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Preface

We arrived at the idea of writing a book on the connections of first order model theory
and categories in early 1974 when we realized that it was impossible to communicate
some of our fresh results and proofs because of the lack of a basic theory and a coherent
terminology connecting logic and categories. As expected in such cases, it has taken us
longer than promised to many people to complete the arduous task of writing this book.

The basic features of the work, some of them unusual, will be described in the
Introduction below; here we make a few remarks only.

Primarily, the book is intended as a research monograph containing the exposition
of the authors’ results. On the other hand, it resembles a textbook because of the
large amount of basic, sometimes even well-known, material that we have included. As
a result, the book is essentially selfcontained reading. However, the reader should be
warned that we have made no attempt to give a complete or even balanced account
of the subject matter on the whole and it would be misleading to take the book as a
faithful representation of the whole of categorical logic.

Our ideal goal in offering this work to the mathematical community is to help bring
together two schools of thought in a fruitful collaboration. Logicians and category the-
orists seem to have resisted each others’ ideas to a large extent. By building on very
little in the way of prerequisites, and arriving at results which, besides being technically
involved, have, we hope, some importance, we have attempted to show both logicians
and category theorists some of the potentialities of a collaboration.

We would like to thank André Joyal and William Lawvere for many inspiring con-
versations. The stimulus they have given to our work goes much beyond the specific
references we make to their papers.

The subject matter of this book was the topic of many sessions of the Séminaire de
Logique, Université de Montréal, in the years 1973 to 1975. In the winter quarter of
1976, the first author gave a course on categorical logic at the University of California,
Los Angeles. Both authors had numerous occasions to talk about the subject at meetings
and seminars.

In 1975-76, the first author was visiting U.C.L.A., while the second author held a
leave fellowship of the Canadian Council; much of the work on the book was done during
this time.

Both authors hold operating grants of the National Research Council of Canada.
The preparation of the type-script was supported by the authors’ NRC grants.

We would like to express our heartfelt thanks to Mrs. Esther Massa who performed
the difficult task of producing the type-script with great care and skill.

Michael Makkai
Gonzalo E. Reyes

Montreal, April 1977
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Introduction

This work has grown out of efforts to write up some results the authors obtained a
couple of years ago, most of which were announced in Makkai and Reyes [1976]. We
soon realized that the background or folklore material we needed had never been written
down, nor actually had been worked out in detail. It became clear that, even for the
purposes of organizing the background material, new notions and terminology had to be
introduced. We decided to include a complete treatment of all necessary preliminaries.
The result is this book which, of course, was not originally intended to be this long.

In its present form, the book is intended to be a selfcontained introduction into “first
order categorical logic”. Several points have to be made to clarify this term, or more
precisely, our interpretation of it.

1. First of all, we deal with first order logic only. The reader will not find any
reference to higher order logic, which is, however, intimately related to elementary topoi
(cf. e.g. Kock and Reyes [1977], Fourman [1977]) and thus it is very important for
logically oriented category theory. On the other hand, we include a kind of infinitary
logic under ‘first order logic’, thus departing somewhat from the traditional terminology.
The infinitary first order logic we deal with is what has been called finite-quantifier
infinitary logic, or L∞ω, in the literature (cf. e.g. Keisler [1971], Barwise [1975]). It
goes beyond traditional (or, as we will say: finitary) first order logic by allowing the
formation of infinite conjunctions (“and”) and disjunctions (“or”). From now on, ‘logic’
means ‘possibly infinitary first order logic’ for us.

2. Secondly, we obtain an algebraic, in fact categorical, formulation of first order
logic, in the following sense. In this formulation theories (sets of axioms) are replaced
by (certain) categories (our use of the adjective ‘logical’ in connection with categories
will indicate that indeed, those categories can stand for theories in a sensible way), and
models of theories will be (certain) functors (again, we will talk about ‘logical’ functors).
E.g., an ordinary model (in the sense of Model Theory, cf. e.g. [CK]), will correspond
to a logical functor into Set, the category of sets. At the same time, logical functors
will replace and generalize the various, usually awkward notions of interpretations of
theories in each other.

3. The replacement of the basic notions of logic by categorical notions as described
above is, however, not a primary aim for us here, and indeed, it is not carried out
systematically. On the contrary, we systematize our treatment on a conceptual basis
which is both logical and categorical in character. This conceptual basis is a direct
generalization of Tarski’s foundation for Model Theory (cf. e.g. Tarski [1952] and [CK]).
We have in mind Tarski’s notion of a structure of a similarity type and his notion of truth
in structures of formulas of the language associated with the similarity type; notions
that are fundamental to Model Theory. First of all, the syntactical notions (formulas,
etc.) of logic in our work are identical to the usual ones, except for the generalization
to many-sorted logic which, however, is already familiar to logicians (cf. e.g. Feferman
[1968]). In particular, a language (which is our equivalent to Tarski’s ‘similarity type’)
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2 INTRODUCTION

is a collection of symbols called ‘sorts’ as well as finitary sorted relation and operation
symbols. Tarski’s notion of a structure is replaced by a category-valued structure, or an
interpretation of the language in a category. For an R-structure of type L where L is a
language, R is a category, we also write (suggestively, as it turns out) “M :L→ R”. This
notion is a simple generalization of the ordinary notion of structure that will be obtained
as a special case as an interpretation M :L→ Set, with Set the category of sets. To give
an idea of the notion, we mention a few points. Given M :L → R, M interprets each
sort s of L as an object M(s) of R; in the case of an ordinary structure M :L → Set,
M(s) is a set, one of the partial domains of M . If f is a unary operation symbol in L
intended ‘to map elements of sort s into elements of sort t’ (which is specified by the
sorting of f : the single argument of f is specified as of sorts s, the value of f is specified
as of sort t, all of which is denoted by writing f : s → t), then M will interpret f as a
morphism M(f) :M(s) → M(t) in R; this becomes an operation, indeed in accordance
with the intention of the sorting, mapping elements of M(s) into elements of M(t), in
case of a structure M :L→ Set.

The next (and main) task of generalizing Tarski’s setup consists in defining the
interpretation of formulas in a category-valued structure M :L → R. This will be
described in Chapter 2 below; here we only mention a few salient points. If the free
variables of the formula φ are among ~x = 〈x1, . . . , xn〉, we will define M~x(φ) and it will
be a subobject of X, X being the product of M(s1)× · · · ×M(sn), with xi a variable of
sort si, i = 1, . . . , n. This will accomplish the generalization of Tarski’s notion of truth
because in case R = Set, M~x(φ) turns out to be the extension of φ in the structure M ,
i.e., M~x(φ) = {〈a1, . . . , an〉 ∈ X : M |= φ[a1, . . . , an]}; here ‘M |= φ[~a]’ stands for ‘~a
satisfies φ in M ’, as usual. Note that, of course, in general we do not have ‘elements’ of
objects in our category, so the notion ‘M |= φ[~a]’ will not be available. We also note that
in order for M~x(φ) to be defined, the category R will have to satisfy certain conditions.

4. Finally, our treatment of categorical logic is geared towards establishing a link
with Grothendieck’s theory of (Grothendieck) topoi as it is exposed in SGA4. One of
our main points is that some of the fundamental properties of some notions in this
theory (notably the notions of topos, coherence of, and in, topoi and pretopos) are
purely logical. Even more specifically, e.g. the notion of pretopos can be given a purely
modeltheoretical characterization (among all theories or logical categories), cf. Theorem
7.1.8. In the description of the contents below, the reader will recognize our basic
orientation towards Grothendieck’s theory. It is a very interesting fact that notions
originally developed for the purposes of (abstract) algebraic geometry turn out to be
intimately related to logic and model theory. Compared to other existing versions of
algebraic logic, categorical logic has the distinction of being concerned with objects that
appear in mathematical practice.

If asked what is the most immediate point of contact between the Grothendieck
theory and logic, we would point to the notion of a site, a category with a Grothendieck
topology. It seems to us that it is most natural to identify a site with a theory, in the
context of continuous functors from the site. The point is that the notion of a covering
has the same arbitrary nature as an axiom; and in fact, each covering is considered an
axiom in the precise identification we will consider below, explicitly first in Chapter 6,
Section 1.

We note that Giraud’s theorem (cf. Chapter 1, Section 4) can obviously be regarded
as a logical characterization of Grothendieck topoi.

After the above characterization of the basic features of our approach, we should add
that some equally natural approaches might offer themselves, even in the context of first
order logic alone; we are planning to study some of these directions in the future. Also,
some topics that would naturally fit into our context are omitted; perhaps the main one
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is A. Joyal generalization of forcing to sites and topoi, the Kripke-Joyal semantics, cf.
e.g. Kock and Reyes [1977]. Thus, the book is far from being a complete treatment of
the subject.

Let us briefly recall some of the historical background of this work. For more history
and a more general context, we refer to Kock and Reyes [1977].

The program of doing algebraic logic via categories, i.e., with categories represent-
ing theories, is due to F. W. Lawvere. In Lawvere [1963], he introduced a categorical
formulation of algebraic theories in which the basic idea is that substitution should be
represented by composition of arrows. The second step was taken in Lawvere [1965]
where he introduced the idea that quantifiers were ‘adjoints to substitution’. More

precisely, given a morphism A
f //B in a category, by pullback we obtain the functor

S(B)
f∗ //S(A), with S(A) and S(B) the subobjects categories of A and B, respec-

tively; the quantifiers ∃f , ∀f operating on elements of S(A) are then defined as the left,
respectively the right adjoint of f∗. The resulting ‘elementary doctrines’ are structures
which are categories together with certain equivalents of the S(A). The point of view
taken in this book that theories correspond to categories without additional structure
(but with additional properties) is due to Joyal and Reyes, and it appears in Reyes
[1974].

In particular, the notion of a logical category, regarded as fundamental for categor-
ical logic in this book, is due to Joyal and Reyes and it is the end product of several
successive attempts at defining ‘the right notion’. In the same paper, the existence of
the classifying topos of coherent theories appears and together with this the realization
that in connection with Grothendieck topoi, coherent first order logic has a distinctly
important role.

Another important element in this work, the categorical interpretation of formulas
first appears in Mitchell [1972] in a special context (for a similar work, cf. Osius [1973]).
In Bénabou [1973], the substitution lemma and interpretation of formulas appear al-
though in a context somewhat different from ours. Coste [1973] contains a categorical
soundness theorem as well as a completeness theorem, in the context of intuitionistic
logic and topos-valued models. Coste’s soundness theorem is closely related to ours.
Our work was independent of Coste’s.

Next we give a description of the contents of the book.

Included solely for the convenience of the reader, Chapter 1 presents the basic theory
of (Grothendieck) topoi. It follows SGA4 quite closely. It ends with an Appendix
discussing some examples.

In Chapter 2, we define the basic notion, the interpretation of formulas in categories.
Section 1 recalls the elementary concepts related to infinitary first order logic, L∞ω.
Section 2 introduces the (very elementary) categorical notions on which the interpreta-
tion is based, and Section 3 describes the interpretation itself. In Section 4 it is shown
that certain properties of diagrams in categories can be expressed by formulas; this fun-
damental fact will be amplified and called the ‘first main fact’ in Chapter 3, Section
5.

Chapter 3 continues the study of the elementary properties of the categorical inter-
pretation of formulas. The topic of Sections 1 and 2 is the soundness of certain rules of
inference in the categorical interpretation: if a statement follows according to a specific
formal rule from other statements that are all true in the category, then the original
statement is true too. Here the stability under pullback of various notions play an im-
portant role just as it does in SGA4 where it is called universality. Section 3 is a detailed
study of connections of some notions in SGA4 (such as effectiveness of equivalence re-
lations, etc.) with logical formulas. Section 4 introduces the various kinds of ‘logical’
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categories that can stand for theories of finitary and infinitary logic. The (simply) logical
categories are related to finitary logic. More precisely, they turn out to be equivalent to
so-called finitary coherent theories, axiomatized by Gentzen sequents with formulas built
up using only ∧, ∨ and ∃. A pretopos is a logical category with some additional condi-
tions. We give a definition of pretopos in a logical spirit and show that this definition
is equivalent to the definition given in SGA4, Exposé VI. We give infinitary generaliza-
tions of the above notions, arriving at κ-logical categories and κ-pretopoi, where κ is
an infinite regular cardinal, or ∞. We show that ∞-pretopoi are almost the same as
Grothendieck topoi. Finally, in Section 5 we outline the basic machinery of ‘reducing’
a categorical situation to a logical one and we give an example, Joyal’s completeness
theorem on logical categories and its proof via Gödel’s completeness theorem. The tech-
nique of reduction is based on what we call the two main facts in connection with the
relation of categories and first order logic. The first one says that a functor F from
R preserves certain things (e.g., finite projective limits) in R if and only if F satisfies
certain axioms. E.g., a logical functor from R will be one that (as an interpretation of
a certain language) satisfies the axioms of a certain finitary coherent theory TR. The
first main fact is based mainly on work done in Chapter 2. The second main fact is
the soundness mentioned in connection with Sections 1 and 2; here it is formulated in a
more general form. The two main facts are fundamental to our work later, especially in
Chapters 6 and 7.

From the two main facts, the first one (‘internal theories’) is the one that seems to
be a new contribution in this work; the second one was anticipated, although not quite
in the form we need it here, by others, see especially Coste [1973].

