplices (aka
representable presheaves). That is:

lim−→∆n ∼= X

Proof.
Apply Grothendieck construction to the simplicial category ∆ and the category Set
and you have:

lim
−→

x∈el(X )

∆n ∼= X

Notice that objects of el(X ) are of the form ([m], x) where x ∈ Xm is an m-simplex.
A morphism ([m], x)→ ([n], y) is a morphism f : [m]→ [n] with Xf (y) = x .
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Definition
A morphism f : [m]→ [n] in ∆ is called inflationary if i ≤ f (i) for every
0 ≤ i ≤ m.

Definition
The subcategory of ∆ consist only of inflationary morphisms is denoted by ∆infl .
Equivalently, ∆infl is the category generated by coface maps.
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Figure: An illustration of the category ∆+
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A detour to classical algebraic topology

Nomenclature
• The convex hull of a subset {vi0 , . . . , vik } of set of points {v0, . . . , vn} in an

affine space is called a k-face of [v0, . . . , vn]. We denote that by [vi0 , . . . , vik ].

• A set K of simplices in Rn is called a simplicial complex if the followings
hold:

1. If K contains a simplex then it contains all faces of this complex.
2. The intersection of two simplices of K is either empty or a

common face.
3. K is locally finite, that is every point of An has a neighbourhood

that intersects only finitely many simplices of K . Of course this
condition materialises only when K is infinite.
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An example of a simplicial complex

Figure: An example of a simplicial complex

Sina Hazratpour A detour to topology 35



A non-example of a simplicial complex

Figure: A non-example of simplicial complex
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Simplicial decomposition of sphere and torus
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Simplicial decomposition of Klein bottle and projective plane
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Simplicial vs globular

Figure: Globular and simplicial complexes
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Standard topological simplex

The functor ∆• : ∆→ Top is defined as follows by its action:

• On objects: it sends [n] to the standard (n-dim) topological
simplex

∆n = {x0e0 + x1e1 + . . .+ xnen|
∑

0≤i≤n

xi = 1, xi ≥ 0} ⊆ Rn+1

where ei = (0, 0, . . . , 1, . . . , 0, 0) with 1 in i-th position and 0
elsewhere.

• On morphisms: it sends α : [n]→ [m] to

∆α(p) =
∑

0≤i≤n

ti eα(i)

where p = t0e0 + t1e1 + . . .+ tnen is a point of ∆n.
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∆• in terms of coface and codegeneracy maps

We look at the action of ∆ on coface and codegeneracy maps: Let’s
set d i := ∆δi : ∆n−1 → ∆n and s i := ∆σi : ∆n → ∆n−1.
Then

d i (t0, . . . , tn−1) = (t0, . . . , ti−1, 0, ti , . . . , tn−1)

Also,
s i (t0, . . . , tn+1) = (t0, . . . , ti−1, ti + ti+1, . . . , tn+1)

And of course, this data is enough to know the action of the functor
on every arrow of category ∆.

· · ·
•

•

•

•

• •

•

• • •
oo
oo

//
//
//

oo
oo

oo

oo
oo

//
//

//
oo

oo
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(Total) singular complex of a space
Let Y be any topological space. We define a simplicial set SY by
setting SYn = Top(∆n,Y ) to be the set of continuous maps from the
standard topological n-simplex to the space Y . In algebraic topology,
we call elements of SYn the n-simplices of Y .
SY together with the following face and degeneracy maps form a
simplicial set which we call total singular complex of Y .

• Notice that
di : Top(∆n+1,Y )→ Top(∆n,Y )

is obtained by postcomposition with d i : ∆n → ∆n+1. We call di (p) the i-th
face of singular complex p.

• Similarly,
si : Top(∆n−1,Y )→ Top(∆n,Y )

is obtained by postcomposition with s i : ∆n → ∆n−1. We call si (q) the i-th
degeneracy of singular n-simplex.

