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Orton-Pitts Cubical Models of HoTT

Starting from

▶ a topos E ,

▶ a universe Φ ↣ Ω in E of "cofibrant" propositions satisfying certain axioms
(including dominance),

▶ a bipointed tiny object I in E , and

▶ a universe U• → U in E of small families closed under Σ, Π and ...

(Orton and Pitts, 2018) carve out in E a model of Homotopy Type Theory using the
extensional type theory of E .

In this model,

▶ the interval is modelled by the object I, and types are modelled by the "fibrant"
objects of E , and

▶ the path type of a type A is modelled by AI.
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Quillen Model Structure from Orton-Pitts topos

From an Orton-Pitts topos (i.e. a topos E equipped with (Φ, I,U•) as above), (Awodey,
2018) constructs a QMS on E and shows this QMS is right proper and has descent.
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▶ Uniform fibrations are central to Awodey’s construction of QMS.

▶ In type theory, Uniform fibrations were introduced in (Bezem, T. Coquand,
and Huber, 2015), (Cohen et al., 2018) to provide a constructive model of the
Univalence Axiom.

▶ Working with uniform fibrations diagrammatically can be complex:

▶ The algebraic structure on a map is in general not unique, and thus needs to be
carried around explicitly.

▶ The construction of the object of fibration structures on a given map using only
diagrams can be a daunting task.

▶ Kripke-Joyal forcing semantics for HoTT is a useful machinery in dealing with
these complexities.

▶ It relates the type-theoretic developments (Cohen et al., 2018), (Orton and Pitts,
2018), etc. with the diagrammatic developments (Gambino and Sattler, 2017),
(Sattler, 2017), (Awodey, 2018), etc. found in the models of HoTT literature.
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The universe Φ of cofibrant propositions

As in (Orton and Pitts, 2018), we consider a modality

cof : Ω → Ω

satisfying:
cof ◦true = true

cof ◦false = true

∀(φ,ψ : Ω). cof φ⇒ (φ⇒ cof ψ) ⇒ cof(φ ∧ ψ)

Φ as the comprehension subtype in the internal language:

Φ ≜ {φ ∈ Ω | cof φ}
Φ 1

Ω Ω

⌟ true

cof
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Cofibrations

Definition
A monomorphism m : C ↣ Z is a cofibration if its classifying map χm : Z → Ω factors
through mcof : Φ ↣ Ω.

C 1 1

Z Φ Ω

m ⌟ ⌟t true

χm
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Cofibrations

Definition
A monomorphism m : C ↣ Z is a cofibration if its classifying map χm : Z → Ω factors
through mcof : Φ ↣ Ω.

C 1 1

Z Φ Ω

m ⌟ ⌟t true

χm

All cofibrations are the pullbacks of the generic cofibration t : 1 ↣ Φ.



References

Cofibrations

Definition
A monomorphism m : C ↣ Z is a cofibration if its classifying map χm : Z → Ω factors
through mcof : Φ ↣ Ω.

C 1 1

Z Φ Ω

m ⌟ ⌟t true

χm

Proposition

m : C ↣ Z is a cofibration ⇔ E ⊩ ∀z : Z , cof( ∃c : C , m(c) = z).
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Forcing for partial elements (I)

We define (−)+ : E → E to be the polynomial endofunctor associated to the map
t : 1 → Φ, namely the composite

E E/Φ E .
t∗ Φ!
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Forcing for partial elements (I)

We define (−)+ : E → E to be the polynomial endofunctor associated to the map
t : 1 → Φ, namely the composite

E E/Φ E .
t∗ Φ!

If A is classified by type α, then A+ is classified by

α+ :=
∑

φ : Φ {φ} � α ,

We call α+ the type of cofibrant partial elements of a type α
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Forcing for cofibrant partial elements (II)

Proposition (Forcing for partial elements)

Let α : X → U and x : y(c) → X . Then the following conditions are equivalent.
1 c ⊩ (φ, u) :α+(x)

2 c ⊩ φ(x) : Φ and for every f : d → c , if d ⊩ p : {φ}(xf ) then
d ⊩ app(uf , p) :α(xf ), and furthermore the following uniformity condition holds:

app(uf , p)g = app(ufg , p)

for any g : e → d in C.
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Uniform trivial fibrations

▶ The subcategory of E → consisting of cofibrations and cartesian squares between
them determines an algebraic weak factorisation system (Cof,TrivFib)
on E (Gambino and Sattler, 2017).