Chapter 4 deals with elementary properties of Boolean- and Heyting-algebra-valued
models. In Section 1, a notion is described which is the familiar one used by logicians
except for small differences due to our use of many-sorted logic and possibly empty
domains. In Section 2, D. Higgs’ identification of the category ShH of sheaves over a
complete Heyting algebra H with the canonical topology on the one hand and the cat-
egory of H-valued sets on the other hand is stated without proof. (Unfortunately, D.
Higgs’ paper on the subject still exists only in preprint form.) Based on this identifi-
cation, we describe how H-valued models in the sense of Section 1 can be understood
as ShH-structures, i.e., interpretations in the category ShH, in the sense of Chapter 2.
Finally, we describe the well-known way of constructing 2-valued (Set-valued) models
out of Boolean valued ones.

Chapter 5 is of a purely logical character without references to categories. In Section
1, we present the Boolean completeness theorem for L∞ω. Not only do we give complete
details but we also explain the (semantical) motivation for the (cut-free) Gentzen-type
formal systems that we use. There are two versions of the Boolean completeness theorem
in the literature. The first can be found in Karp [1964], the other one is the proof given
in Mansfield [1972]. Karp’s proof relies on a Lindenbaum-Tarski type construction of
the Boolean value-algebra and is (therefore) related to what are called Hilbert-type
formal systems. For our purposes Mansfield’s approach is the natural one; indeed, this
approach can be considered as a direct generalization of the two-valued completeness
proof (for Lωω and Lω1ω) for a Gentzen-type system (cf. e.g. Kleene [1967]) and also
of the method of consistency properties (cf. Makkai [1969] and Keisler [1971]). Our
detailed exposition is necessitated by the fact that the exact version we need cannot be
found in the literature. This version has the features of applying to many-sorted logic,
to possibly empty domains and of having a restricted cut-rule. In Section 2 we present
an apparently new formal system that applies only to coherent logic. Here we also give
a version of the method of consistency properties that will be used in Chapter 7.

The main part of the book consists of Chapters 6 and 7 where we describe our new
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logical proofs of some known theorems for categories as well as give several new results.
The topic of Chapter 6 is various embedding theorems for (Grothendieck) topoi. It

turns out that they can be considered as more or less direct consequences of completeness
theorems in logic. After some preliminaries in Section 1, Section 2 deals with embedding
theorems with special Boolean ‘target’ topoi. The most general result in this area is
Barr’s theorem (Barr [1974]) that says that for any topos E , there is a complete Boolean
algebra B and a conservative geometric morphism ShB

u // E , with ShB the category
of sheaves over B with the canonical topology. Our proof of Barr’s theorem, which
is based on the Boolean completeness for L∞ω, gives additional information such as
a characterization of those infimums of subobjects in E that can be preserved by the
inverse image functor u∗ : E → ShB, etc. Another well known embedding theorem is
Deligne’s theorem (SGA4, Vol. 2, p. 173) that replaces ShB by a Cartesian power SetI

of the category of sets in Barr’s theorem for a coherent topos E . This theorem turns
out to be a ‘consequence’ of the original Gödel-Malcev completeness theorem for finitary
logic. To the above, we add a new embedding theorem for what we call separable topoi.
A topos is separable if it is equivalent to the category C

∼
of sheaves over a site C having

altogether countably many objects and morphisms and whose Grothendieck topology
is generated by countably many covering families. Our result is that the conclusion of
Deligne’s theorem holds for separable topoi. It is surprising that this result was not
noticed before; it certainly dispels a feeling one might have reading SGA4, namely, that
the phenomenon of ‘having enough points’ is essentially related to the ‘finitary’ (quasi
compact) character found in coherent topoi. Naturally, this result turns out to be related
to the two-valued completeness theorem for countable fragments of Lω1ω, cf. e.g. Keisler
[1971].

In Section 3, we consider embedding theorems with more general ‘target’ topoi; on
the other hand, the inverse image functors of the geometric morphisms obtained here
preserve more that before, namely the full power of the logic L∞ω, including universal
quantifiers and infinitary conjunctions. It would have been possible to do the work
here on the basis of an intuitionistically valid formal system for L∞ω, just like our
extended version of Barr’s theorem is based on a classically valid formal system; then
the connections to (possibly infinitary) intuitionistic logic would have become clear. (At
this point, the reader might profitably consult Rasiowa and Sikorski [1963] and Fitting
[1969], although our exposition is selfcontained.) However, we have chosen a method
of directly applying completeness for coherent logic. Our first two results seem to be
simple-minded enough but we are unaware of their being stated in the literature. The
first one (Theorem 6.3.1) says that every topos E has a complete Heyting algebra H
and a conservative geometric morphism ShH

u // E such that u∗, in addition, preserves
intuitionistic implications, universal quantifiers and infinite conjunctions. We derive this
as a corollary of our proof of Barr’s theorem. The second result (Theorem 6.3.3) says that
in the above theorem, ShH can be replaced by the category of sheaves over a topological
space whenever E has enough points, in particular, for coherent and separable topoi.
The last result of this section, Theorem 6.3.5, is an elegant theorem of Joyal, which is
a version of Kripke’s completeness theorem for intuitionistic logic (cf. Kripke [1963] or
Fitting [1969]). Joyal’s theorem refers to a coherent topos E and starts with the category
Mod(E) of all points (geometric morphisms) Set → E . The theorem talks about the

evaluation functor ev : E → SetMod(E) and it shows that ev is the inverse image functor of
a geometric morphism, that ev is conservative and finally, that it preserves intuitionistic
implication and ∀ on the level of subobjects of coherent objects. Joyal’s theorem shows
most clearly in what sense intuitionistic logic is fully explained in terms of coherent logic.
We note that related work was done by Robitaille-Giguère [1975].

Chapter 7 contains our main new results. The basic situation we consider here is the
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following. Given a ‘logical’ (e.g., logical in the simple sense, or some infinitary sense)
functor between ‘logical’ categories I :R → S, we consider the categories Mod(R),
Mod(S) of ‘models’ of R and S, respectively, (e.g., in the simple logical case, the cat-
egory of logical functors into Set) and the functor I∗ : Mod(S) → Mod(R) induced by
I by composition. We prove results each saying that some property of I∗ implies some
other property of I. After proving some ‘known’ results and two rather technical theo-
rems (which, however, have independent interest), in Section 1 we state and prove our
characterization of pretopoi, Theorem 7.1.8. This refers to the above situation in the
simply logical case and it says that if, in addition, R is a pretopos, I∗ is an equivalence
of categories, then so is I. This is indeed a characterization of pretopoi among logical
categories because it is quite easy to see that it is false whenever R is not a pretopos
and S is suitably chosen (take S to be the pretopos completion of R, cf. Chapter 8).
Paraphrasing the result, we might say this. Let us call I :R → S strongly conservative
if I∗ is an equivalence. This means that S is an ‘extension’ of R which, however, does
not change the category of models. Now, the theorem says that pretopoi (and only
pretopoi) are complete in the sense that they do not have proper strongly conservative
extensions. The proofs in Section 1 are all applications of classical methods of finitary
Model Theory, of course together with the basic reduction machinery.

The rest of Chapter 7 is devoted to infinitary generalizations of the results of Section
1. We succeeded in generalizing all results of Section 1 at the expense of introducing
additional conditions on R, S and I. The additional conditions turn out to be obviously
true for the finitary case, so we have direct generalizations. The proofs of the infinitary
versions are essentially different and more complicated than the finitary ones and they are
patterned after Makkai [1969]. We actually formulate matters for admissible fragments
of L∞ω, but things are so arranged that the reader can ignore this level of generality
and understand our proofs as referring to the simpler fragments Lκω of L∞ω.

Up to and including Chapter 7, the basic point of view was that of replacing categories
by theories. In Chapter 8, we perform the opposite step by constructing categories that
can replace theories for all practical purposes, and we give some applications of this point
of view. In particular, we describe the construction of the logical category associated to
a finitary coherent theory, as well as the infinitary generalization of this construction.
We explain that this construction (together with the ‘first main fact’) provides a basis for
identifying finitary coherent theories, and actually, all theories in classical finitary first
order logic, with logical categories. The application consist of descriptions of various
kinds of ‘completions’ of categories. For instance, given a site C, we give syntactical
descriptions, or presentations in terms of logical operations, of the category C

∼
of sheaves,

and of the category (a pretopos) of coherent objects and morphisms in C
∼

in case C
is generated by finite coverings. Although these descriptions are quite elementary in
nature, they contain information not immediately following from general arguments.
They do not seem to appear in the literature except in the thesis Antonius [1975] in a
somewhat different form. We feel that their knowledge should be an integral part of
one’s picture of topoi.

Chapter 9 touches on various topics. It discusses the notion of classifying topos of
a theory. It gives a new proof of Grothendieck’s theorem on the coherent objects of
a coherent topos. It reformulates our characterization of pretopoi into a theorem on
coherent topoi and coherent geometric morphisms, etc.

After the description of the contents, a few concluding remarks.
The book is essentially self-contained; it should be readable with a rudimentary

knowledge of categories and with almost nothing in the way of a background in logic.
Chapter 1 is a selfcontained exposition of topoi, using only material of e.g. Mac Lane
[1971], except for a few minor places where we defer the work to Chapter 3. Chapter
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2 and 3 do not rely on Chapter 1 and use only the most elementary category theory.
All logical notions are explained (except things like free variables). Chapter 4 and 5
are likewise selfcontained expositions, entirely of a logical character, except that we
state Higgs’ theorem without proof and also another, actually related, result on Boolean
valued models (Proposition 4.3.4). The first five chapters provide the ground-work for
the rest of the book. Also, consult the chart of dependencies below.

The reader will find quite a few repetitions in the book; in general, we have tried to
make the individual chapters readable by themselves as much as possible. E.g., although
Chapter 6 relies on some things proved in Chapter 1, all what is needed from Chapter
1 is summarized in Section 1 of Chapter 6.

Leitfaden

Ch 1 Ch 2

Ch 3

Ch 4

Ch 5

Ch 6 Ch 7Ch 8

Ch 9
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Chapter 1

Grothendieck topoi

Introduction

In this chapter we will give the basic theory of Grothendieck topoi as it is exposed in
SGA4, Volume 1. Our exposition follows SGA4 closely and it is selfcontained; the only
prerequisite is some material in CWM. We will go only as far in the theory as our needs,
especially in Chapter 6, dictate. In particular, no attempt is made to show what the
algebraic geometrical motivation for topoi is. On the other hand, their logical context
should gradually emerge in the later chapters.

A category in this book has either a set or a proper class of objects; with some
exceptions noted below, the hom-sets Hom(A,B) are always sets. (In SGA4 terminology,
every category is a U-category, for a fixed universe U .)

For emphasis, we may call a category locally small if each hom-set Hom(A,B) is a
set. A locally small category is small if it has a set of objects.

§1 Sites and sheaves

In this book, every category will be assumed to have finite left limits.
A site is given by a category C (the underlying category of the site), together with a

Grothendieck topology on C given by a class Cov(A) for each object A of C. The elements

of Cov(A) are families (sets) 〈Ai
fi //A〉i∈I of morphisms with codomain A; an element

of Cov(A) is called a covering family of A. The Grothendieck topology has to satisfy
the following four conditions:

1.1.1 (i) Every isomorphism A′
f //A gives a one-element covering family, {A′ f //A} ∈

Cov(A).

1.1.1 (ii) (“Stability under pullback”). Whenever 〈Ai
fi //A〉i∈I ∈ Cov(A) and B

g //A

is a morphism in C, then 〈Ai ×A B
f ′i //B〉i∈I belongs to Cov(B); here

Ai A

Ai ×A B B

fi //
OO

f ′i

//

g

OO

is any pullback diagram, for each i ∈ I.
(Remark: Applying (ii) to the identity map g = idA, we obtain that in a covering

family 〈Ai
fi //A〉i∈I any morphism Ai

fi //A can be replaced by an ‘isomorphic copy’

9



10 CHAPTER 1. GROTHENDIECK TOPOI

A′i
f ′i //A, (meaning that there is an isomorphism Ai

α //A′i with f ′iα = fi) such that
the resulting family is still covering.)

1.1.1 (iii) (“Closure under composition”). Whenever 〈Ai
fi //A〉i∈I ∈ Cov(A) and

〈Aij
gij // Aj〉j∈Ji ∈ Cov(Ai) for every i ∈ I, we have that 〈Aij

fi◦gij // A〉j∈Ji,i∈I belongs
to Cov(A).

1.1.1 (iv) (“Monotonicity”) If 〈Bj
gj //A〉j∈J ∈ Cov(A) and 〈Ai

fi //A〉i∈I is such that
for any j ∈ J there is a i ∈ I and a morphism Bj //Ai with

Bj A

Ai

gj //

�� fi

<<

commutative, then 〈Ai
fi //A〉i∈I ∈ Cov(A).

In case the underlying category C is not small, only locally small, we impose another
condition on the site C: there should exist a set G of objects such that for each A ∈ Ob(C)
there is a covering family 〈Ai

fi //A〉 with Ai ∈ G. G is called a topologically generating
set for the site C. For emphasis, the site C is said to be locally small.

The simplest example of a site is that derived from a topological space X. The open
sets of X are made into a category C; the objects of C are the open sets of X; with

any domain U and codomain V there is at most one morphism U
f //V and there is

one precisely when U ⊆ V . The Grothendieck topology is given by: 〈Ui → U〉i∈I ∈
Cov(A) iff

⋃
i∈I Ui = U . The concept of a site is seen in the light of this example, as

a reformulation and generalization of the notion of topology obtained by “eliminating”
points of the space. From the point of view of topology, the success of the concept, of
course, depends to what extent relevant constructions of topology can be formulated by
it.

Conditions (i) to (iv) on Grothendieck topologies are closure conditions. In partic-
ular, if Cov0(A) is any class of families 〈Ai → A〉i∈I , for each A ∈ Ob(C), we can talk
about the Grothendieck topology on C generated by the basic covering families in the
Cov0(A), namely, we take the smallest Grothendieck topology containing the Cov0(A).