• A simplex x ∈ Xn is called non-degenerate if x cannot be written as si y for
any y ∈ Xn−1 and any i .
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Picturing singular complex functor

Figure: Picturing singular complex functor
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Left Kan extension
Let E be a locally small, cocomplete category and F : ∆→ E any
functor. We define functor R : E → sSet by

(RE )n = E(F [n],E )

• RE is a simplicial set.
• R admits a left adjoint L : sSet→ E which is known as left Kan

extension of F .

sSet
L

!!
∆

y
<<

F
// E

So, we have isomorphism of sets

E(LX ,E ) ∼= sSet(X ,RE )

natural in X and E .
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Left Kan extension as a coend

The left adjoint L can equivalently be expressed as a coend. That is

LX =

∫ n

Xn ⊗ F [n]

where
Xn ⊗ F [n] :=

∐
Xn

F [n]

If f : [n]→ [m] then define f∗ as the unique morphism from the
coproduct Xm ⊗ F [n] of F [n]’s to the cocone Xm ⊗ F [m]: So, the
diagram below commutes

Xm ⊗ F [n] Xm ⊗ F [m]

F [n] F [m]

x

F (f )

x

f∗

for all x ∈ Xm.
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Left Kan extension as a coend

Also, define f ∗ as the unique morphism which makes the diagram
below commutative for every m-simplex x ∈ Xm.

Xm ⊗ F [n] Xn ⊗ F [n]

F [n] F [n]

x

Xf

Xf (x)

f ∗

LX is the universal wedge:

Xn ⊗ F [n] LX

Xm ⊗ F [n] Xm ⊗ F [m]

f ∗

f∗

ωm

ωn

universal wedge
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Left Kan extension as a coend

Equivalently LX is given by the coequalizer diagram

∐
f

Xm ⊗ F [n]
φ //
ψ
//
∐

[n] Xn ⊗ F [n] // LX

where the first colimit is taken over all f : [n]→ [m], and φ =
∐

f∗
and ψ =

∐
f ∗.
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Geometric realization

In the case where E = Top and F = ∆• we obtain right adjoint R as
total singular complex functor S : Top → sSet. By construction above
it has a left adjoint L.

Definition
The left adjoint to the total singular complex functor S : Top → sSet is called the
geometric realization functor and is denoted by | − | : sSet→ Top. It’s defined
on simplicial sets by

|X | =

∫ n

Xn × ∆n
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Geometric realization

To know more explicitly what | − | computes for a simplicial set X , we
note that |X | is a quotient of the coproduct

∐
n Xn × ∆n by relations

specified in universal wedge . That is a point of |X | is of the form
x ⊗ p := [(x , p)] where x is an n-simplex for some n ≥ 0 and p ∈ ∆n,
and moreover any two points related by some relation generated by
following relation are deemed equal in |X |:
• (x , δi (p)) ∼ (di (x), p) for any x ∈ Xn+1 and p ∈ ∆n.
• (x , σi (p)) ∼ (si (x), p) for any x ∈ Xn−1 and p ∈ ∆n.
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Geometric realization

To know more explicitly what | − | computes for a simplicial set X , we
note that |X | is a quotient of the coproduct

∐
n Xn × ∆n by relations

specified in universal wedge . That is a point of |X | is of the form
x ⊗ p := [(x , p)] where x is an n-simplex for some n ≥ 0 and p ∈ ∆n,
and moreover any two points related by some relation generated by
following relation are deemed equal in |X |:
• (x , δi (p)) ∼ (di (x), p) for any x ∈ Xn+1 and p ∈ ∆n.
• (x , σi (p)) ∼ (si (x), p) for any x ∈ Xn−1 and p ∈ ∆n.

Example
Suppose X is the trivial simplicial set. That is X [n] = {∗} and all face and
degeneracy maps are identities. then relations by which we quotient out

∐
n ∆n

force this coproduct to collapse to a single point. Hence, |X | = pt is a one point
space.