▶ The maps in the right class (TrivFib) are the uniform trivial fibrations which
appear in the semantics of Homotopy Type Theory.

▶ These structured maps can also be described in the internal type theory
of E (Orton and Pitts, 2018).

▶ We shall see how the uniformity condition arises naturally from Kripke-Joyal
forcing.
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Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A → X assigns

A

X

f ′

⌟

a

p

f

jC′
(zf

,af
′ )

z

jC
(z
,a
)



References

Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A → X assigns to every
cofibration C ↣ Z

C A

Z X

f ′

⌟
a

p

f

jC′
(zf

,af
′ )

z

jC
(z
,a)
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Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A → X assigns to every
cofibration C ↣ Z and to every commutative square

C A

Z X

f ′

⌟
a

p

f

jC′
(zf

,af
′ )

z

jC
(z
,a)
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Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A → X assigns to every
cofibration C ↣ Z and to every commutative square a diagonal filler jC (z , a) : Z → A,
subject to the following uniformity condition:

C A

Z X

f ′

⌟
a

p

f

jC′
(zf

,af
′ )

z

jC
(z
,a)
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Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A → X assigns to every
cofibration C ↣ Z and to every commutative square a diagonal filler jC (z , a) : Z → A,
subject to the following uniformity condition: for any map f : Z ′ → Z , giving rise to
the pullback square on the left,

C ′ C A

Z ′ Z X

f ′

⌟

a

p

f

jC′
(zf

,af
′ )

z

jC
(z
,a
)
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A uniform trivial fibration structure on a small map p : A → X assigns to every
cofibration C ↣ Z and to every commutative square a diagonal filler jC (z , a) : Z → A,
subject to the following uniformity condition: for any map f : Z ′ → Z , giving rise to
the pullback square on the left, we have

jC ′(zf , af ′) = jC (z , a) ◦ f .
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The type of uniform trivial fibration structures

For any type α : X → U define

TFib(α) :=
∏
φ:Φ

∏
u:{φ}→α

∑
a:α

(u =φ a) ,

where the type (u =φ a) is defined

(u =φ a) :=
∏
p:{φ}

app(u, p) =α a .
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The type of uniform trivial fibration structures

For any type α : X → U define

TFib(α) :=
∏
φ:Φ

∏
u:{φ}→α

∑
a:α

(u =φ a) ,

where the type (u =φ a) is defined

(u =φ a) :=
∏
p:{φ}

app(u, p) =α a .

See Extension Types of (Riehl and Shulman, 2017) and (Orton and Pitts, 2018).
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The type of uniform trivial fibration structures

Theorem
The display map pα : X .α→ X is a uniform trivial fibration ⇔ there is a term
X ⊢ t : TFib(α).
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Since uniform trivial fibrations are expressed in terms of diagrams, and since the type
TFib(α) has a bunch of Π and Σ, we need a diagrammatic unfolding of KJ-forcing of Π
and Σ types involved in TFib(α).
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

X

a

x

α
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

a type α in context X ,

X U

a

x

α
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

a type α in context X ,
an object c of C,

y(c)

X U

a

x

α
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

a type α in context X ,
an object c of C,
and a morphism x : yc → X ,

y(c)

X U

a

x

α
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

a type α in context X ,
an object c of C,
and a morphism x : yc → X ,
we say that c forces a :α(x), written as c ⊩ a :α(x),
if the square commutes.

y(c) U•

X U

a

x

α
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Diagrams for Kripke-Joyal forcing: Definition

Definition
▶ For a context X ,

a type α in context X ,
an object c of C,
and a morphism x : yc → X ,
we say that c forces a :α(x), written as c ⊩ a :α(x),
if the square commutes.

▶ For a, b : y(c) → U• such that c ⊩ a : α(x) and
c ⊩ b : α(x), we say that c forces a = b : α(x), written
c ⊩ a = b : α(x), if a and b are equal maps in E .

y(c) U•

X U

a

x

α
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X ,

X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x
,d
0⟩

x
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X , a type α in context X ,

X .α

X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x ,
d0⟩

x
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X , a type α in context X ,
a type β in context X · α,

X .α.β

X .Σαβ

X .α

X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x ,
d0⟩

x
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X , a type α in context X , a
type β in context X · α, an object c of C,

X .α.β

X .Σαβ

X .α

yc X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x ,
d0⟩

x
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X , a type α in context X ,
a type β in context X · α, an object c of C,
and a morphism x : yc → X ,

c ⊩ d : (Σαβ)(x)

iff

X .α.β

X .Σαβ

X .α

yc X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x ,
d0⟩

x
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Diagrams for Kripke-Joyal forcing: Σ types

Proposition
Given a context X , a type α in context X ,
a type β in context X · α, an object c of C,
and a morphism x : yc → X ,

c ⊩ d : (Σαβ)(x)

iff

d = (d0, d1)

c ⊩ d0 :α(x)

c ⊩ d1 :β(⟨x , d0⟩) .

