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The Main Motivation

I We want a formal, sound, and mechanical process to relate internal developments
(Cohen et al., 2018), (Orton and Pitts, 2018), (Licata et al., 2018), etc. with the
diagrammatic developments (Gambino and Sattler, 2017), (Sattler, 2017),
(Awodey, 2018), etc. found in the models of HoTT literature.

I We achieve this by developing a Kripke–Joyal semantics for dependent type
theories including HoTT.



Features of dependent Kripke–Joyal semantics

I By restricting to propositions, we recover the Kripke–Joyal semantics for the
internal Intuitionistic Higher Order Logic (IHOL) of toposes.(Boileau and Joyal,
1981), (Mac Lane and Moerdijk, 1994)

I Provability versus proof relevance: the classical Kripke–Joyal semantics is only
concerned with the provability of a proposition; it is proof irrelevant. Kripke–Joyal
semantics for dependent type theory includes the terms (proofs) in the forcing
statements.

I Unbounded quantification via universes vs bounded quantification in IHOL of
toposes.

I Equality of terms “up to homotopy” instead of extensional equality in IHOL of
toposes.



1 The internal dependent type theory of presheaf toposes
Fixing the setup
CwF structure on E = [Cop,Set]
Basic types and type formers of the internal dependent type theory
The impredicative universe of propositions



Fixing the setup (I)

I We fix a small category C.
I We define the topos of presheaves E = [Cop,Set].
I We write y : C → E for the Yoneda embedding.

I We assume a Grothendieck universe of κ-small sets in the ambient set theory.

I Using this Grothendieck universe we define small maps in E .



Fixing the setup (II)

I The category E admits a classifier for small maps, given by the Hofmann-Streicher
universe U ∈ E .

U(c) := Obj
[
(C/c)op ,Setκ

]
I We get a small-map classifier

π : E → U

where
E (c) := Obj

[
(C/c)op ,Set•κ

]
.

I π is small.

I For every small map p : A→ Γ, there exists a canonical α fitting in the pullback
diagram

A E

Γ U .

p y π

α



CwF structure on E (I)

Following (Awodey, 2018), we get a CwF structure on E from the universe π : E → U:

The contexts are the objects of E .

The substitutions are morphisms in E from arbitrary natural transformations.

A type α in a context Γ is a map α : Γ→ U.

A term a : α in context Γ is a map a : Γ→ E with
π ◦ a = α.

E

Γ U

πa

α

The context extension is given by the pullback along π.

Γ.α E

Γ U

y π

α

Steve Awodey. “Natural models of homotopy type theory”. In: Math. Structures
Comput. Sci. 28.2 (2018)



CwF structure on E (II)

α ∈ Type(Γ) x : ∆→ Γ

α(x) , α ◦ x ∈ U(∆)
(substitution-types)

a ∈ Term(Γ, α) x : ∆→ Γ

a(x) , a ◦ x ∈ Term(∆, α(x))
(substitution-terms)

E

∆ Γ U

π

x

a

α

When ∆ = yc :
by the Yoneda lemma, x ∈ Γ(c), and α(x) ∈ U(c).

For a morphism f : d → c in C, we write x .f for the composite x ◦ yf .
Also, for a ∈ Term(yc, α(x)) and we have a(x .f ) = a(x).f ∈ Term(d , α(x .f )).



Basic types and type formers of the internal dependent type theory

T (E ) = the internal dependent type theory of presheaf toposes.

T (E ) has

I the basic types 0, 1, 2, N (as well as many other inductively defined types).

I also the following forms of type:

α× β , α + β , α→ β

a =α b ,
∑
x :α

β(x) ,
∏
x :α

β(x)

I The type of extensional equality _ =α _ is given by the diagonal map α� α×α.
I These types satisfy the usual induction and computation rules, e.g. in HoTT-Book.

I There is an evident tautological interpretation of T (E ) into E , using the CwF
structure of E .