Another formulation of the notion of Grothendieck topology uses the formalism of
the Yoneda embedding, cf. CWM. We call any contravariant functor F : C → Set (Set
is the category of sets) a presheaf over C.

The category of all presheaves (with natural transformations as morphisms) is de-

noted by Ĉ.

Remark. If C is a small category, Ĉ is a locally small category. If C is only locally
small, Ĉ is not necessarily locally small. We use Ĉ, nevertheless, for arbitrary locally
small C; we have to pass to another ‘universe’ V if we want Ĉ to be, say, a V-category
(cf. SGA4). This ‘foundational’ difficulty is not a serious one. On the other hand, one

has to exercise caution in connection with Ĉ when applying certain constructions simply
for reasons like, e.g., Set, the category of sets, has limits of small diagrams only.

For any A ∈ Ob(C), the functor hA = HomC(−, A) is a presheaf, called a repre-
sentable presheaf (represented by A).

Given an object A of C and a presheaf F , an element α ∈ FA gives rise to a natural
transformation

α :hA → F

defined thus: αB : Hom(B,A) → FB is the map B
g //A 7→ (F (g))(α). In particular,
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we have the functor h(−) : C → Ĉ such that for A
f //A′, hf = f ; here f ∈ FA for

F = hA′(−) = Hom(−, A′). A part of Yoneda’s lemma says that h(−) is full and
faithful; because of this, it is customary to identify A and hA, and also f with hf when

dealing with C and Ĉ at the same time. Returning to α :hA → F for α ∈ F (A), we note
that it is also customary to identify α and α. The full force of Yoneda’s lemma then
states that the arrows A → F (i.e., the arrows hA → F ) in Ĉ where A is an object of
C, F is a presheaf, are precisely the elements of F (A). Using these identifications, we

can also say e.g. that a morphism F
η //G of presheaves is given if we know what the

compositions η ◦ f are, for all

F G

A

η //

f

OO

η◦f

<<

objects A in C and morphisms f :A→ F in Ĉ.
A subobject in Ĉ R �

� // A of an object A of C (identified with hA) is called a sieve
(French ‘crible’) in SGA4. (As usual, a subobject of an object is an isomorphism class
of monomorphisms with codomain the given object.) A sieve on A is given if for any

B ∈ Ob(C) a subset R(B) of Hom(B,A) is given such that whenever B
f //B′ is a

morphism in C, then g ∈ R(B′) implies that g ◦ f ∈ R(B). I.e., any subobject R �
� // A

is represented by a monomorphism R i //A where each R(B)
iB // Hom(B,A) is a set-

theoretic inclusion.
Now, the alternative definition of a Grothendieck topology on C is as follows. It is

given by a set J(A) of sieves on A, for any object A in C, such that the following three
conditions are satisfied.

1.1.2 (i) A �
� idA //A belongs to J(A).

1.1.2 (ii) (“Stability under pullbacks”). If R ∈ J(A), f :B → A is a morphism in C,
then R×A B �

� // B in a pullback diagram

R A

R×A B B

� � //
OO

� � //

f

OO

belongs to J(B).

1.1.2 (iii) (“Local character”). Let R,R′ be sieves on A, R ∈ J(A). Assume that for
every object B of C and every morphism B → R, the sieve R′ ×A B belongs to J(B).
Then R′ belongs to J(A).

Note that using 1.1.2 (i) and (iii) we can infer that if R ∈ J(A), and R′ is a sieve
such that R ≤ R′ (in the partial ordering of subobjects of A), then R′ ∈ J(A). Similarly,
if R1, R2 ∈ J(A) then R1 ∩R2 = R1 ×A R2 ∈ J(A). In other words, J(A) is a filter on

the set of subobjects of A in Ĉ.
We describe how to pass from one way of specifying a Grothendieck topology to the

other. Given a family α = 〈Ai
fi //A〉i∈I , α generates the sieve R �

� i // A defined as

follows. For each B ∈ Ob(C), R(B) �
� iB // Hom(B,A) is the inclusion. R(B) consists

of those morphisms g :B → A such that g factors through an fi: there are i ∈ I and
h :B → Ai such that g = fi ◦ h. Denote this R by R[α]. Then we have

Proposition 1.1.3 (i) Given a Grothendieck topology on C according to 1.1.1, the equal-
ities J(A) = {R[α] : α ∈ Cov(A)} for A ∈ Ob(C) define a Grothendieck topology accord-
ing to 1.1.2.
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(ii) Given a Grothendieck topology on C according to 1.1.2, the equalities Cov(A) = {α :
R[α] ∈ J(A)} define one according to 1.1.1.

(iii) Moreover, the correspondences exhibited are inverses of each other.

We leave the verifications to the reader.

Definition 1.1.4 Given two sites C, C′, a continuous functor F : C → C′ is one that pre-
serves finite left limits (for this we also say: F is left exact) and preserves coverings. The

latter means that if 〈Ai
fi //A〉i∈I ∈ CovC(A), then 〈FAi

Ffi // FA〉i∈I ∈ CovC′(F (A)).

Proposition 1.1.5 Let the site C be given by basic covering families, i.e., a collection
Cov0(A) for each A ∈ Ob(C) (c.f. above). Suppose F : C → C′ preserves finite left limits

and it satisfies the continuity condition for families 〈Ai
fi //A〉i∈I in Cov0(A). Then F

is continuous.

The proof is easy and left to the reader.
Returning to the example of sites defined by topological spaces, let C, C′ be the sites

defined by the respective topological spaces X and X ′. Let f :X → X ′ be a continuous
map. Notice that the ‘inverse image functor’ F : C′ → C defined by F (U) = f−1(U) ⊂ X
is continuous according to 1.1.4. Under mild conditions on the spaces (that are satisfied
if e.g. they are Hausdorff), any continuous F : C′ → C corresponds to a unique continuous
f :X → X ′.

Anticipating our “identification” of a site with a theory (explicitly in Chapter 6), we
also call a continuous functor C → D between sites a D-model of C.

Definition 1.1.6 (i) A compatible family of morphisms from a covering 〈Ai
fi //A〉i∈I

to the presheaf F is a family 〈Ai
ξi //F 〉i∈I such that in

Ai ×A Aj

Ai

Aj

A F

p1 33

p2 ++

))55

ξi

,,

ξj

22

we have ξi ◦ p1 = ξj ◦ p2, for any pair i, j of indices in I.

(ii) A presheaf F is a (set-valued) sheaf for the site C if whenever A ∈ Ob(C),
〈Ai

fi //A〉i∈I ∈ Cov(A), and 〈Ai
ξi //F 〉i∈I is a compatible family from 〈Ai

fi //A〉i∈I ,
then there is a unique morphism ξ :A→ F such that ξi = ξ ◦ fi for i ∈ I.

(iii) The presheaf F is called a separated presheaf if in (ii), there is at most one ξ as
stated there.

The reader who is familiar with the notion of sheaf over a topological space should
check that that notion coincides with the one given here, taking the site to be the one
derived from the topological space.

Another way of putting the definition of a sheaf is this. Consider a presheaf F and

a family 〈Ai
fi //A〉i∈I . In Set, consider the following diagram

HomĈ(A,F )
∏
i∈I HomĈ(Ai, F )

∏
i,j∈I HomĈ(Ai ×A Aj , F ).u //

v1 //
v2

//

Here u is defined by
u(ξ) = 〈ξ ◦ fi : i ∈ I〉

(for ξ :A→ F ), v1 and v2 are defined by

v1(〈gi : i ∈ I〉) = 〈gi ◦ pi,j1 : i, j ∈ I〉,
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v2(〈gi : i ∈ I〉) = 〈gj ◦ pi,j2 : i, j ∈ I〉;

here pi,j1 = p1, pi,j2 = p2 are as in 1.1.6(i). Now the reader can check that F being a sheaf

is equivalent to saying that u is the equalizer of the maps v1, v2, whenever 〈Ai
fi // A〉i∈I

is a covering family. For this we say that the above diagram is exact.
To connect the notion of sheaf to the “sieve”-formulation of topologies, we note

that compatible families from α = 〈Ai
fi //A〉i∈I to F are in 1-1 correspondence with

morphisms R[α] → F , where R[α] is the sieve generated by α (see above). Namely, if

〈Ai
ξi //F 〉i∈I is a compatible family, then the maps

ηB :R[α](B)→ FB

defined by: B //Ai
fi //A � ηB // B //Ai

ξi //F will combine to give the natural trans-
formation η :R[α]→ F . (Compatibility is used to show that the ηB are well-defined.) η

is the unique morphism R[α]
η //F in Ĉ such that

Ai R[α] hA = A

F

f̂i //

fi

((

ξi %%
η

��

� �

inclusion
//

is commutative for every i ∈ I.
Next, we mention a fact related to specifying topologies by “basic coverings”. Let

Cov0(A) be a collection of families of morphisms with codomain A, for each A ∈ Ob(C),
and assume that 〈Cov0(A) : A ∈ Ob(C)〉 satisfies 1.1.1(ii), stability under pullbacks.
Let 〈Cov(A)〉A be the Grothendieck topology generated by 〈Cov0(A)〉A. Now, we can
repeat the definition of sheaves using the Cov0(A) instead of the Cov(A). But we have

Proposition 1.1.7 F is a sheaf for the topology defined by the basic coverings in the
Cov0(A), iff it is one “relative to 〈Cov0(A)〉A”, if the latter is stable under pullbacks.

Proof. First we claim that the topology 〈Cov(A)〉A generated by 〈Cov0(A)〉A is ob-
tained as the ‘smallest’ collection 〈Cov(A)〉A such that each Cov(A) contains Cov0(A)
and the conditions 1.1.1(i), 1.1.1(iii) and 1.1.1(iv) are satisfied. The thing to prove is
that this 〈Cov(A)〉A will then satisfy 1.1.1(ii) as well. This is proved by “induction” for

families α = 〈Ai
fi //A〉i∈I ∈ Cov(A). For α ∈ Cov0(A), stability is true by hypothesis

and one is left to show that it remains true for α “obtained” in clauses (i), (iii), (iv), once
stability is true for the ones entering the construction of α in the clause. The details are
easy and are omitted.

The second thing to show is that if for a given presheaf F , the ‘sheaf property’ for
compatible families from coverings entering each of the clauses (i), (iii), (iv) holds, then
it holds for compatible families from the coverings “obtained” by the clause. Using the
first claim, by ‘induction’ again this will show that the ‘sheaf property’ is inherited from
〈Cov0(A)〉A to 〈Cov(A)〉A. Again, we omit the easy details.

The last proposition leads us to the notion of the canonical topology on a given C.
Remember that, for us, every category has finite limits, in particular pullbacks. In the
following definition, C is fixed.

Definition 1.1.8 (i) On a given category C, for two topologies T1, T2, with respective

classes Cov(T1)(A), Cov(T2)(A) of covering families for A ∈ Ob(C), we say that T2 is
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finer than T1 if Cov(T1)(A) ⊂ Cov(T2)(A) for every A ∈ Ob(C).

(ii) Given a family α = 〈Ai
fi //A〉i∈I of morphisms with common codomain A, and

a presheaf F , we say that F has the sheaf-property with respect to α if the condition
appearing in 1.1.6(ii) is satisfied, with the given α and F and for every compatible family
from α to F . (Note that we can reformulate this condition by an exact diagram like the
one after 1.1.6.)

(iii) A family α = 〈Ai
fi //A〉i∈I is called effective epimorphic if every representable

presheaf hB (B ∈ Ob(C)) has the sheaf property with respect to α. (The reader is invited
to reformulate this condition in purely categorical terms in C.)

(iv) A family α = 〈Ai
fi //A〉i∈I is called stable (or: universal) effective epimorphic if

for every morphism B → A, the pullbacks

B A

Ai ×A B Ai

//

gi

OO

//

fi

OO

form an effective epimorphic family α = 〈Ai ×A B
gi //B〉i∈I .

(v) A family α = 〈Ai
fi //A〉i∈I is epimorphic if for any pair A

g //
h
// B, if g ◦ fi = h ◦ fi

for all i ∈ I, then g = h. (Note that any effective epimorphic family is epimorphic.)

Proposition 1.1.9 Given C with finite left limits, there is a unique finest topology in
which every representable presheaf is a sheaf. The covering families in this topology are
exactly the stable effective epimorphic families. This is called the canonical topology on
C.

Proof. It is clear from the definitions that in every topology for which the representable
presheaves are sheaves, every covering family α must be effective epimorphic, and since
the topology is “stable under pullback” (1.1.1(ii)), α must be actually stable effective
epimorphic. It remains to show that the stable effective epimorphic families form a
topology. Let T be the topology generated by those families. Now apply 1.1.7 to conclude
that every representable presheaf is actually a sheaf in the topology T . But that means
that every covering in T is a stable effective epimorphic family. �

§2. The associated sheaf

Let C be a locally small site. The category of sheaves C
∼

over C is defined as the full

subcategory of Ĉ whose objects are the sheaves over C. Our aim is to show

Theorem 1.2.1 The inclusion functor i : C
∼
→ Ĉ has a left adjoint a : Ĉ → C

∼
, which

preserves finite left limits.

Remark For a presheaf F , a(F ) is called the sheaf associated to F .

The proof of 1.2.1 will occupy the entire section.