X .α.β

X .Σαβ

X .α

yc X

p
β

p
α
p
β

p
α

⟨⟨
x
,d

0
⟩,d

1
⟩

⟨x ,d⟩

⟨x ,
d0⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X ,

X

pβ

pΠαβ

⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )

pα
⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X ,

X .α

X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )

pα
⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X , a
type β in context X .α,

X .α.β

X .Πα β

X .α

X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )

pα
⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X , a
type β in context X .α, an object c of C,

X .α.β

X .Πα β

X .α

yc X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )
pα

⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X , a
type β in context X .α, an object c of C, and a
morphism x : yc → X , we have

X .α.β

X .Πα β

X .α

yc X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )
pα

⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X , a
type β in context X .α, an object c of C, and a
morphism x : yc → X , we have

c ⊩ b : (Παβ)(x)

iff

X .α.β

X .Πα β

X .α

yc X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )
pα

⟨x ,b⟩

x
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Diagrams for Kripke-Joyal forcing: Π types

Proposition
Given a context X , a type α in context X , a
type β in context X .α, an object c of C, and a
morphism x : yc → X , we have

c ⊩ b : (Παβ)(x)

iff there is a function b such that for every
morphism f : d → c in C, if

d ⊩ a :α(x .f )

then
d ⊩ bf (a) :β(⟨x .f , a⟩)

and for every g : d ′ → d , bf (a).g = bf ◦g (a.g).

X .α.β

X .Πα β

yd X .α

yc X

pβ

pΠαβ
⟨x .f ,a⟩

(⟨x .f ,a⟩,bf (a))

y(f )

pα
⟨x ,b⟩

x
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Uniform trivial fibration structure via Kripke-Joyal forcing (I)

TFib(α) :=
∏
φ:Φ

∏
u:{φ}→α

∑
a:α

(u =φ a) ,

Lemma
Suppose α : X → U and x : yc → X . Given

c ⊩ a : α(x)

c ⊩ φ : Φ

c ⊩ u :
(
{φ} � α

)
(x)

we have

c ⊩ e : (u =φ a)(x) ⇔
[φ] X .α

yc X

⟨x ,u⟩

p
α

x

⟨x ,a⟩ commute.
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∏
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∏
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∑
a:α

(u =φ a) ,

Lemma
Suppose α : X → U and x : yc → X . Given

c ⊩ a : α(x)

c ⊩ φ : Φ

c ⊩ u :
(
{φ} � α

)
(x)

we have

c ⊩ e : (u =φ a)(x) ⇔
[φ] X .α

yc X

⟨x ,u⟩

p
α

x

⟨x ,a⟩ commute.
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Uniform trivial fibration structure via Kripke-Joyal forcing (I)

TFib(α) :=
∏
φ:Φ

∏
u:{φ}→α

∑
a:α

(u =φ a) ,

Lemma
Suppose α : X → U and x : yc → X . Given

c ⊩ a : α(x)

c ⊩ φ : Φ

c ⊩ u :
(
{φ} � α

)
(x)

we have

c ⊩ e : (u =φ a)(x) ⇔
[φ] X .α

yc X

⟨x ,u⟩

p
α

x

⟨x ,a⟩ commute.
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Proof of Lemma.

▶ c ⊩ a : α(x)

⇔
the lower triangle commutes.

▶ c ⊩ φ : Φ and
c ⊩

(
u : {φ} � α

)
(x) ⇔ the

outer square commutes.

▶ c ⊩ e : (u =φ a)(x) ⇔
c ⊩ e :

∏
p:[φ] (app(u, p) =α a)(x)

⇔
for all f : d → c , if
d ⊩ p : {φ}(x .f ) then
d ⊩ ef (p) : (app(u, p) =α a)(x .f )

⇔
the top triangle commutes (by the
Yoneda lemma). QED.

[φ] X .α

yc X

⟨x ,u⟩

p
α

x

⟨x ,a⟩
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Proof of the uniform trivial fibration forcing theorem

Recall that

TFib(α) =
∏
φ:Φ

∏
u:[φ]→α

∑
a:α

(u =φ a)

=
∏

(φ,u) :α+

∑
a:α

u =φ a

Suppose X ⊢ α : TFib(α).