Sina Hazratpour A detour to topology 50



Geometric realization in action

Consider following ∆infl -set.

Figure: a ∆infl -set with two vertices and two edges and no degeneracies

Identifying this ∆infl -set with its presheaf representation, we have:
X0 = {v0, v1} and X1 = {e0, e1} with two face maps:

X1
d0 //
d1

// X0

We would like to concretely calculate what |X | is as a topological
space:
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Geometric realization in action

|X | =

∐
n≥0 Xn ⊗ ∆n

∼
=

∆0
∐

∆0
∐

∆1
∐

∆1

∼
So, we have two 0-cells indexed by v0 and v1, and two 1-cells indexed
by e0 and e1. Plus we have the pasting relations:

• (e0, δ0(∗)) ∼ (d0(e0), ∗) = (v1, ∗)
• (e0, δ1(∗)) ∼ (d1(e0), ∗) = (v0, ∗)
• (e1, δ0(∗)) ∼ (d0(e1), ∗) = (v1, ∗)
• (e1, δ1(∗)) ∼ (d1(e1), ∗) = (v0, ∗)

So, we get back precisely the shape we started from.
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From simplical complexes to simplicial sets and back!

Something more general than our observation in the previous example
is true. Start with a simplicial complex X . Construct an associated
simplicial set X̄ by adjoining all degenerate simplices. We have
homeomorphism of spaces:

|X̄ | ∼= X

Warning
Notice that, unlike simplicial maps on simplicial complexes, maps on simplicial sets
are not completely determined by description of their actions only on vertices
(0-simplices). We have to specify their actions across all dimensions.

Sina Hazratpour A detour to topology 53



An example of a ∆infl -set which is not a simplicial complex

Let X be a ∆infl -set with X0 = {v1, v2}, X1 = {e1, e2} and X2 = {∗}
with

X2 X1 X0

d0

d1

d0

d1

d2

where d0(∗) = e1, d1(∗) = e1, and d2(∗) = e2. Also, d0(e2) = v1 and
d1(e2) = v1. So, e2 is a loop on v1. In addition, d0(e1) = v2 and
d1(e1) = v1. The geometric realization of X (depicted below as the
quotient space) is not a simplicial complex.

Figure: An example of a ∆-set
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Going beyond ∆infl -sets: the degeneracy maps

Degeneracy maps are, in some sense, the conceptual converse of face
maps. Recall that the face map dj takes an n-simplex and give us back
its jth (n − 1)-face. On the other hand, the jth degeneracy map sj

takes an n-simplex and gives us back the jth degenerate
(n + 1)-simplex living inside it.

As usual, we illustrate with the standard n-simplex, which will be a
model for what happens in all simplicial sets. Given the standard
n-simplex |∆n| = [0, . . . , n], there are n + 1 simple degeneracy maps
s0, . . . , sn, defined by sj [0, . . . , n] = [0, . . . , j , j , . . . , n]. In other words,
sj [0, . . . , n] gives us the unique degenerate n + 1 simplex in |∆n| with
only the jth vertex repeated.
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Going beyond ∆infl -sets: the degeneracy maps

Example
The standard 0-simplex X = [0], now thought of as a simplicial set, is the unique
simplicial set with one element in each Xn, n ≥ 0. The element in dimension n is
n+1 times︷ ︸︸ ︷
[0, . . . , 0].

Example
As a simplicial set, the standard ordered 1-simplex X = [0, 1] already has n + 2
elements in each Xn. For example, X2 = {[0, 0, 0], [0, 0, 1], [0, 1, 1], [1, 1, 1]}.
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Going beyond ∆infl -sets: the degeneracy maps

Picturing simple degeneracies

Figure: simple degenerate simplices of |∆2|
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Going beyond ∆infl -sets: the degeneracy maps

Picturing all degeneracies

Figure: all degenerate simplices of |∆2|
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Nerve of a category as a simplicial set

Suppose C is a small category. Define the nerve of C to be the
simplicial set NC which has:

• (NC)0 := vertices of NC = objects of C
• (NC)1 := edges of NC = arrows of C
• (NC)2 := faces of NC = pairs of composable arrows in C
• . . .