First, let us note that the assertion of 1.2.1 is equivalent to saying that there is
a functor a : Ĉ → C

∼
preserving finite left limits and there is a natural transformation

α : idĈ → i ◦ a such that for every sheaf S in C
∼
, αS :S → a(S) (note that S = iS,

a(S) = iai(S)) is an isomorphism and for every f :F → S where F is a presheaf and S
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is a sheaf, there is at most one g : a(F )→ S such that

F S

a(F )

f //

αF
�� g

<<

commutes. (As the reader will see, from these facts it follows e.g. by Theorem 2, part (i)
on page 81 in CWM that α is the unit of a suitable adjunction 〈a, i, φ〉. The ‘universal
property’ of a(F ) will be that for any f as above, there is a unique g making the previous
diagram commute. Of course, g can be taken to be g = α−1

S ◦ a(f), from

F S

a(F ) a(S) .)

f //

αF
��

αS∼=
��

a(f)
//

g

99

We construct a and α by first constructing a functor L : Ĉ → Ĉ and a natural trans-
formation ` : idĈ → L and finally putting a = L2, α = `L(−) ◦ `.

Definition 1.2.2 Definition of L and `.
L(F ) is the presheaf defined by clauses (i) and (ii).

(i) The effect of the functor L(F ) : Cop → Set on objects of C is given by

L(F )(A) = lim//R∈J(A)op HomĈ(R,F ).

In other words, a typical morphism A→ L(F ) is of the form ξ̇, for an arbitrary compat-
ible family ξ :R → F , for R ∈ J(A), and we have ξ̇1 = ξ̇2, with ξi :Ri → F , Ri ∈ J(A)
(i = 1, 2) if and only if there is R ≤ R1, R2, R ∈ J(A), such that the two composites in

R
R1

R2

F
33
++

ξ1
++

ξ2

33 coincide.

Remark In case C is a small site, J(A) is a set, so the limit defining L(F )(A) exists
in Set. If C is only locally small as a site, we should note the following. We have a
topologically generating set G of objects of C. Denoting by JG(A) the covering sieves of
A generated by coverings with morphisms having domains in G, it follows easily that (a)
JG(A) is a set for each A ∈ Ob(C) and (b) JG(A) as a partially ordered subset of J(A)
is coinitial in J(A), i.e. for every R ∈ J(A) there is R′ ∈ JG(A) such that R′ ≤ R. It
follows that the limit defining L(F )(A) is identical to the small limit obtained by replac-
ing J(A)op by JG(A)op, so it exists in Set, hence the definition works for the locally
small case as well.

(ii) The effect of L(F ) on a morphism B
f //A in C, i.e. g = L(F )(f), is as follows.

For a typical element ξ̇ :A→ L(F ), with ξ a compatible family R→ F , R ∈ J(A), g(ξ̇)
is defined as η̇, where η is from the commutative diagram

F

R A

R×A B B.

p.b.

ξ 88

� � //

� � //

OO

η ,,

f

OO
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(It is easy to see that this definition is correct. The dot on ξ refers to the definition of
L(F )(A), that on η refers to L(F )(B).)

Remark If ξ is given as 〈Ai
ξi //F 〉i∈I , with the covering 〈Ai → A〉i∈I , then η is

〈Bi
ηi //F 〉i∈I from the commutative diagrams (i ∈ I)

F

Ai A

Bi B.

p.b.

ξi
88

//

//

OO

ηi ,,

f

OO

(iii) The effect of the functor L on a morphism ν :F → G is defined as follows. For
ξ :R→ F , R ∈ J(A), we put (L(ν))A(ξ̇) = η̇ where η is the composite

R F G.
ξ // ν //

Again, it is easy to see that the definition is correct.

(iv) The morphism `F :F → LF is defined as follows. For A ∈ Ob(C), and a mor-
phism ξ :A → F , ξ is a (one-element) compatible family, “from” the identical covering

A
idA // A. Hence ξ̇ is a morphism A→ L(F ). Put ((`F )A)(ξ) = ξ̇.

Remarks The construction of L(F ) represents a natural attempt towards constructing
the associated sheaf a(F ). Certainly, in a(F )(A) there should be a “representative” ξ̇ of

each compatible family R
ξ //F // a(F ) and hence a representative of each compatible

family R
ξ //F for R ∈ J(A). This is done by introducing ξ̇ as we did in L(F )(A).

Moreover, compatible families that, after refinement of the coverings, become the same,
should clearly correspond to the same morphism A → a(F ); hence the definition of
equality ξ̇1 = ξ̇2. The difficulty is, however, that by this construction we have not taken

care of all compatible families R
ξ //L(F ), only those that factor through F ; so, L(F )

is not necessarily a sheaf. On the other hand, we will see that (a) L(F ) is always a
separated presheaf, and (b) if F is a separated presheaf, then L(F ) is a sheaf, after all.
This explains the construction of a(F ) as stated above.

Proposition 1.2.3 L is a functor Ĉ → Ĉ and ` is a natural transformation idĈ → L.

The proof is by careful inspection of the definitions 1.2.2.

Proposition 1.2.4 (i) If F is separated, the F
`F //LF is a monomorphism.

(ii) If F is a sheaf, then the morphism F
`F //LF in Ĉ is an isomorphism.

The proofs are quite obvious on the basis of the definitions.

Proposition 1.2.5 For any presheaf F , L(F ) is a separated presheaf.

Proof. Let A
f //
g
// L(F ) be two morphisms and assume that R �

� i // A, R ∈ J(A), is

such that fi = gi. We want to conclude that f = g. By the definition of L(F ), f = ξ̇
and g = η̇ for some ξ :R1 → F , η :R2 → F with R1, R2 ∈ J(A). Using the filter property
of J(A) and the definition for equality of the ξ̇, we can assume without loss of generality

that R = R1 = R2. Consider an arbitrary morphism of the form B
β //R. We compute
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ξ̇iβ = ξ̇(iβ) according to the definition of L(F ) as a functor. We take a pullback

R A

R×A B B.

� � i //
OO

iβ

OO

//

But for this we can take

R A

B B.

� � i //

β

OO
iβ

OO

idB

//

Then ξ̇(iβ) is defined as ˙(ξβ) where now the dot refers to the definition of (LF )(B) and

ξβ is the compatible family B → F from the identity covering B
idB // B.

We conclude that, since ξ̇i = η̇i, and thus ξ̇iβ = η̇iβ, we have ˙(ξβ) = ˙(ηβ) for an

arbitrary morphism B
β //R. Given such a β, according to the definition of “ ˙(ξβ) =

˙(ηβ)”, this means that there is a covering Rβ ∈ J(B), Rβ
� � iβ // B, such that ξβiβ = ηβiβ .

Choose and fix Rβ for any β :B → R.

Next, define the sieve R′
j //A as follows. We define R′ such that jC :R′(C) →

Hom(C,A) will be the inclusion, for every C. The morphism C
γ //A is put into R′(C)

if and only if there is a morphism B
β // R such that γ factors through iβ : there is

γ′ :C → Rβ such that the following diagram commutes:

C A

R

Rβ B

γ //

γ′

��

( � i

55

� � iβ //

β

OO

It is easy to check that (i) this legitimately defines R′, a sieve of A, (ii) R′ ≤ R and (iii)

Rβ ≤ R′×B A for every B
β //R. Hence R′×AB ∈ J(B), with any B

β //R, and hence
by 1.1.2(iii) (“local character”) R′ ∈ J(A).

Finally, we claim that, for R′
j′ //R, we have ξ ◦ j′ = η ◦ j′. This will establish,

according to the definition of ξ̇ = η̇, that indeed f = ξ̇ = η̇ = g.

To prove the claim, it is enough to show that for any C
γ′′ //R′ (with C ∈ Ob(C)),

we have ξ ◦ j′ ◦ γ′′ = η ◦ j′ ◦ γ′′. Consider the following diagram:

C A

R′

R F

Rβ B

γ //

γ′′
((

γ′

��

j
22

� u
j′

(( ,
�

i

::

ξ //
η

//

iβ
//
β

OO

By definition, there are B
β //R and γ′ :C → Rβ such that γ = i ◦ β ◦ iβ ◦ γ′ where

γ = j ◦ γ′′. Hence j′ ◦ γ′′ = β ◦ iβ ◦ γ′. Since ξ ◦ β ◦ iβ = η ◦ β ◦ iβ , it follows that
ξ ◦ j′ ◦ γ′′ = η ◦ j′ ◦ γ′′ as desired. �
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Next we formulate a lemma that ‘eliminates’ the dots in the definition of LF .

Lemma 1.2.6 (i) If ξ :R→ F is a compatible family, R ∈ J(A), ξ̇ is the ‘class’ of ξ in
the definition of (LF )(A), then the diagram

A LF

R F

ξ̇ //

?�
i

OO

ξ
//

`F

OO

commutes.

(ii) For every R ∈ J(A) and u :R→ F , there is a morphism v :A→ LF such that

A LF

R F

v //

?�
i

OO

u
//

`F

OO

commutes.

(iii) For every morphism v :A → LF there is R ∈ J(A) and u :R → F such that the
diagram in (ii) commutes.

(iv) If A
u2

//
u1 //F are two morphisms, A ∈ Ob(C) and F ∈ Ob(Ĉ) and `F ◦ u1 = `F ◦ u2,

then the equalizer R //A
u2

//
u1 //F is a covering, R �

� // A ∈ J(A).

Proof. (ii), (iii) and (iv) are immediate consequences of (i) and the definitions. To

prove (i), we consider an arbitrary morphism B
β //R in Ĉ such that B ∈ Ob(C) and

we prove that in

A LF

R F

B

ξ̇ //

?�
i

OO

ξ
//

`F

OO

β 55

we have ξ̇ ◦ i ◦ β = `F ◦ ξ ◦ β. By the definition of `F , we have that `F ◦ ξ ◦ β = ˙(ξ ◦ β),
where the dot now refers to the definition of LF (B) and ξ ◦β is meant as the compatible

family ξ ◦ β :B → F from the identical covering B
idB // B. Turning to the left-side of

the proposed equality, note that we have shown in the proof of 1.2.5 that ξ̇(iβ) is ˙(ξβ)
just as desired. �

Proposition 1.2.7 If h1 ◦ `F = h2 ◦ `F in

LF S

F

h1 //
h2

//

`F

OO

where S is a sheaf (or just a separated presheaf), then h1 = h2.

Proof. To show that h1 = h2, it is enough to show that h1 ◦ v = h2 ◦ v for every
morphism v :A → LF . Take such a v. By 1.2.6(iii), we have R ∈ J(A) and u :R → F
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such that

A

R

LF S

F

v //

?�
i

OO

u
//

h1 //
h2

//

`F

OO

commutes. From h1 ◦ `F = h2 ◦ `F it follows that h1 ◦ v ◦ i = h2 ◦ v ◦ i. Since R ∈ J(A)
and S is separated h1 ◦ v = h2 ◦ v as desired. �

Proposition 1.2.8 If F is separated, then LF is a sheaf.

Proof. Suppose that F is separated. By 1.2.4(i), `F is a monomorphism. To show that
LF is a sheaf, let R �

� i // X ∈ J(X) (X ∈ Ob(C)) u :R → LF a ‘compatible family’.
Form the pullback

F LF

R′ R.F ×LF R =

� � `F //
OO

� �

j
//

u

OO

Since `F is a monomorphism, so is j. We claim that actually, R′ �
� i◦j // X is a covering.

By 1.1.2(iii), it is enough to show that for any Y → R (Y ∈ Ob(C)) we have R′′ =
R′ ×R Y �

� // Y ∈ J(Y ). Notice that R′′ = F ×LF Y .
By 1.2.6(iii), there is R′′′ ∈ J(Y ) and a morphism R′′′ → F such that

F LF

R

R′′′ Y

`F //
OOOO

//

OO

commutes. Since R′′ = F ×LF Y , it follows that R′′′ ≤ R′′, hence R′′ ∈ J(Y ) as desired.
Use 1.2.6(ii) to find v such that

F LF

R′ R X

� � `F //

v
bbOO

� �

j
// � �

i
//

is commutative. We claim that u = v ◦ i, which will suffice to show that LF is a sheaf
(we already know that LF is separated). To establish the claim, take again an arbitrary
morphism Y → R (Y ∈ Ob(C)) and form R′′ = R′ ×R Y ∈ J(Y ).

F LF

R′ R X

R′′ Y

`F //

v
bbOO

// i //

u

OO

OO

//

OO

oo

oo

We have that the rectangles are commutative as shown as well as that the diagram
preceding the present one is commutative. It follows that the composite morphisms
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R′′ → Y → R u //LF and R′′ → Y → R i //X v //LF are equal. Since LF is sepa-
rated, Y → R u //LF and Y → R i //X v //LF are equal. Since Y → R was arbitrary,
it follows that u = v ◦ i.

Proposition 1.2.9 The functor L : Ĉ → Ĉ preserves finite left limits.

Remark The meaning of this statement is that whenever we have a “finite left limit
diagram” in Ĉ then the image of this diagram (also in Ĉ in this case) is a “finite left
limit diagram too”. In more detail: let J be a fixed category (or even just a graph, c.f.
CWM). A diagram of type J in C is a functor δ : J→ C. Let, in particular, J be a category
of the form of a “dual cone”: with a distinguished object L, with a full subcategory I
not containing L, but containing all other objects of J, and with precisely one morphism
(“projection”) πA :L→ A for every A ∈ Ob(I). Now, the phrase: “the diagram δ : J→ C
is a left limit diagram” has the expected meaning: it means that δ(L) is the left (or:
projective) limit of the diagram δ|I : I → C with canonical projections δ(πA) : δ(L) →
δ(A). To say that a functor F : C → D preserves left limits of type J means that
whenever δ : J→ C is a left limit diagram, so is F ◦ δ : J→ D. This formulation has the
advantage that it readily generalizes to situations such as preservation by a functor F of
images, disjoint sums, etc.; in all these cases we have preservation under composition by
F of a property relative to a category of a diagram indexed by a fixed graph J. Finally,
preservation of finite left limits means preservation of all left limit diagrams indexed by
any finite graph J.