The impredicative universe Ω of propositions

T (E ) additionally has the impredicative universe Ω of propositions given by

Ω(c) := Obj
[
(C/c)op , 2

]

I The inclusion 2 ↪→ Setκ induces a
monomorphism {−} : Ω� U in E .

I The subobject classifier true : 1→ Ω fits into
the pullback square on the right.

I Γ.{ϕ} = {x : Γ | ϕ(x)} as subobjects of Γ.

{x : Γ | ϕ(x)} 1 E

Γ Ω U

y true y π

ϕ {−}



2 Dependent Kripke–Joyal semantics
Definition
Dependent Kripke–Joyal semantics generalizes Kripke–Joyal semantics
Forcing for dependent sum types
Forcing for dependent product types
Propositional forcing



Dependent Kripke–Joyal semantics (I)

Definition (Dependent Kripke–Joyal semantics)
I For a context Γ,

a type α in context Γ,
an object c of C,
and a morphism x : yc → Γ,
we say that c forces a :α(x), written as c  a :α(x),
if the square commutes.

I For a, b : y(c)→ E such that c  a : α(x) and
c  b : α(x), we say that c forces a = b : α(x), written
c  a = b : α(x), if a and b are equal maps in E .

y(c) E

Γ U

a

x

α



Dependent Kripke–Joyal semantics (II)

Proposition

Γ ` a :α ⇔ There is a family (ax | c ∈ C, x : yc → Γ) satisfying

c  ax :α(x)

and for every morphism f : d → c of C,

ax .f = ax .f



Dependent Kripke–Joyal semantics generalizes Kripke–Joyal semantics

c  a : α(x)

Γ.α E

y(c) Γ Ux

〈x ,
a〉

α

c  ϕ(x)

{Γ | ϕ} 1

y(c) Γ Ωx ϕ

Remark
In the forcing conditions for types we need to carry around the map 〈x , a〉, as it is not
unique in general.

Theorem
Let ϕ : Γ→ Ω and x : y(c)→ Γ. Then the following are equivalent:

1 c  ϕ(x) in the sense of the standard Kripke-Joyal semantics,
2 there exists a (necessarily unique) s : y(c)→ E such that c  s : {ϕ}(x).



Forcing dependent sum types

Proposition
Given a context Γ, a type α in context Γ, a
type β in context Γ.α, an object c of C,
and a morphism x : yc → Γ,

c  d : (Σαβ)(x)

iff

d = (d0, d1)

c  d0 :α(x)

c  d1 :β(〈x , d0〉) .

Γ.α.β

Γ.Σαβ

Γ.α

yc Γ

p
β

p
α
p
β

pα

〈〈
x
,d

0
〉,d

1
〉

〈x ,d〉

〈x ,
d0〉

x



Forcing dependent product types

Proposition
Given a context Γ, a type α in context Γ, a type β
in context Γ.α, an object c of C, and a morphism
x : yc → Γ,

c  b : (Παβ)(x)

iff there is a function b such for every morphism
f : d → c in C, if

d  a :α(x .f )

then
d  bf (a) :β(〈x .f , a〉)

and for every g : d ′ → d , bf (a).g = bf ◦g (a.g).

Γ.α.β

Γ.Π(α)β

yd Γ.α

yc Γ

pβ

pΠαβ
〈x .f ,a〉

〈〈x .f ,a〉,bf (a)〉

y(f )

pα
〈x ,b〉

x



Forcing for disjunction

Proposition

Let ϕ,ψ : Γ→ Ω. For x : y(c)→ Γ , the following conditions are equivalent:

1 c  ϕ(x) ∨ ψ(x).

2 There exists u : y(c)→ E such that c  u : {ϕ}+ {ψ}(x) .

3 c  ϕ(x) or c  ψ(x).