More precisely,
NCn = {strings of n composable arrows c0

f1−→ c1
f2−→ . . .

fn−→ cn}
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Nerve of a category as a simplicial set

The face maps di : NCn → NCn−1 take

c0
f1−→ c1

f2−→ . . .
fn−→ cn

to
c0

f1−→ c1
f2−→ . . .

fi−1−−→ ci−1
fi+1◦fi−−−−→ ci+1

fi+2−−→ . . .
fn−→ cn

for 0 < i < n and drops the first (resp. last) arrow for i = 0 (resp.
i = n).
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Nerve of a category as a simplicial set

The face maps di : NCn → NCn−1 take

c0
f1−→ c1

f2−→ . . .
fn−→ cn

to
c0

f1−→ c1
f2−→ . . .

fi−1−−→ ci−1
fi+1◦fi−−−−→ ci+1

fi+2−−→ . . .
fn−→ cn

for 0 < i < n and drops the first (resp. last) arrow for i = 0 (resp.
i = n).

And the degeneracy maps si : NCn → NCn+1 send

c0
f1−→ c1

f2−→ . . .
fn−→ cn

to
c0

f1−→ c1
f2−→ . . .

fi−→ ci
id−→ ci

fi+1−−→ ci+1
fi+2−−→ . . .

fn−→ cn
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Nerve of a category as a simplicial set

Theorem
NCn

∼= MapsSet(∆[n],NC)
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Nerve of a category as a simplicial set

Theorem
NCn

∼= MapsSet(∆[n],NC)

Theorem
A category C can be recovered from its nerve NC up to isomorphism.
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Nerve of a category as a simplicial set

Theorem
NCn

∼= MapsSet(∆[n],NC)

Theorem
A category C can be recovered from its nerve NC up to isomorphism.

It would be interesting to see whether we could know exactly which
simplicial sets arise as the nerve of a category. What do you think? Is
it possible?
We will characterize all of them later when we will have developed
enough tools to approach this problem.
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Simplicial groups

By definition, a simplicial group G consists of a sequence of groups Gn

and collections of group homomorphisms di : Gn → Gn−1 and
si : Gn → Gn+1, 0 ≤ i ≤ n, that satisfy the face-degeneracy relations.

Remark
Trying to picture group elements as simplices is not as convenient as it was before,
since we don’t know how to interpret and keep track of extra structures. For
example:

• what does it mean geometrically to multiply two simplices?

Sina Hazratpour A detour to topology 65



Simplicial groups

• Let G be a group, and define the category CG with exactly one
object (let’s call it G ) and morphisms to be elements of G with
composition as multiplication (in the opposite order).

• Nerve N(CG ) is a simplicial set which can be described as follows:

N(CG )n = G×n

the product of G with itself n times. G×0 is just the trivial group
{e}. For an element (g1, . . . , gn) ∈ N(CG )n:

d0(g1, . . . , gn) = (g2, . . . , gn)

di (g1, . . . , gn) = (g1, . . . , gi gi+1, . . . gn) (0 < i < n)
dn(g1, . . . , gn) = (g1, . . . , gn−1)

si (g1, . . . , gn) = (g1, . . . , gi , 1, gi+1, . . . , gn)
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Simplicial groups

This defines a simplicial group. The geometric realization of N(C)G is
equivalent to the classifying space BG ,

|N(CG )| ' BG

and so the simplicial homology H∗(N(CG )) coincides with group
homology of G .

Exercise
1. Show that |N(CG )| is the quotient space of a contractible space.