Proof of 1.2.9. This is an elementary argument based mainly on the fact that directed
colimits can be interchanged with finite left limits, c.f. Theorem 1, p. 211 in CWM.
Nonetheless, we state the main points of the argument.

Given categories Γ and C, assume that all functors (diagrams) γ : Γ→ C have colimits:
there is an object R ∈ C together with injections πc : γ(c) → R for c ∈ Ob(Γ) with the
well-known universal properties (the system 〈γ(c)

πc //R〉c∈Ob(Γ) is called a colimiting
cone, c.f. CWM). Then we can define the functor

lim// : C
Γ → C

(CΓ is the functor category of all functors Γ → C) as in Exercise 3, p. 110 in CWM as
follows:

(i) for each γ : Γ → C ∈ Ob(CΓ) pick (using the axiom of choice) a colimiting cone
〈γ(c)

πc //R〉c∈Ob(Γ) as above and put

lim// (γ) = R

(ii) for each natural transformation ν : γ → γ′, define the morphism f = lim// (ν) as

follows. Let 〈γ(c)
πc //R〉c∈Ob(Γ), 〈γ(c)

π′c //R′〉c∈Ob(Γ) be the respective colimiting cones
picked in (i). f :R → R′ is defined to be the unique morphism such that π′c ◦ νc =
f ◦ πc for all c ∈ Ob(Γ); we use of course the universal property of the colimiting cone
〈γ(c)

πc //R〉c∈Ob(Γ).
It is easy to check that lim// is well defined.
Now, the main fact we need is as follows. Suppose Γ and C are as above, and in

addition, Γ is filtered (c.f. CWM) and consider lim// : CΓ → C. Let J be a category and
let the functors Φ : J → CΓ and Φ′ : Γ → CJ be related in the obvious way: (Φ(j))(c) =
(Φ′(c))(j) for j ∈ Ob(J), c ∈ Ob(Γ), and similarly for morphisms. Suppose further that
J is a finite category of the form of a dual cone, c.f. above. The claim is that if for all
objects c ∈ Γ, Φ′(c) : J → C is a left limit diagram of type J in C, then lim// ◦ Φ : J → C
is one such too. This is seen to be a reformulation of Theorem 1, p. 211 in CWM, on
“interchangeability” of limits.
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Next, consider the definition of L : Ĉ → Ĉ. Let A be a fixed object in the site C, let
Γ be the category J(A)op (dual of the subcategory of Ĉ consisting of the covering sieves
in J(A) and morphisms of inclusion). Let lim// : SetΓ → Set be defined as above. Γ is
directed (filtered). Let Ĉ evA //Set be the evaluation functor “F 7→ F (A)” (A ∈ Ob(C))
and let “F 7→ LF (A)” be the composite evA ◦ L : Ĉ → Set. Also, consider the Yoneda

functor Y = HomĈ(−, ·) : Ĉ → SetĈ
op

, together with the restriction ρ : SetĈ
op

→ SetΓ (Γ
being a subcategory of Ĉop) and let Ψ = ρ ◦ Y : Ĉ → SetΓ. Inspection of the definition
of L shows that, actually, the functor “F 7→ LF (A)” : Ĉ → Set is nothing but the
composite lim// ◦Ψ.

We claim that the functor “F 7→ LF (A)” preserves finite left limits. We use the above

formulation, with lim// : SetΓ → Set, of interchangeability of limits. Let δ : J → Ĉ be a
finite left limit diagram in Ĉ. Define Φ : J δ // Ĉ Ψ //SetΓ, Φ = Ψ ◦ δ. Inspection shows

that Φ′(R) (with the above meaning for Φ′) is Φ′(R) : J→ Set = J δ // Ĉ
HomĈ(R,·)

// Set,
for R ∈ J(A) = Ob(Γ). Hence, by Theorem 1, p. 112 in CWM (“hom functors preserve
limits”), we have that Φ′(R) is a left limit diagram in Set. Therefore, by “interchange-
ability”, lim// ◦Φ = (lim// ◦Ψ) ◦ δ is also a left limit diagram, which shows that the functor
“F 7→ LF (A)”= lim// ◦Ψ preserves finite left limits.

The las fact we need is Theorem 1, p. 111 in CWM on “pointwise computability
of limits in a functor category”. According to that theorem, for δ′ : J → Ĉ to know
that δ′ is a left limit diagram, it is enough to know that for each object A of C,
evA ◦ δ′ : J δ′ // Ĉ evA //Set is such. Let δ : J → Ĉ be a finite left limit diagram. Let
δ′ : J δ // Ĉ L // Ĉ be δ′ = L ◦ δ. Then evA ◦ δ′ = J → Set = δ◦“F 7→ LF (A)” is a left
limit diagram, according to what we said above. Hence δ′ = L◦ δ is a left limit diagram,
proving that L preserves finite left limits. �

We can now summarize the work of this section as follows.
Define the functor a : Ĉ → Ĉ as a = L ◦ L : Ĉ → Ĉ → Ĉ. By 1.2.5 and 1.2.8, a(F ) is

always a sheaf. Since C
∼

is a full subcategory of Ĉ, we hence regard a as a functor

a : Ĉ → C
∼
.

Define the natural transformation α : idĈ → i◦a (with i : C
∼
→ Ĉ the inclusion) as follows:

for a presheaf F , let

αF :F LF LLF, αF = `LF ◦ `F .
`F // `LF //

Clearly, α is a natural transformation as required (since ` is). By 1.2.4(ii), if S is a sheaf,
`S is an isomorphism, hence LS is a sheaf and hence again, `LS is an isomorphism and
finally, αS is an isomorphism. Also, by 1.2.7, if in

F S

a(F )

f //

αF
��

g1

99

g2

99

we have g1 ◦ αF = g2 ◦ αF = f , where S is a sheaf, then g1 = g2. Finally, by 1.2.9, the
functor L ◦ L : Ĉ → Ĉ preserves finite left limits. We leave it to the reader to verify the
easy

Lemma 1.2.10 For any (finite of infinite) diagram of sheaves and morphisms of sheaves,

the left limit of the diagram computed in Ĉ is actually a sheaf and hence it is the left
limit computed in C

∼
.
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It follows that a : Ĉ → C
∼

preserves finite left limits. Accordingly to what we said
above, this concludes the proof of Theorem 1.2.1.

§3 Grothendieck Topoi
Definition 1.3.1 A (Grothendieck) topos is a category that is equivalent to the category

of sheaves, C
∼
, over a small site C.

In this section we derive some properties of topoi, culminating in a ‘universal prop-
erty’ of C

∼
for a given site C among all topoi (1.3.15 below). In the next section, we finally

give an ‘abstract’ characterization of topoi (Giraud’s theorem).
We will need here the following lemma whose proof we defer to Chapter 3, 3.4.11.

Lemma 1.3.2 In a Grothendieck topos, every epimorphic family is a stable effective
epimorphic family (c.f. Definition 1.1.8).

Let C be any site. Recall the associated sheaf functor a(= aC) : Ĉ → C
∼
. The repre-

sentable sheaf functor (for the lack of a better name) ε(= εC) : C → C
∼

is the composition

C
h(·) // Ĉ a // C∼; it takes every object A ∈ Ob(C) into the sheaf associated to hA.

The category C
∼

has finite left limits (c.f. 1.2.10). Hence, we can consider C
∼

a site with
its canonical topology. In what follows, whenever C

∼
is regarded as a site, the canonical

topology is the topology intended.

Proposition 1.3.3 ε : C → C
∼

is a continuous functor between sites; actually we have

(i) ε preserves finite left limits.

(ii) 〈εAi
εfi // εA〉i∈I is a covering in C

∼
if, and actually only if, 〈Ai

fi //A〉i∈I is a
covering in C.

Proof. (i) is a consequence of the facts that a preserves finite left limits and all inductive
limits and that the Yoneda functor h(·) preserves all projective limits (c.f. CWM).

Next we turn to the proof of part (ii). Using also 1.3.2, we see that in C
∼
, a family

〈Xi
gi //X〉i∈I is a covering iff it is an effective epimorphic family (stability being a

consequence). Hence the condition

〈εAi
εfi // εA〉i∈I is a covering in C

∼
(∗)

is equivalent to saying that the diagram

Hom(εA, F )
∏
i Hom(εAi, F )

∏
i,j Hom(εAi ×εA εAj , F )// ////

in Set, for any F ∈ Ob(C
∼

), with the natural arrows (c.f. the remark after 1.1.6) is exact.
From the adjoint functors a a i,

C∼ Ĉ,
i

//
aoo

using the unit α : idĈ → i ◦ a of the adjunction, we have that the morphisms G
αG // aG

for G = A, Ai and Ai ×A Aj induce the vertical arrows

Hom(A,F )
∏
i Hom(Ai, F )

∏
i,j Hom(Ai ×A Aj , F )

Hom(εA, F )
∏
i Hom(εAi, F )

∏
i,j Hom(ε(Ai ×A Aj), F ).

u //
v1

//
v2 //

u′ //
v′1

//
v′2 //

f
��

g
��

h
��
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By adjointness, f , g and h are isomorphisms and in fact, they establish an isomorphism
of the upper and lower halves of the diagram, i.e.

g ◦ u = u′ ◦ f, h ◦ vk = v′k ◦ g (k = 1, 2).

Now, recall that we also have ε(Ai ×A Aj) ' εAi ×εA εAj (part (i) of the proposition).
We can draw the conclusion that (∗) above holds if and only if every sheaf F over the
site C has the sheaf property with respect to the given family 〈Ai

fi //A〉i∈I (c.f. 1.1.8(ii)).
The ‘if’ direction of (ii) now follows immediately. For the other direction we have to

do some more work.
A morphism X

f //Y , in any category, is an effective epimorphism if the family
consisting of the single element f is an effective epimorphic family. This is equivalent to

saying that for any morphism X
g //Z such that in

X ×Y X

X

X

Y Z

p1
::

p2 $$

f

$$

f

::

g

''

g

77
k

//

we have g ◦ p1 = g ◦ p2, there is a unique k :Y → Z such that g = k ◦ f . Next we
formulate two simple lemmas whose proofs are left to the reader.

1.3.4 An effective epimorphism which is a monomorphism is an isomorphism.

1.3.5 Given the site C, the family α = 〈Ai
fi //A〉i∈I of morphisms in C and R, the sieve

R
� � i // A generated by α, if 〈εAi

εfi // εA〉i∈I is an effective epimorphic family in C
∼
, then

aR ai // εA is an effective epimorphism, hence (by 1.3.4) ai is an isomorphism.

Suppose φ = 〈Ai
fi //A〉i∈I in C is such that 〈εAi

εfi // εA〉i∈I is a covering in C
∼
. With

R
� � i // A the sieve generated by φ, we have the isomorphism aR '

ai
// εA.

Start with the following commutative diagram referring to the construction of the
associated sheaf in Section 2:

A LA LLA

R LR LLR

`A // `LA //

`R

//
`LR

//
?�
i

OO

?�
Li

OO

?�
ai

OO

Apply 1.2.6(iii) to the morphism (ai)−1◦`LA◦`A :A→ L(LR) in place of v there and

for the identical covering A id //A for R there. We obtain a covering S1
� � i1 // A ∈ J(A)

and a morphism S1
u1 //LR such that in

S2 ×S1
B B

S2 S1 A LA LLA

R LR LLR

� � //

��
β
��

� � //
i1

//

m

))

u1 77

n

`A

// `LA //

?�
i

OO

`R //
?�

Li

OO

`LR

//
?�
LLi=ai

OOii
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we have
LLi ◦ `LR ◦ u1 = `LA ◦ `A ◦ i1.

Put m = `A ◦ i1, n = Li ◦ u1. Let S2 → S1 be the equalizer (in Ĉ) of the arrows m

and n. We claim that
S2

S1

A
i2

' �
44

//

� w i1
** is a covering ∈ J(A). To show this, let

B
β //S1 be an arbitrary morphism with B ∈ Ob(C). Then S2 ×S1

B �
� // B is the

equalizer of m ◦ β and n ◦ β. But we have `LA ◦m ◦ β = `LA ◦ n ◦ β, hence by 1.2.6(iv)

S2×S1
B �
� // B ∈ J(B). Since B

β //S1 was arbitrary, it follows from 1.1.2(iii) (“local

character”) that S2
� � i2 // A ∈ J(A) indeed.

Hence, we have S2
� � i2 // A ∈ J(A) and a morphism u2 :S2 → LR (u2 = S2

� � // S1
u1 //LR) such that the following commutes

S2 A

LR LA.

R

� � i2 //

u2

�� ��

Li
//

`Ruu

( � i

55

With an eye on applying 1.1.2(iii) to show that S2 ×A R ∈ J(A), let B
β //S2 be an

arbitrary morphism with B ∈ Ob(C). Apply again 1.2.6(iii) to obtain Q1
� � // B ∈ J(B)

and v1 :Q1 → R

S2 A

B

Q1

Q2

R

LR LA

� � i2 //

β

jj

7 Wj1

jj

f
00

g

@@

L l

zz
v1

++ 6
�

i

II

`R

qq

u2

��

`A

��

Li
//

such that u2 ◦ β ◦ j1 = `R ◦ v1. Put f = i2 ◦ β ◦ j1, g = i ◦ v1. Let Q2
� � // Q1 be

the equalizer of f and g. Just as we showed above that S2
� � i2 // A ∈ J(A) we can

show that Q2
� � j2 // B = Q2

� � // Q1
� � j1 // B belongs to J(B). Let now S3

� � // A be the
‘intersection’ S2 ×A R �

� // A. By the definition of Q2, we have Q2 ≤ S3 ×S2 B, hence

S3×S2B ∈ J(B). Since B
β //S2 was arbitrary, this shows that S3 ∈ J(A) and a fortiori

R ∈ J(A). This is equivalent to saying that the family 〈Ai
fi //A〉i∈I is a covering. �

Remark According to what we said above, the proof shows that if every sheaf over C
has the sheaf property with respect to φ = 〈Ai

fi //A〉i∈I , then φ is a covering. This is a
‘completeness’ property of the notion of sheaf with respect to Grothendieck topologies.