Forcing for existential quantifiers

Proposition

Let α : Γ→ U and ϕ : Γ.α→ Ω. For x : y(c)→ Γ, the following are equivalent:
1 c  (∃αϕ)(x)

2 There exists a : y(c)→ E such that c  a :α(x), and c  ϕ(x , a).



3 Cofibrations and uniform trivial fibrations
The universe of cofibrant propositions
The type of partial elements
The type TFib
Uniform trivial fibration structure via Kripke–Joyal semantics



The universe Φ of cofibrant propositions (I)

I As in (Orton and Pitts, 2018), we consider a modality cof : Ω→ Ω satisfying:
(i) cof ◦true = true,
(ii) cof ◦false = true,
(iii) ∀(ϕ,ψ : Ω). cof ϕ⇒ (ϕ⇒ cof ψ)⇒ cof(ϕ ∧ ψ).

I The last axiom is called the principle of dominance (Rosolini, 1986).



The universe Φ of cofibrant propositions (II)

I Obtain mΦ : Φ� Ω as the comprehension subtype; in the internal language

Φ , {ϕ ∈ Ω | cof ϕ}
Φ 1

Ω Ω

mcof y true

cof

I cof (true) = true implies that true = mΦ ◦ t for a monomorphism t : 1� Φ.

1 Φ 1

1 Ω Ω

y
t

mΦ
y

true

true cof

I Call t the generic cofibrant proposition.



Forcing Φ

Proposition

Let ϕ : Γ→ Ω be a proposition. For every x : y(c)→ Γ, the following conditions are
equivalent.

1 c  cof ϕ(x)

2 ϕ(x) : y(c)→ Ω factors through Φ� Ω.

[cof ϕ] Φ 1

y(c) Γ Ω Ω

true

x ϕ cof



Cofibrations

Definition
A monomorphism m : C � Z is a cofibration if its classifying map χm : Z → Ω factors
through mcof : Φ� Ω.

C 1 1

Z Φ Ω

m y yt true

χm

mcof

Therefore, all cofibrations are the pullbacks of the generic cofibration t : 1� Φ.

Proposition

m : C � Z is a cofibration ⇔ E  ∀z : Z . cof(∃c : C .m(c) = z).



Forcing dominance

Proposition
The following statements are equivalent.

1 Cofibrations are closed under composition.

2 E |= (∀ϕ,ψ : Ω) cof ϕ⇒ (ϕ⇒ cof ψ)⇒ cof(ϕ ∧ ψ).
3 There is a unique dotted arrow (in the top row) making the top square commute.

(Σϕ : Φ)Φ{ϕ} Φ

(Σϕ : Ω)Ω{ϕ} Ω

(Σα :U)Uα U

∃

∃

Σ



The type of partial elements

We define (−)+ : E → E to be the polynomial endofunctor associated to the map
t : 1→ Φ, namely the composite

E E/Φ E .
t∗ Φ!

If A is classified by α, then A+ is classified by

α+ :=
∑

ϕ : Φ {ϕ}� α ,

We call α+ the type of cofibrant partial elements of a type α



Forcing for partial elements

Proposition (Forcing for partial elements)

Let α : Γ→ U and x : y(c)→ Γ. Then the following conditions are equivalent.
1 c  (ϕ, u) :α+(x)

2 c  ϕ(x) : Φ and for every f : d → c , if d  p : {ϕ}(xf ) then
d  app(uf , p) :α(xf ), and furthermore the following uniformity condition holds:

app(uf , p)g = app(ufg , p)

for any g : e → d in C.



Uniform trivial fibrations

Recall that the class C of cofibrations determines an awfs (C, T F) where the right class
T F consists of uniform trivial fibrations.



Uniform trivial fibrations

A uniform trivial fibration structure on a small map p : A→ Γ assigns to every
cofibration C � Z and to every commutative square a diagonal filler jC (z , a) : Z → A,
subject to the following uniformity condition: for any map f : Z ′ → Z , giving rise to the
pullback square on the left, we have

jC ′(zf , af
′) = jC (z , a) ◦ f .

C ′ C A

Z ′ Z Γ

f ′

y

a

p

f

jC′
(zf
,af
′ )

z

jC
(z
,a

)



Uniform trivial fibration structure via Kripke–Joyal semantics (I)

For any type α define

TFib(α) :=
∏
ϕ:Φ

∏
u:{ϕ}→α

∑
a:α

u =ϕ a ,

where the type u =ϕ a is defined

(u =ϕ a) :=
∏
p:{ϕ}

app(u, p) =α a .