2. Investigate under what criteria imposed on G the classifying space of G is
contractible.
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(n − 1)-sphere ∂∆n

Definition
The boundary of standard n-simplex (aka representable simplicial set) is defined by:

∂∆[n]m = {α : [m]→ [n] | α is not surjective}

which is called (n − 1)-sphere .

Proposition
∂∆[n] =

⋃n
i=0 ∂

i∆[n] where

∂ i∆[n] = Im(di : ∆[n − 1]→ ∆[n])

Note that union is basically a colimit calculated pointwise as is any limit/colimit in
a presheaf topos.
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Simplicial homotopies

Consider the representable simplicial sets ∆[0] and ∆[1]. Recall that
there are two morphisms

e0, e1 : ∆[0] ⇒ ∆[1],

coming from the morphisms [0] ⇒ [1] mapping 0 to either elements of
[1] = {0, 1}. Recall also that each set ∆[1]k is finite (and has k + 2
elements). Hence, if the category C has finite coproducts, then we can
form the simplicial set

U ×∆[1]

for any simplicial object U of C, where

(U ×∆[1])k =
∐

[k]→[1]

Uk

Note that ∆[0] has the property that ∆[0]k = {∗} is a singleton for all
k ≥ 0. Hence U ×∆[0] = U. Thus e0, e1 above gives rise to
morphisms

e0, e1 : U ⇒ U ×∆[1].
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Simplicial homotopies

Definition
Let C be a category equipped with finite coproducts. Suppose that U and V are
two simplicial objects of C. Let a, b : U ⇒ V be two morphisms.

1. We say a morphism
h : U ×∆[1] −→ V

is a homotopy connecting a to b if a = h ◦ e0 and b = h ◦ e1.

2. We say morphisms a and b are homotopic if there exists a homotopy
connecting a to b or a homotopy connecting b to a.
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Simplicial homotopies

Let C be a category with finite coproducts. Let U, V be simplicial
objects of C. Let a, b : U ⇒ V be morphisms in C. Furthermore,
suppose that h : U ×∆[1]→ V is a homotopy connecting a to b. For
every n ≥ 0 let us write

∆[1]n = {αn
0, . . . , α

n
n+1}

where αn
i : [n]→ [1] for 0 ≤ i ≤ n + 1 is the morphism

αn
i (j) =

{
0 if j < i
1 if j ≥ i

Thus

hn : (U ×∆[1])n =
∐
αn

i

Un → Vn

has a component hn,i : Un → Vn which is the restriction to the
summand corresponding to αn

i for all i = 0, . . . , n + 1.
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Simplicial homotopies

Lemma
In the situation above, we have the following relations:

1. We have hn,0 = bn and hn,n+1 = an.

2. We have dn
j ◦ hn,i = hn−1,i−1 ◦ dn

j for i > j .

3. We have dn
j ◦ hn,i = hn−1,i ◦ dn

j for i ≤ j .

4. We have sn
j ◦ hn,i = hn+1,i+1 ◦ sn

j for i > j .

5. We have sn
j ◦ hn,i = hn+1,i ◦ sn

j for i ≤ j .

Conversely, a system of maps hn,i satisfying the properties listed above define a
homotopy between a and b.

Proof
Left as an exercise for the reader.
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Truncation

Let ∆≤n denote the full subcategory of ∆ with objects
[0], [1], [2], . . . , [n]. Let C be a category.

Definition
An n-truncated simplicial object of C is a functor ∆

op

≤n → C. A morphism of
n-truncated simplicial objects is a natural transformation of functors. We denote
the category of n-truncated simplicial objects of C by the symbol trn(C).