Definition 1.3.6 For an arbitrary category R, a set G of objects of R is said to be a set
of generators for R if for every A ∈ Ob(R) the family of all morphisms with domains
in G and codomain A,

〈B g //A〉B∈G
is an epimorphic family.

Proposition 1.3.7 For C a small site, the category C
∼

of sheaves has a set of generators,
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namely the set of objects of the form εA, for A ∈ Ob(C) and ε : C → C
∼

the representable
sheaf functor.

Proof. Suppose F
f //
g
// G are two morphisms in C

∼
such that for any A ∈ Ob(C) and

any h : εA = aA → F , we have f ◦ h = g ◦ h. To show that f = g, let A k //F be an
arbitrary morphism in Ĉ (!) with A ∈ Ob(C). By the ‘universal property’ of aA there is
a unique hk such that

aA F

A

hk //

αA

ee

k

OO

commutes. It follows that f ◦ k = g ◦ k. Since k :A→ F is arbitrary, f = g. �

We will need the following lemma in Chapter 6.

Lemma 1.3.8 (i) Given C ε // C∼ as above and a morphism εA
f // εB in C

∼
, there is a

covering 〈Ai
fi //A〉i∈i ∈ Cov(A) and morphisms Ai

gi //B in C such that f ◦ εfi = εgi
for all i ∈ I.

(ii) Given a monomorphism X
ξ // εA in C

∼
, A ∈ Ob(C), there is a covering family

〈εAi
gi //X〉i∈I in C

∼
such that the compositions ξ ◦ gi are of the form ξ ◦ gi = ε(fi) for

some

Ai
fi //A in C, for every i ∈ I.

Proof of (i): LLAij εA = LLA LLB = εB

LAij LA LB

Aij Ai A B

LLhij

//

LLgij

--
f
//

`LAij

OO
`LA

OO
`LB

OO

`Aij

OO

fij //
hij=f

k

66

gij=g
k

55
fi //

`A

OO
`B

OO

gi

AA

By 1.2.6(iii), for f ◦ `LA ◦ `A as u there, there is a covering 〈Ai
fi //A〉i∈I ∈ Cov(A)

and morphisms Ai
gi //LB such that f ◦ `LA ◦ `A ◦ fi = `LB ◦ gi for every i ∈ I. With

given i ∈ I, similarly, there is a covering 〈Aij
fij //Ai〉j∈Ji and morphisms Aij

gij //B,

(j ∈ Ji) such that gi ◦ fij = `B ◦ gij . Denote the covering 〈Aij
fi◦fij //A〉j∈Ji,i∈I by

〈Ak fk //A〉k∈K and accordingly, gij by gk. We have

f ◦ `LA ◦ `A ◦ fk = `LB ◦ `B ◦ gk,

hence
f ◦ LLfk ◦ `LAk ◦ `Ak = `LB ◦ `B ◦ gk.

Applying the functor LL to gk, we also have

LLgk ◦ `LAk ◦ `Ak = `LB ◦ `B ◦ gk,
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hence

f ◦ LLfk ◦ `LAk ◦ `Ak = LLgk ◦ `LAk ◦ `Ak .

By 1.2.7, it follows that f ◦ εfk = εgk. In other words, the covering 〈Ak fk //A〉k∈K and

the morphism Ak
gk //B satisfy the requirements.

Proof of (ii): By 1.3.7, find an epimorphic family of the form 〈εBi
fi //X〉i∈I . By

1.3.2 (as yet unproved), the same family is a covering in the canonical topology of C
∼
.

Now, apply part (i) to each morphism εBi
ξ◦fi // εA separately. By 1.3.3(ii), the resulting

coverings of the Bi become (through ε) coverings of the εBi. The thus resulting coverings
‘add up’ to form a covering of X. �

Given topoi E1 and E2, we regard them as sites with the respective canonical topolo-
gies. A continuous functor F : E1 → E2 is also called an E2-model of E1. We will show
that, for two sites C and D, any D-model of C can be ‘lifted’ to a D

∼
-model of C

∼
in a nat-

ural way. However, instead of an E2-model of E1, we first will talk about an apparently
different notion.

Definition 1.3.9 Let E1 and E2 be two (Grothendieck) topoi. A morphism U from E1
to E2,

U : E1 → E2

is a triple U = (u∗, u
∗, φ) where u∗, u

∗ are functors

E1 E2
u∗
//

u∗oo

such that u∗ preserves finite left limits, moreover u∗ is a left adjoint to u∗, and in fact
(u∗, u

∗, φ) is an adjunction form E2 to E1 in the sense of CWM.

Remark This means that φ is a function which assigns to each pair of objects A ∈
Ob(E2), B ∈ Ob(E1) a bijection φB,A : HomE1(u∗A,B) ' HomE2(A, u∗B) which is nat-
ural in A and B.

Theorem 1.3.10 Let C be a small site, D a locally small site and let u : C → D be a
D-model of C. Then u can be lifted to a geometric morphism

U :D
∼
→ C
∼

in the following sense: there is U = (u∗, u
∗, φ) such that U is a geometric morphism

D∼→ C
∼

and the diagram

C D

C∼ D∼

u //

εC
��

εD
��

u∗
//

commutes.

Proof. We will use the concept of Kan-extension, c.f. CWM, Chapter 10. Given the
categories C, D (the underlying categories of the sites) and the functor u : C → D, we

have that Ĉ = SetC
op

, D̂ = SetD
op

are functor categories of the kind treated in loc.
cit., with A = Set. We denote by u• : D̂ → Ĉ what CWM denotes by Setu. This is the

functor such that for F ∈ Ob(D̂), u•F = F ◦u and for F ν //G in D̂, (u•(ν))C = νuC for
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C ∈ Ob(C). According to loc. cit. (c.f. dual of Corollary 2, p. 235) u• has a left adjoint,
denoted by u•:

u• : Ĉ → D̂
u• a u•

Ĉ D̂
u• //
u•

oo

u•F for F ∈ Ob(Ĉ) is called in CWM the (left) Kan-extension of F . We will also need
to know the way u• is actually constructed.

Let D be an object in D. Define the comma category D �� u as follows. An object
of D �� u is a pair (f, C) where C ∈ Ob(C) and f :D → uC is a morphism in D. We

also write D
f //uC for an object of D �� u. A morphism between (f, C) and (f ′, C ′) is a

morphism g :C → C ′ such that

D uC

uC ′

f //

f ′ %%
ug

��

commutes. Composition in D �� u is defined in the obvious way. Notice that since C is
small and D is locally small, D �� u is a small category for each D ∈ Ob(D).

Let now F be a presheaf ∈ Ob(Ĉ). To define G = u•F , we put

G(D) = lim// (f :D→uC)∈(D↓u)opF (C).

In other words G(D) is the right limit of the composite functor (D �� u)op p // Cop F //Set

where p(D
f //uC) = C and p(g) = g for g a morphism in D �� u. Also, for a morphism

D δ //D′ in D, we define G(δ) by the universal property of the limit defining G(D′); we
omit the obvious description.

Finally, to define the effect of u• on a natural transformation ν :F → F ′, we have to
define morphisms

(u•ν)D : (u•F )(D)→ (u•F ′)(D)

for D ∈ Ob(D). This again is a canonical map between limits, based on the maps

F (C)
νC //F ′(C).

For a representable presheaf hCC0
∈ Ob(Ĉ), we invite the reader to check that we have a

canonical isomorphism

lim// (f :D→uC)∈(D↓u)oph
C
C0

(C) ' hDuC0
(D).

Actually, since the exact choice of the limit objects is irrelevant, we can define u•(hCC0
)

such that we have
(u•(hCC0

))(D) = hDuC0
(D).

This, and the appropriate choice for the morphisms (u•(hCC0
))(δ) for δ :D → D′, will

make sure that the diagram

(1)

C D

Ĉ D̂

u //

hC

��
hD

��

u•
//
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commutes (with hC , hD the Yoneda functors).
Next, we have to verify that u• preserves finite left limits. The proof of this fact is very

similar to the proof of 1.2.9 and it is based on the fact that the categories (D �� u)op, for
D ∈ Ob(D), are filtered (c.f. CWM). This latter fact will be seen to be a consequence
of the fact that u preserves finite left limits. E.g., we want to see that for objects

A1 :D
f1 //uC1, A2 :D

f2 //uC2 in D �� u, there are morphisms A3
g1 //A1, A3

g2 //A2 with

some A3 :D
f3 //uC3. To this end, define C3 = C1 × C2, with projections π1 and π2.

Then uC3 is uC1 × uC2 with projections uπ1 and uπ2. Hence, there is f3 :D → uC3

such that the following is commutative:

uC3

uC1 uC2

D

uπ1

~~

uπ2

  

f1

``

f2

>>f3

OO

Put g1 = π1, g2 = π2. These choices will obviously work.
The rest of the proof that u• preserves finite left limits is left to the reader.
Next, we are going to ‘lift’ u•, u

• to u∗, u
∗ as follows. Consider the following diagram:

C Ĉ C∼

D D̂ D∼

hC //

hD
//

aC //

iC
oo

aD //

iD
oo

u

��
u•

��
u•

OO

u∗

��
u∗

OO

Here, hC , hD are the Yoneda functors, iC , iD are the inclusions and aC , aD are the
associated sheaf functors. Define u∗=df

aC ◦ u• ◦ iD, u∗=
df
aD ◦ u• ◦ iC .

Since each of iC , u
•, aD preserve finite left limits (c.f. 1.2.10 for iD) the same is true

of u∗.

Lemma 1.3.11 For a sheaf F ∈ Ob(D
∼

) ⊂ Ob(Ĉ), u•F is a sheaf ∈ Ob(C
∼

).

This is an immediate consequence of the definition of u•. The diagram

(u•F )(A)
∏
i∈I(u•F )(Ai)

∏
i,j∈I(u•F )(Ai ×A Aj)// //

//

is identical to

F (uA)
∏
i∈I F (uAi)

∏
i,j∈I F (u(Ai ×A Aj))// //

//

for a covering 〈Ai //A〉i∈I of A in C. Since u preserves finite left limits, u(Ai×AAj) '
uAi ×uA uAj , and the required exactness is a consequence of F being a sheaf.

Lemma 1.3.11 has the effect that iCu∗F ' u•F = u•iDF for F ∈ Ob(D
∼
). This

permits us to prove that u∗ is left adjoint to u∗, as follows:

HomD∼(u
∗G,F ) ' HomD∼(aDu

•iCG,F )

' HomD̂(u•iCG, iDF )

by aD a iD; ' HomĈ(iCG, u•iDF )

by u• a u•; ' HomĈ(iCG, iCu∗F )

by the above remark; ' HomC∼(G, u∗F )
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by the fact that iC is full and faithful. The reader can check that the required naturalities
are present to ensure that indeed,

u∗ a u∗ as claimed.

In fact, the required adjunction φ can be read off the above sequence of isomorphisms.
Furthermore, we have the following isomorphisms, for K ∈ Ob(Ĉ), F ∈ Ob(D

∼
):

HomD∼(u
∗aCK,F ) ' HomC∼(aCK,u∗F )

by u∗ a u∗; ' HomĈ(K, iCu∗F )

by aC a iC ; ' HomĈ(K,u•iDF )

by iCu∗ ' u•iD; ' HomD̂(u•K, iDF )

by u• a u•; ' HomD̂(aDu
•K,F )

by aD a iD.

This implies that for any K ∈ Ob(Ĉ),

u∗aCK ' aDu•K.

In fact, since the above isomorphisms are natural in K and F , we have the isomorphism

u∗ ◦ aC ' aD ◦ u•

of functors. Combining this with the commutative diagram (1) above, we obtain that

C D

C∼ D∼

u //

εC
��

εD
��

u∗
//

commutes up to isomorphism:
u∗ ◦ εC ' εD ◦ u.

Having constructed u∗, u
∗ as above, now it is easy to modify u∗ to a functor isomorphic

to u∗ so that the last diagram commutes literally and still u∗ a u∗, and u∗ is left exact.
�

Theorem 1.3.12 Given C u //D, a D-model of C, consider the following properties of
functors F : C

∼
→ D
∼

:

(a) C D

C∼ D∼

u //

εC
��

εD
��

F
//

commutes up to isomorphism.

(b) F preserves all (small) inductive limits in C
∼

(that exist in C
∼
).

(c) F is a D
∼

-model of C
∼
, i.e., it preserves finite left limits and epimorphic families.

Then u∗ as determined in 1.3.10 has properties (a), (b), (c). Also, each of the pairs

(a) and (b)

(a) and (c)
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determines F uniquely up to isomorphism.

Remark We will state and prove in the next section that C
∼

has all small inductive limits.

Proof. We will use the following two Lemmas whose proofs we defer to Chapter 3 and
to the next section.

Lemma 1.3.13 For a functor F : C
∼
→ D
∼

between topoi, if F preserves inductive limits
and finite left limits, then F preserves epimorphic families (F is continuous).

Lemma 1.3.14 Considering C
∼

a site with the canonical topology and forming C∼
∼

, the

category of sheaves over the site C
∼
, the canonical functor

εC∼: C
∼
→ C∼
∼

is an equivalence.