Proposition

The map pα : Γ.α→ Γ is a uniform trivial fibration ⇔ there is a term Γ ` t : TFib(α).



Uniform trivial fibration structure via Kripke–Joyal semantics (II)

Lemma
For α : Γ→ U, x : yc → Γ such that

c  a : α(x)

c  ϕ : Φ

c  u :
(
{ϕ}� α

)
(x) .

then we also have

c  e : (u =ϕ a)(x) ⇔
[ϕ] Γ.α

yc Γ

u

p
α

x

〈x ,a〉 commutes.



Uniform trivial fibration structure via Kripke–Joyal semantics (III)

Proof of Theorem.
Suppose Γ ` t : TFib(α). Thus for all x : yc → Γ, we have c  tx : TFib(α)(x),
coherently in x .
Note that

TFib(α) =
∏
ϕ:Φ

∏
u:[ϕ]→α

∑
a:α

(u =ϕ a)

=
∏

(ϕ,u) :α+

∑
a:α

u =ϕ a

We thus obtain
c  tx :

∏
(ϕ,u) :α+

∑
a:α

(u =ϕ a)(x) .



Uniform trivial fibration structure via Kripke–Joyal semantics (IV)

Proof of Theorem (cont’d).
By Kripke–Joyal semantics of

∏
and

∑
, we have

for every f : d → c in C, if

d  (ϕ, u) :α+(x .f )

then
d  tx .f (ϕ, u)0 :α(x .f )

and

d  tx .f (ϕ, u)1 :
(
u =ϕ tx .f (ϕ, u)0)(x .f )

and, for any g : d ′ → d ,

tx .f (ϕ, u).g = t(x .fg)(ϕ.g , u.g) .

[ϕ.f ] Γ.α

yd Γ

〈x .f ,uf 〉

p
α

x .f

[ϕ.f ] Γ.α

yd Γ

〈x .f ,uf 〉

p
αtx.f (ϕ,u)0

x .f



Uniform trivial fibration structure via Kripke–Joyal semantics (V)

Thus forcing TFib(α) produces diagonal fillers

jϕ(x , u) , tx . idc (ϕ, u)0

for each lifting problem as in the right hand square below:

[ϕ.f ] [ϕ] Γ.α

1

yd yc Γ

Φ

y

〈x ,u〉

pα

t
yf

ϕ.f

tx.f (ϕ.f ,u.f )0

x

ϕ

tx (ϕ,u)0



Uniform trivial fibration structure via Kripke–Joyal semantics (VI)

Proof of Theorem (cont’d) – the converse argument
If pα : Γ.α→ Γ is a uniform trivial fibration then in particular for every basic cofibration
[ϕ]� yc and square as on the right below, there is a diagonal filler jϕ(x , u) as
indicated.

[ϕ.f ] [ϕ] Γ.α

yc ′ yc Γ

u

p
α

yf

jϕ.f (x .f ,
u.f )

x

jϕ(x ,
u)

By the lemma, this corresponds to an element tx : yc → TFib(α) over x : yc → Γ,

Γ.TFib(α)

yc Γ

pTFib(α)

x

tx

The uniformity condition says exactly that for all f : c ′ → c , the elements tx cohere,
t(x .f ) = tx ◦ y(f ) . By Yoneda for the slice category E /Γ that there is a term
Γ ` α :TFib(α). QED.



4 Trivial cofibrations and uniform fibrations
A tiny interval
Uniform fibration structures from forcing for type Fib
Universal uniform fibration



The interval (I)

An interval with connections is a presheaf I in E equipped with endpoints, i.e. maps
δk : 1→ I,, for k ∈ {0, 1}, and connections, i.e. maps ck : I× I→ I for k ∈ {0, 1},
satisfying the following axioms.