Given a simplicial object U of C the truncation trnU is the restriction
of U to the subcategory ∆≤n. This defines the truncation functor

trn : sC −→ trnC

from the category of simplicial objects of C to the category of
n-truncated simplicial objects of C.
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Kan complexes

Figure: Daniel Kan (1927-2013)
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Kan complexes

Definition
As a simplicial complex, the k-th horn |Λn

k | on the n-simplex |∆n| is the
subcomplex of |∆n| obtained by removing the interior of |∆n| and the interior of
the face dk |∆n|. We take Λn

k to refer to the associated simplicial set.
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Kan complexes

Definition
As a simplicial complex, the k-th horn |Λn

k | on the n-simplex |∆n| is the
subcomplex of |∆n| obtained by removing the interior of |∆n| and the interior of
the face dk |∆n|. We take Λn

k to refer to the associated simplicial set.

Figure: The three horns on |∆2|
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Kan complexes

Definition
The simplicial object X satisfies the extension condition or Kan condition if any
map of simplicial sets Λn

k → X can be extended to a simplicial map ∆n → X for all
n ≥ 0 and all 0 ≤ k ≤ n. A simplicial set satisfying Kan extension condition is
often called a Kan complex.

Example
• The standard simplices ∆n, n > 0 are not Kan complexes.

• However, ∆0 is a Kan complex.

• N(C) is a Kan complex iff the category C is a groupoid.

• Any simplicial group is a Kan complex.
(Thm 2.2. J.C.Moore seminars on algebraic homotopy theory)
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Kan complexes

Example
Given a topological space Y , the singular simplicial set S(Y ) is a Kan complex. To
see this, consider any morphism of simplicial sets f : Λn

k → S(Y ). This is the same
as specifying for each n − 1 face, di ∆

n, i 6= k, of ∆n a singular simplex
σi : |∆n−1| → Y . Every other simplex of Λn

k is a face or a degeneracy of a face of
one of these (n − 1)-simplices, and so the rest of the map f is determined by this
data.
Furthermore, the compatibility conditions coming from the simplicial set axioms
ensure that the topological maps σi piece together to yield, collectively, a
continuous function f : |Λn

k | → Y . It is left for the reader to confirm this extends to
all of |∆n|.
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Kan complexes

Definition
Two 0-simplices a and b of the simplicial set X are said to be in the same path
component of X if there is a path p with initial point a and final point b.

Theorem
If X is a Kan complex, then “being in the same path component” is an equivalence
relation.

Proof
Not left to the reader; Speaker will give a proof of this!

Definition
π0X= the set of path components of X .
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Topological homotopy theory vs. simplicial homotopy theory

Top. htpy theory Simp. htpy theory
Interval I ∆1

Topological space X Simplicial set X

Continuous maps X
f−→ Y Simplicial maps X

θ−→ Y

Path: I p−→ X Path: ∆1 p−→ X
Initial point: p(0) Initial point: d1(p[0, 1])
Final point: p(1) Final point: d0(p[0, 1])

. . . . . .
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Chain complexes

Let A be an abelian category. Let U be a simplicial object of A. The
associated chain complex chA(U) of U, is the chain complex

. . .→ U2 → U1 → U0 → 0→ 0→ . . .

with boundary maps ∂n : Un → Un−1 given by the formula

∂n =
∑n

i=0
(−1)i dn

i .

This is a complex because we have

∂n ◦ ∂n+1 = (
∑n

i=0
(−1)i dn

i ) ◦ (
∑n+1

j=0
(−1)j dn+1

j )

= 0

We denote the associated chain complex sA(U). Clearly, the
construction is functorial and hence defines a functor

chA : sA −→ Ch≥0(A)
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Singular homology functor

The composite

Top S−→ sSet F∗−→ sAb ch−→ Ch≥0
Hn−→ AbGrp

where F is free abelian group functor defines a functor which
associates to a topological space its n-th homology group. For a
space X , its singular homology group is denoted by Hn(−,Z).

Remark
Singular homology groups are conceptually significant invariants of spaces. They
assign isomorphic groups to homotopy equivalent spaces. However, it is often hard
to calculate them. In most cases, particularly for spaces homeomorphic to some
simplicial spaces, we observe that singular homology groups are isomorphic to
simplicial homology groups which are much easier to compute.
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