Comma objects= cotensor with walking arrow + pullbacks with generic comma object

April 13, 2016

A 2-category \mathcal{K} is a representable 2-category if \mathcal{K} has all strict pullbacks as well as cotensors with the (free) walking arrow category 2. For a 0-cell B of \mathcal{K} , cotensor of B with 2 is an object $B \downarrow B$ of \mathcal{K} together with 1-cells $d_0, d_1 \colon B \downarrow B \Rightarrow B$ and a (generic) 2-cell ϕ between them which is universal in the sense that pasting of ϕ with 1-cells induces an isomorphism of categories $\mathcal{K}(X, B \downarrow B) \cong \mathfrak{Cat}(2, \mathcal{K}(X, B))$ naturally for 0-cell X of \mathcal{K} . We observe that any representable 2-category has all comma objects; suppose $A \xrightarrow{f} B \xleftarrow{g} C$ is an opspan in \mathcal{K} . Then the comma object $f \downarrow g$ can be constructed as the following pasting of ϕ with (canonical) pullbacks in below:

$$f \downarrow g \xrightarrow{\overline{f}} g^*(B \downarrow B) \xrightarrow{g^*d_1} C$$

$$\downarrow g \downarrow \qquad \qquad \downarrow g$$

$$f^*(B \downarrow B) \xrightarrow{d_0^*f} B \downarrow B \xrightarrow{d_1} B$$

$$\uparrow^*d_0 \downarrow \qquad \qquad \downarrow q$$

$$A \xrightarrow{f} B \xrightarrow{f} B \xrightarrow{f} B$$

The proof relies on the fact that the universal property of $\langle f \downarrow g, f^*d_0 \circ \overline{g}, g^*d_1 \circ \overline{f}, \phi \cdot (d_0^*f \cdot \overline{g}) \rangle$ can be expressed as combinations of universal property of pullbacks and universal property of $\langle B \downarrow B, d_0, d_1, \phi \rangle$.

¹It has only two objects and one non-trivial morphism.

Definition 0.1. A finitely complete 2-category is a 2-category that admits finite conical limits² and cotensors with the walking arrow category 2.

The above observation shows that

Proposition 0.2. A finitely complete 2-category K has all comma objects.

 $^{^2}$ i.e. weighted limits with set-valued weight functors. They are ordinary limit as opposed to a more general weighted limit.