1 δ0 6= δ1

2 δk : 1→ I is a cofibration, for k ∈ {0, 1}.
3 The diagrams

I I× I I

1 I 1

(δk ,1)

ck

(1,δk )

δk δk

I I× I I

I

(δ1−k ,1) (1,δ1−k )

commute, for k ∈ {0, 1}.



The interval (II)

By Kripke–Joyal semantics the diagrammatic axioms (1-3) above are equivalent to the
axioms (1-4) in below written in the language τ(E ):

1 ¬(0 = 1).

2 (∀i : I)
(
cof(i = 0) ∧ cof(i = 1)

)
.

3 (∀i : I)
(
c0(0, i) = 0 = c0(i , 0) ∧ c0(1, i) = i = c0(i , 1)

)
.

4 (∀i : I)
(
c1(0, i) = i = c1(i , 0) ∧ c1(i , 1) = 1 = c1(1, i)

)
.



Naive trivial cofibrations

A naive trivial cofibrations is a Leibniz tensors of the form

c ⊗ δk : Z +C (Z × I)� Z × I ,

for an arbitrary cofibration c : C � Z and an endpoint δk : 1� I, for k ∈ {0, 1}.
This construction is stable under pullback, in the sense that for any map t : Z ′ → Z ,
one has a pullback square

Z ′ +C ′ (C ′ × I) Z +C (C × I)

Z ′ × I Z × I

(t∗c)⊗δk c⊗δk

h×I



Uniform fibration structure

A uniform fibration structure on a small map p : A→ Γ consists of a function j that
assigns a dotted filler j(i , u, v) : Z × I→ A to every diagram of solid arrows

Z +C (C × I) A

Z × I Γ

u

c⊗δk

v

where c is a cofibration and k ∈ {0, 1}, subject to the following uniformity condition:
for any map t : Z ′ → Z and induced pullback square on the left,

Z +′C (C ′ × I) Z +C (C × I) A

Z ′ × I Z × I Γ,

c ′⊗δ

u

h×I v

(1)

we have that j(i , uh′, vh) = j(i , u, v) ◦ (h × I).



The type of fillings

Let α : I � U.
Recall the type of 0-directed filling structure

Fill0(α) =
∏
ϕ : Φ

∏
u : {ϕ}�

∏
i : I α(i)

∏
a :α0

(ũ0 =ϕ a)→
∑

s :
∏

i : I α(i)

(s0 =α0 a)× (u =ϕ s) ,

where
˜(−) :

(
{ϕ} →

∏
i : I α(i)

) ∼= ∏
i : I {ϕ} → α(i)

For any type Γ: U and family of types α : Γ � U, we then define the type of fibration
structures

Fib(α) :=
∏

x : I�Γ

Fill0(α(x))× Fill1(α(x)) .



Forcing for type Fib

By Kripke-Joyal semantics, we have:

Theorem

Let α : Γ→ U. Then the following conditions are equivalent.
1 The map pα : Γ.α→ Γ is a uniform fibration.
2 There is a term t :Fib(α).



Universal uniform fibration (I)

Unfortunately the type

Fib(α) :=
∏

x : I�Γ

Fill0(α(x))× Fill1(α(x)) .

is not indexed over Γ and is not good candidate for the construction universal uniform
fibration.
Instead, we need the further assumption that the interval I is tiny:

(−)I a (−)I

Using the amazing right adjoint, we define the universal fibration Fib∗ → U as the
pullback of E → U along (Fill)I ◦ η.

Fib∗(α) Fib∗ (E )I

Γ U (U I)I (U)I

y

α η (Fill)I



Universal uniform fibration (II)

Theorem

Let α : Γ→ U.
1 There is a bijection between points 1→ Fib(α) and sections of Fib∗(α) over Γ,

which is natural in Γ.
2 The object Fib∗(α) is stable under pullback along any map γ : ∆→ Γ.

∆.Fib∗(γ(t)) Γ.Fib∗(α)

∆ Γ

∆.α(γ) Γ.α

γ
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The End

Thanks for your attention!
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