Thus for all x : yc → X , we have c ⊩ tx : TFib(α)(x), coherently in c , x .

Hence,
c ⊩ tx :

∏
(φ,u) :α+

∑
a:α

(u =φ a)(x) .
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Proof of Theorem (cont’d)

By Kripke–Joyal semantics of
∏

and
∑

, we have that for every f : d → c in C,
if

d ⊩ (φ, u) :α+(x .f ) (1)

then
d ⊩ tx .f (φ, u)

0 :α(x .f ) (2)

and
d ⊩ tx .f (φ, u)

1 :
(
u =φ tx .f (φ, u)

0)(x .f ) (3)

and, for any g : d ′ → d ,

tx .f (φ, u).g = t(x .fg)(φ.g , u.g) . (4)
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Proof of Theorem (cont’d)

Unfolding the condition (1)

d ⊩ (φ, u) :α+(x .f )

[φ.f ] X .α

yd X

⟨x .f ,uf ⟩

p
α

x .f
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Proof of Theorem (cont’d)

Unfolding the condition (1)

d ⊩ (φ, u) :α+(x .f )

[φ.f ] X .α

yd X

⟨x .f ,uf ⟩

p
α

x .f

Lemma applied to (2) and (3)

d ⊩ tx .f (φ, u)
0 :α(x .f )

d ⊩ tx .f (φ, u)
1 :

(
u =φ tx .f (φ, u)

0)(x .f )
[φ.f ] X .α

yd X

⟨x .f ,uf ⟩

p
αtx.f (φ,u)

0

x .f
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Proof of Theorem (cont’d)

Thus forcing TFib(α) produces diagonal fillers

jφ(x , u) ≜ tx .f (φ, u)
0

for each lifting problem as in the right hand square below:

φ[f ] [φ] X .α

1

yd yc X

Φ

⌟

⟨x ,u⟩

p
α

yf

φ.f

tx.f (φ.f ],u.f )
0

x

φ

tx (φ,u)
0
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Proof of Theorem (cont’d)

And equation (4)
tx .f (φ, u).g = t(x .fg)(φ.g , u.g)

guarantees the uniformity of the lifts j .
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Proof of Theorem (cont’d) – the converse

If pα : X .α→ X is a uniform trivial fibration then, in particular, we have diagonal filler
for basic cofibrations:

[φ.f ] [φ] X .α

yc ′ yc X

u

p
α

yf

jφ.f (x
.f ,u.f

)

x

jφ(
x ,u

)
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Proof of Theorem (cont’d) – the converse

If pα : X .α→ X is a uniform trivial fibration then, in particular, we have diagonal filler
for basic cofibrations:

[φ.f ] [φ] X .α

yc ′ yc X

u

p
α

yf

jφ.f (x
.f ,u.f

)

x

jφ(
x ,u

)

By the lemma, this corresponds to an
element tx : yc → TFib(α) over
x : yc → X ,

X .TFib(α)

yc Xx

tx

The uniformity condition says exactly that for all f : c ′ → c , the elements tx cohere,
t(x .f ) = tx .f .

By Yoneda for the slice category E /X , there is a section of X .TFib(α) → X , i.e. there
is a term X ⊢ t :TFib(α). QED.
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The interval

An interval with connections is a presheaf I in E equipped with endpoints, i.e. maps
δk : 1 → I,, for k ∈ {0, 1}, and connections, i.e. maps ck : I × I → I for k ∈ {0, 1},
satisfying the following axioms.

1 δ0 ̸= δ1

2 δk : 1 → I is a cofibration, for k ∈ {0, 1}.
3 The diagrams

I I × I I

1 I 1

(δk ,1)

ck

(1,δk )

δk δk

I I × I I

I

(δ1−k ,1) (1,δ1−k )

commute, for k ∈ {0, 1}.
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Naive trivial cofibrations

A naive trivial cofibrations is a Leibniz tensors of the form

c ⊗ δk : Z +C (Z × I) ↣ Z × I ,

for an arbitrary cofibration c : C ↣ Z and an endpoint δk : 1 ↣ I, for k ∈ {0, 1}.
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Naive trivial cofibrations