Remark It is not hard to show 1.3.14 directly. Also, by 1.3.2 and 1.3.7, E is a locally
small site.

Since u∗ from 1.3.10 has a right adjoint u∗, u
∗ preserves inductive limits (c.f. CWM).

Also, by 1.3.13, u∗ has all the properties (a), (b), (c). Next we show that if F has (a)
and (c) then it has (b) as well.

Use 1.3.10 to u = F : C
∼
→ D
∼
. We obtain a commutative diagram

C∼ D∼

C∼
∼

D∼
∼

F //

ε
C
∼

��
ε
D
∼

��

F∗
//

with a right adjoint F∗ to F ∗. Since by 1.3.14 εC∼ and εD∼ are equivalences, F∗ :D∼
∼
→ C∼
∼

will be transferred to some G :D
∼
→ C
∼

such that F a G. It follows that F preserves
inductive limits as claimed.

Finally, it remains to show that properties (a) and (b) determine F up to isomor-
phisms. In the diagram

C D

Ĉ D̂

D∼ D∼

u //

hC

��
hD

��

u•
//

aC
��

aD
��

F
//

the upper and outer rectangles commute. We leave it to the reader to verify the existence
of the following ‘functorial’ isomorphism, for any given K ∈ Ob(Ĉ) (and actually to make
precise sense out of the phrase ‘functorial’):

lim//hC(X)→K∈Ob(C/K)
hC(X)

' //K

(Remark The category C/K has objects: morphisms of the form f :hC(X) → K; a
morphism between hC(X) → K and hC(Y ) → K is a morphism X → Y such that
hC(X) K

hC(Y )

//

��

:: commutes. The inductive limit is take in the category Ĉ. )
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Since u•, F , aC , aD commute with inductive limits, we have

lim//hC(X)→KFaCh
C(X)

' //FaCK

lim//hC(X)→KaDu
•hC(X)

' // aDu
•K

We have that u• ◦ hC = hD ◦ u, and, by hypothesis, aD ◦ hD ◦ u ' F ◦ aC ◦ hC . Hence it
follows that

FaCK ' aDu•K.

Actually,
F ◦ aC ' aD ◦ u•

(where the meaning of the phrase “functorial” above plays a role). Since

aC ◦ iC '∈C

it follows that F ' aD ◦ u• ◦ iC = u∗. �

Next we formulate a variant of the above results.

Corollary 1.3.15 Given a small site C, a Grothendieck topos E, and a continuous
u : C → E (an E-model of C), there is ũ : C

∼
→ E an E-model of C

∼
, unique up to isomor-

phism, such that the diagram

C E

C∼

u //

εC
�� ũ

99

commutes.

Proof. E is D
∼

for a (small) site D; also εD∼ :D
∼
→ D∼
∼

is an equivalence (1.3.14). Apply

1.3.10 and 1.3.12 to obtain u∗ : C
∼
→ E
∼
, a E
∼
-model of C

∼
, unique up to isomorphism, such

that

C E

C∼ E∼

u //

εC
��

'
��

u∗
//

commutes. Now the assertion is clear. �

Finally, we look at a special case of a D-model u of C in case the pair of adjoint

functors C∼ D∼
u∗ //
u∗

oo actually give an equivalence: u∗ ◦ u∗ ' idD∼, u∗ ◦ u
∗ ' idC∼.

Theorem 1.3.16 Let D be a site. Let C be a full subcategory of D such that for any
finite diagram with objects all in C, there is a left limit in the sense of D in which the
limit object belongs to C. (Briefly, C is closed under finite left limits in D.) Make C into
a site by taking those families in C to be covering which are covering in the sense of D.
By the above, the inclusion functor u : C → D is continuous.

Assume furthermore (the main hypothesis) that every object D in D has a covering
〈Ci → D〉i∈I with objects Ci ∈ Ob(C).

In this case the functor u∗ :D
∼
→ C
∼

u∗ :F 7→ F ◦ u

is an equivalence.
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Remark The statement of the theorem is equivalent to saying that, with u∗, u
∗ of 1.3.10,

we have the isomorphisms before the statement of the Theorem. This is an obvious
consequence of the uniqueness up to isomorphism of the left adjoint of the functor u∗
(c.f. CWM). In SGA4, the proof of 1.3.15 (“Lemme de comparaison”, vol. 1, p. 288) is
given by directly checking these isomorphisms. However, under the special conditions of
the theorem, there is a simpler direct description of the quasi-inverse of u∗, i.e. u∗, than
the one resulting from the general theory. We found that the proof of 1.3.16 using this
direct approach is simpler than the one of the kind given in SGA4.

Proof. In order to describe a quasi-inverse u∗ to u∗, we have to introduce some special

terminology. A C-covering of D ∈ Ob(D) is one of the form γ = 〈Ci
fi //D〉i∈I ∈

Cov(D)(= CovD(D)) such that Ci ∈ Ob(C)
The C-coverings generate the topology on D; in fact, for every R ∈ J(D) there is a

C-covering γ of D such that R[γ] ≤ R. This is a consequence of the (main) hypothesis
of the theorem.

Let F be a sheaf over C, F ∈ Ob(C
∼

). A morphism ξ : γ → F is a family ξi :Ci → F
(i ∈ I) of morphisms in Ĉ (!) such that for any i, j ∈ I there is a C-covering 〈Ck hk //Ci×D
Cj〉k that makes, for every k, the following diagram commute:

Ck Ci ×D Cj

Ci

Cj

D F
hk

//

p1 55

p2 ))

&&
88

ξi

++

ξj

33

i.e., ξi ◦ (pi ◦hk) = ξj ◦ (p2 ◦hk). Notice that the morphisms p1 ◦hk, p2 ◦hk are between
two objects in C and therefore, F being a sheaf over C, the composites ξi ◦ (p1 ◦ hk),
ξj ◦ (p2 ◦ hk) make sense.

As a first remark, we note that if D ∈ Ob(C), then a morphism ξ : γ → F is exactly
what is called a compatible family from γ to F , in the sense of the site C. (The reader
will see that here there is something to check; the fact that F is a separated presheaf over
C will be used.) Secondly, if in the above definition one C-covering 〈Ck → Ci ×D Cj〉k
works, then any C-covering of Ci ×D Cj equally works. This again is true because F is
a sheaf over C.

Hom(γ, F ) denotes the set of all morphisms ξ : γ → F , for γ and F as above.
For C-coverings γ, γ′ of D, we write γ ≤ γ′ if RD[γ] ≤ RD[γ′] where RD[γ] is the sieve

R
� � // D in D̂ generated by γ. The reader is invited to write out a direct definition.

Denoting the set of C-coverings of D by JC(D), ≤ is a partial ordering of JC(D) which
is directed downward. In the familiar way, JC(D) can then be considered a category.

Given γ ≤ γ′, C-coverings of D, we define a natural map ρ : Hom(γ′, F ) // Hom(γ, F ).
Given a morphism ξ′ : γ′ → F , the morphism ξ = ρξ′ is defined as follows. Using γ ≤ γ′,
for every Ci → D in γ, we fix a C ′i′ → D in γ′ and an arrow Ci → C ′i′ , such that

C ′i′ D

Ci

//
OOcc

commutes. We define ξi :Ci → F as the composite Ci → C ′i′ → F , and put ξ = 〈ξi〉i. It
actually requires checking that this definition is correct (the result does not depend on
the choice of i′, etc) and that ξ is a morphism in the required sense. We are omitting
the details.
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Having defined de functor

(JD(D))op Hom(·,F ) //Set

now we can imitate the definition of the functor L in Section 2, to define the required
quasi-inverse u∗. Given F ∈ Ob(C

∼
), H = u∗F :Dop → Set defined as follows.

(i) For D ∈ Ob(D),

H(D) = lim//γ∈(JD(D))op Hom(γ, F ).

(ii) For f :D → D′, H(f) :H(D′) → H(D) is defined as follows. Given γ′ ∈ JC(D′)
and ξ′ : γ′ → F ∈ Hom(γ′, F ), first define γ ∈ JC(D) and ξ : γ → F as follows. Form the
pullback

Di = Ci ×D′ D D

C ′i D′

//

��
f
��
//

for C ′i → D′ in γ′, and choose a C-covering 〈Cik → Di〉k of Di. Put γ = 〈Cik → Di →
D〉i,k and ξ = 〈Cik //Di //C ′i

ξ′i //F 〉i,k.
Finally, the maps Hom(γ′, F ) → Hom(γ, F ) thus defined induce a natural map

H(f) :H(D′)→ H(D) by properties of colimits.

(iii) Given a natural transformation ν :F → G, F,G ∈ Ob(C
∼

), we define u∗(ν) =
µ, by defining µD : (u∗F )(D) → (u∗G)(D) as follows. Given γ ∈ JC(D) and ξ : γ →
F , by composition we can directly define ξ′ : γ → G: ξ′i = ν ◦ ξi. The maps ξ 7→
ξ′ : Hom(γ, F ) → Hom(γ,G) for all γ ∈ JC(D) thus defined induce the required map
µD : (u∗F )(D)→ (u∗G)(D).

This completes the description of the functor u∗ : C
∼
→ D
∼
, a quasi-inverse of u∗. There

is a host of things to check; e.g., that u∗(F ) for F ∈ Ob(C
∼

) is a sheaf over D. Since
these details are quite similar to our previous work, we feel we can omit them. �

Corollary 1.3.17 For any locally small site D, D
∼

is a Grothendieck topos, i.e., D
∼

is

equivalent to C
∼

for a small site C.

Proof. Apply 1.3.16 to a suitable chosen small full subcategory C containing a topo-
logically generating set for D.

§4. Characterization of Grothendieck topoi:
Giraud’s theorem

In this section we will show that Grothendieck topoi have certain ‘exactness’ properties
and that, in fact, these properties actually characterize topoi.

The following definition takes place in a fixed category.

Definition 1.4.1 (i) An initial object ∅ in a category is an inductive limit of the empty
diagram, i.e., ∅ is such that for every object A, there is exactly one morphism ∅→ A.
∅ is a strict initial object if, as the limit of the empty diagram, is ‘stable under pullback’,
or equivalently, for any f :B → ∅, f is an isomorphism.

(ii) Let Ai (i ∈ I) be a family of objects. A disjoint sum of the Ai,
∐
iAi, with canonical

injections ji :Ai →
∐
iAi, is such that, first of all,

∐
iAi is the colimit (coproduct) of the

Ai, with canonical injections ji, and in addition, we have that each ji is a monomorphism
and for i 6= j Ai ×∐

i Ai
Aj is an initial object. The disjoint sum

∐
iAi is stable (under
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pullback) if for any morphism B →
∐
iAi (“change of basis”), the fibered products

B ×∐
Ai Ai have B as their disjoint sum, with canonical injections pullbacks of the ji.

(iii) A diagram A
p1 //
p2

// B is an equivalence relation, if for every object C, the functor

Hom(C,−) transforms the given diagram into a real equivalence relation in Set:

Hom(C,A)
◦p1 //
◦p2

// Hom(C,B),

if denoted by

X
q1 //
q2
// Y

is such that 〈x1, x2〉 7→ 〈q1(x1), q2(x2)〉 ∈ Y × Y is a bijection of X × X onto an

equivalence relation ⊂ Y × Y on Y . The equivalence relation A
p1 //
p2

// B is effective if
there is an effective epimorphism π :B → C such that

A B

B C

p1 //

p2

��
π

��
π

//

is a pullback diagram. If in addition π is stable effective, then the equivalence relation
is stable effective.

RemarkThe notion of an equivalence relation in a category can be described entirely in
terms of finite left limits in the category. Instead of giving this definition here, we refer
ahead to Definition 3.3.6 containing the alternative definition in this spirit, but already
using the logical notation, of equivalence relations. A consequence is that a left exact
functor preserves equivalence relations.

Another remark is that effective epimorphisms (hence effectivity of equivalence rela-
tions) can be described by inductive limits, viz.: a morphism f :A → B is an effective
epimorphism iff the pullback diagram

A B

A×B A A

f //
OO

f

OO

//

is a pushout as well.

(iv) We say that the colimit of a diagram D of the category is stable under pullbacks

if, for R the colimit and F
jF //R the canonical injections, we have that for any morphism

S α //R, S is the colimit of the diagram whose objects are F ′ = F ×S R, for F ∈ Ob(D)
and whose morphisms are f ′ :F ′ → G′ from the commutative diagram

F

R

G

F ′

S

G′.

p.b. p.b.

jF
88 jG
ff

f //
OO

α

OO

88
OO

ff

f ′
//
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Theorem 1.4.2 The category of sheaves E = C
∼

over any site has the following properties:

(i) All (small) projective limits exist in E.

(ii) All inductive limits exist in E and they are stable under pullback.

(iii) E has disjoint sums and all disjoint sums are stable.

(iv) The equivalence relations in E are stable effective.

Proof. All these facts, ultimately, are consequence of the fact that they hold for
E = Set. We leave it to the reader to convince himself of this latter fact. We are going
to transfer these properties of Set to C

∼
in two steps: first to Ĉ, then from Ĉ to C

∼
.