A naive trivial cofibrations is a Leibniz tensors of the form

c ⊗ δk : Z +C (Z × I) ↣ Z × I ,

for an arbitrary cofibration c : C ↣ Z and an endpoint δk : 1 ↣ I, for k ∈ {0, 1}.
This construction is stable under pullback, in the sense that for any map t : Z ′ → Z ,
one has a pullback square

Z ′ +C ′ (C ′ × I) Z +C (C × I)

Z ′ × I Z × I

(t∗c)⊗δk c⊗δk

h×I



References

Uniform fibration structure

A uniform fibration structure on a small map p : A → X consists of a function j that
assigns a dotted filler j(i , u, v) : Z × I → A to every diagram of solid arrows

Z +C (C × I) A

Z × I X

u

m⊗δk

v

where c is a cofibration and k ∈ {0, 1}, subject to the following uniformity condition:
for any map t : Z ′ → Z and induced pullback square on the left,

Z +′
C (C ′ × I) Z +C (C × I) A

Z ′ × I Z × I X ,

c ′⊗δ

u

h×I v

(1)

we have that j(i , uh′, vh) = j(i , u, v) ◦ (h × I).
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The type of fillings

Let α : I � U.
Recall the type of 0-directed filling structure

Fill0(α) =
∏
φ : Φ

∏
u : {φ}�

∏
i : I α(i)

∏
a :α0

(u0 =φ a) →
∑

s :
∏

i : I α(i)

(s0 =α0 a)× (u =φ s) ,
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The type of fillings

Let α : I � U.
Recall the type of 0-directed filling structure

Fill0(α) =
∏
φ : Φ

∏
u : {φ}�

∏
i : I α(i)

∏
a :α0

(u0 =φ a) →
∑

s :
∏

i : I α(i)

(s0 =α0 a)× (u =φ s) ,

Example:
For i : I ⊢ φ = (i = 0 ∨ i = 1)

ũ a s
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The type of fillings

Let α : I � U.
Recall the type of 0-directed filling structure

Fill0(α) =
∏
φ : Φ

∏
u : {φ}�

∏
i : I α(i)

∏
a :α0

(u0 =φ a) →
∑

s :
∏

i : I α(i)

(s0 =α0 a)× (u =φ s) ,

For any type X : U and family of types α : X � U, we then define the type of fibration
structures

Fib(α) :=
∏

x : I�X

Fill0(α(x))× Fill1(α(x)) .
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Forcing for type Fib

Theorem

Let α : X → U. Then the following conditions are equivalent.
1 The map pα : X .α→ X is a uniform fibration.
2 There is a term t :Fib(α).
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(TrivCof, Fib) from (Cof,TrivFib)

On the arrow category E →,
(−)⊗ δk ⊣ δk ⇒ (−)

the pullback-hom, taking p : A → X to the map δk ⇒ p indicated in the following
diagram.

AI

X I ×X A A

X I X

pI

δk⇒p
Aδk

p

X δk

By adjointness, these operations can be seen to satisfy

(m ⊗ δk) ⋔ p if and only if m ⋔ (δk ⇒ p)

naturally in m and p.



References

Universal uniform fibration (I)

Unfortunately the type

Fib(α) :=
∏

x : I�X

Fill0(α(x))× Fill1(α(x)) .

is not indexed over X and is not good candidate for the construction universal uniform
fibration.
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Universal uniform fibration (I)

Unfortunately the type

Fib(α) :=
∏

x : I�X

Fill0(α(x))× Fill1(α(x)) .

is not indexed over X and is not good candidate for the construction universal uniform
fibration.
Instead, we need the further assumption that the interval I is tiny:

(−)I ⊣ (−)I
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Universal uniform fibration (I)

Unfortunately the type

Fib(α) :=
∏

x : I�X

Fill0(α(x))× Fill1(α(x)) .

is not indexed over X and is not good candidate for the construction universal uniform
fibration.
Instead, we need the further assumption that the interval I is tiny:

(−)I ⊣ (−)I

Using the amazing right adjoint, we define the universal fibration Fib∗ → U as the
pullback of U• → U along (Fill)I ◦ η.

Fib∗(α) Fib∗ (U•)I

X U (U I)I (U)I

⌟

α η (Fill)I
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Universal uniform fibration (II)

Theorem

Let α : X → U.
1 There is a bijection between points 1 → Fib(α) and sections of Fib∗(α) over X ,

which is natural in X .
2 The object Fib∗(α) is stable under pullback along any map γ : ∆ → X .

∆.Fib∗(α(γ)) X .Fib∗(α)

∆ X

∆.α(γ) X .α

γ
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The end!

Thanks for your attention!
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