In CWM, Theorem 1 on page 111 (with its dual) says that the projective, as well as

the inductive, limit of any (small) diagram J P // Ĉ exists and can be computed point-

wise, viz., if J′ P
′
// Ĉ is such that for any A ∈ Ob(C), the composite J′ P

′
// Ĉ F 7→F (A) // Set

is a left limit diagram, then J′ P
′
// Ĉ is a left limit diagram too; with similar statements

for colimits. E.g. if

F G

H
p

||
q

""

is a diagram of presheaves in Ĉ such that for every A ∈ Ob(C),

F (A) G(A)

H(A)
pA

||
qA

""

is a product diagram, then the previous one was a product diagram in Ĉ.
In particular, we have (i) and the first part of (iii) for E = Ĉ. The second part of

(ii) and properties (iii) and (iv) for Ĉ will be seen to follow because all notions involved
are defined in terms of projective and inductive limits as well as because the properties
hold for Set. E.g., let us check that the coproduct

∐
i Fi, with canonical injections

ji :Fi →
∐
i Fi is a disjoint sum. First of all, for any A ∈ Ob(C), (

∐
i Fi) (A) is a

coproduct of the Fi(A), with canonical injections (ji)A. Since the property in question
holds in Set, we have that for any i, j ∈ I, i 6= j, in

Fi(A) (
∐
i Fi)(A) = X

Fi(A)×X Fj(A)Y = Fj(A)

(ji)A //
OO

//

(jj)A

OO

Y is an initial object in Set (i.e., Y = ∅). But Y is (Fi ×∐
i Fi

Fj)(A), by the above;

since it is an initial object in Set, for every A, so is Fi ×∐
i Fi

Fj in Ĉ, for the same
reason.

We are leaving the rest of our claims about Ĉ to the reader to check.
Secondly, we invoke the fact of the existence of the pair of adjoint functors a a i

Ĉ
a //
i

oo C∼

such that a preserves finite left limits and i is full and faithful. It is seen in a sequence
of straightforward steps that this fact alone is enough to infer properties (i)-(iv) for C

∼
,
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knowing them for Ĉ. First of all, it follows (as we know it anyway) that a◦ i ' idC∼, more

precisely, if φ is the adjunction

φR,F : HomĈ(R, iF ) ' // HomC∼(aR, F )

then
φiF,F (idiF ) : aiF ' //F

for F ∈ Ob(C
∼

).
Also, a preserves all inductive limits, i preserves all projective limits (c.f. CWM).

It also follows that a left limit of an arbitrary diagram of sheaves, computed in Ĉ, is
already a sheaf:

i(limoo
(C
∼

)

F∈Ob(D)F ) = limoo
(Ĉ)
F∈Ob(iD)iF

but we checked this directly in 1.2.10. This shows (i).
Given a diagram D of sheaves, we claim that

lim//
(C
∼

)

F∈Ob(D)F = a(lim//
(Ĉ)
F∈Ob(iD)iF )

iH

R

iF iG iD

................................................
....
....
...
....
....
......

.....

p

OO

i(hF )

88

jiF

OO

if
//

i(hG)

dd H

aR

F GaiF D

................................................
....
....
...
....
....
......

.....

φ(p)

OO

jF
OO

f
//

hG

ee

φ(idiF )

' //

a(jiF )

::

hF

AA

Let R be the colimit of iD in Ĉ, with canonical injections jiF : iF → R. Define for
F ∈ Ob(D) the morphism

jF :F → aR

so that jF ◦ φ(idiF ) = a(jiF ). To check that in this way we indeed have a colimiting

cone, let H ∈ Ob(C
∼

) and hF :F → H, for F ∈ Ob(D), for a ‘dual cone’ (i.e., hG◦f = hF
for F,G ∈ Ob(D), f ∈ D). Then i transforms this into a dual cone in Ĉ, hence we will
have p :R → iH such that p ◦ jiF = ihF (F ∈ Ob(D)). φ(p) : aR → H (φ = φR,H) will
be such that φ(p) ◦ jF = hF (F ∈ Ob(D)). This follows from the commutative diagram

aiF aR

F H

ajiF //

φ(idiF )

��
φ(p)

��

hF

//

The latter diagram is commutative because the two morphisms aiF → H are identical
to φiF,H(i(hF )) = φiF,H(p ◦ jiF ), by the naturality of φ. Similarly, it is seen that φ(p)
is the unique morphism aR→ H with the required property.

This proves our claim about how inductive limits are computed in C
∼
. We leave the

rest of the proof of 1.4.2 to the reader with the only remark that it should be based on
our computations of projective and inductive limits in C

∼
.

Definition 1.4.3 We call a category E (temporarily) a Giraud topos if the following are
satisfied
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(i) E has finite left limits.

(ii) E has disjoint sums of arbitrary sets of objects; the disjoint sums are stable under
pullback.

(iii) The equivalence relations of E are stable effective.

(iv) E has a set of generators (c.f. 1.3.6).

Theorem 1.4.5 The following conditions on a category E are equivalent:

(i) There is a small category R with finite left limits such that, when R is considered

a site with the canonical topology on R (c.f. 1.1.9), the category of sheaves on R, R
∼

, is
equivalent to E.

(ii) E is a Grothendieck topos (i.e., E ' C
∼

for a small site C).

(iii) There is a small category C and a pair of adjoint functors a a i:

Ĉ
a //
i
oo E

such that a is left exact and i is full and faithful. (Ĉ is the category of presheaves over
C).

(iv) E is a Giraud topos.

(v) E εE // E∼ is an equivalence, where E
∼

is the category of sheaves over E; and E has
a set of generators.

Proof. (i) ⇒ (ii) is trivial. (ii) ⇒ (iii) was established in Section 2. As we emphasized
in the proof of 1.4.2, that proof actually establishes that (iii) implies the first three
conditions of 1.4.3. Similarly, the proof of 1.3.7 clearly establishes that (iii) implies that
E has a set of generators. So, we have (iii) ⇒ (iv).

We have the canonical functor

ε = εE : E → E
∼
.

By 1.3.3, we have that ε is continuous, with both categories E and E
∼

equipped with
their canonical topologies. Moreover, since E as a site has the canonical topology, the
representable presheaves hE ∈ Ob(Ê) are already sheaves, a(hE) ' hE . Since ε is the

composite E h // Ê a // E∼with h the Yoneda functor which is full and faithful, it follows
that ε is full and faithful.

Assume that E is a Giraud topos. We have the following lemma whose proof we defer
to Chapter 3.

Lemma 1.4.6 In a Giraud topos, every epimorphic family is a stable effective epimorphic
family.

Remark Compare 1.3.2. From what we already know, 1.3.2 will be a consequence of
1.4.6.

Let R be a small full subcategory of E , containing a set of generators for E as well
as “closed under finite left limits in E”, c.f. 1.3.16. It is easy to construct such an R.
Let R u // E be the inclusion functor. By 1.3.10 we have the commutative diagram

E E∼

R R∼.

ε=εE //

?�
u

OO

εR
//

' u∗
OO
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From 1.3.16, we also know that u∗ is an equivalence. By 1.3.7, the set {εR(R) : R ∈
Ob(R)} of objects is a set of generators for R

∼
. It follows that for any sheaf X ∈ Ob(E

∼
)

there is a set of morphisms of the form 〈ε(Ei)
fi //X〉i∈I which is an epimorphic family.

By 1.4.6, 〈ε(Ei)
fi //X〉i∈I is an effective epimorphic family.

Lemma 1.4.7 Given any category with finite left limits, suppose that 〈Yi
fi //X〉i∈I is

an effective epimorphic family. Assume the coproduct
∐
i∈I Yi exists, with canonical

injections Yi
αi //

∐
i∈I Yi. Then f :

∐
i∈I Yi → X induced by fi such that f ◦ αi = fi is

an effective epimorphism.

Proof. This is an elementary computation

Yi
∐
Yi

Yi ×X Yj
∐
Yi ×X

∐
Yi X Z

Yj
∐
Yi

= U

SS

��

αi //
g

##

q1
BB

β
//

q2 ��

h
//

p1
<<

p2 ""

f
  

αj
//

f

>>

g

;;

Assume that
∐
Yi

g //Z is such that g ◦ p1 = g ◦ p2 for p1, p2 the canonical projections
U =

∐
Yi ×X

∐
Yi →

∐
Yi. Form the fibered products

Yi ×X Yj

Yi

Yj

X

qi 44

qj **

fi

**

fj

44

and use the fact that fi = f ◦ αi. It follows that for any given i and j, there is
β :Yi×X Yj → Y such that p1 ◦β = αi ◦q1, p2 ◦β = αj ◦q2. Putting gi = g ◦αi, it follows

that the gi form a compatible family: gi ◦ q1 = gj ◦ q2. Since 〈Yi
fi //X〉i is effective

epimorphic, there is a unique h :X → Z such that h ◦ fi = gi for every i ∈ I. It follows
that (h ◦ f) ◦ αi = g ◦ αi for every i ∈ I. Since

∐
Yi is a coproduct, αi are canonical,

we have that h ◦ f = g as required for f being effective epimorphic. The uniqueness of
h with h ◦ f = g follows from the uniqueness of h with h ◦ fi = gi (i ∈ I). �

Returning to the proof of the theorem, we look at the effective epimorphic family

〈Yi
fi //X〉i∈I , for Yi = ε(Ei) in E

∼
. Consider the disjoint sum Y =

∐
Yi in E

∼
. Since ε

preserves disjoint sums (c.f. 3.4.10 and 3.4.13), we have that Y = ε(E) for E =
∐
iEi,

and the canonical injections ε(Ei) → ε(E) are ε(αi) where αi :Ei →
∐
iEi are the

canonical injections in E . It follows by 1.4.7 that we have an effective epimorphism of
the form ε(E)→ X for every X ∈ Ob(E

∼
).

To move on from here to being able to say that X ' ε(E′) for some E′ ∈ Ob(E)
we have to invoke a general lemma, c.f. 1.4.9 below. First some terminology. A functor
F :R → S is called conservative (with respect to monomorphisms) if whenever R1

i //R2

is a monomorphism in R such that F (R1)
F (i) //F (R2) is an isomorphism, then i is an

isomorphism.

Lemma 1.4.8 ε : E → E
∼

is conservative.

Proof. Let E1
i //E2 be a monomorphism in E such that ε(E1)

ε(i) // ε(E2) is an iso-

morphism, hence an effective epimorphism in E
∼
. By 1.3.3, i is an effective epimorphism.

By 1.3.4, i is an isomorphism.
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Lemma 1.4.9 Let I :R → S be a functor between categories with finite left limits and
assume the following:

(i) I is full and conservative with respect to monomorphisms.

(ii) I preserves effective epimorphisms and finite left limits.

(iii) The equivalence relations in R are effective.

(iv) For every object S of S there is R ∈ Ob(R) and effective epimorphism I(R)
p // S.

Then I is an equivalence of categories.

Proof. We use the following simple remarks which, nevertheless, we will verify in
Chapter 3 only.

Sublemma 1.4.10 I is faithful; moreover, if I(P )
I(p1) //
I(p2)

// I(R) is an equivalence relation

(in S), then so is P
p1 //
p2

//R (in R).

It is enough to verify that for every S ∈ Ob(S), there is R ∈ Ob(R) such that
S ' I(R).

Let S ∈ Ob(S) be arbitrary. Let IR
p //S be an effective epimorphism and S′

q1 //
q2
// IR

the kernel-pair of p:

S′

IR

IR

S.p.b.

q1 88

q2 &&

p

&&

p

88

Consider the product R
α1oo R × R α2 // R and use the fact that I preserves products.

We obtain I(R×R) ' I(R)× I(R) and the following diagram

S′

IR

IR

SI(R×R)

q1
99

q2 %%

p

%%

p

99
i //

I(α1)

OO

I(α2)

��

such that i is a monomorphism. Applying hypothesis (iv) to the object S′, we have an

effective epimorphism IR′′
p′ //S′. The fullness of I applied to the morphism

IR′′
p′ //S′ i // I(R×R)

gives us β :R′′ → R×R such that I(β) = i ◦ p′. Consider the kernel-pair

R′′′

R′′

R′′

R×Rp.b.

r1 88

r2 &&

β

''

β

77

Then R′′′
r1 //
r2
//R′′ is an equivalence relation in R, hence by (iii), there is a pullback
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diagram

R′′′

R′′

R′′

R′

r1 88

r2 &&

p′′

&&

p′′

88

where p′′ is an effective epimorphism. Hence

(1)IR′′′

IR′′

IR′′

IR′

Ir1 88

Ir2
&&

Ip′′

&&

Ip′′

88

is a pullback diagram and Ip′′ is an effective epimorphism, by assumption (ii). Also

IR′′′

IR′′

IR′′

I(R×R)

Ir1 88

Ir2
&&

I(β)
((

I(β)

66

is a pullback diagram, and since i is a monomorphism, I(β) = i ◦ p′, so is

(2)IR′′′

IR′′

IR′′

S′.

Ir1 88

Ir2
&&

p′

&&

p′

88

Comparing diagrams (1) and (2), both of which being pullback diagrams and Ip′′, p′

being effective epimorphisms, by the definition of “effective epimorphism” it follows that
IR′ ' S′.

Returning to the diagram defining S′, we conclude that we have a pullback diagram
of the form

(3)IR′

IR

IR

S

q1 88

q2 &&

p

&&

p

88

with p an effective epimorphism. By the fullness of I, qi = I(ρi), i = 1, 2, for some
ρ1, ρ2.

Since IR′
q1 //
q2
// IR is a kernel pair, it is an equivalence relation. By the conservative-

ness of I and 1.4.10, R′
ρ2 //
ρ2

//R is an equivalence relation. By (iii), let π :R→ R be an

effective epimorphism such that

R′

R

R

R

ρ1
88

ρ2 &&

π

&&

π

88
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is a pullback diagram. These properties are inherited to

IR′

IR

IR

IR.

q1=Iρ1
88

q2=Iρ2 &&

Iπ
&&

Iπ

88

Comparing the last diagram with (3) having similar properties, it follows that IR ' S,
proving the lemma. �

Returning to the proof of the theorem, let us remind the reader that under the
hypothesis that E is a Giraud topos, above we have shown that εE : E → E

∼
satisfies the

hypothesis of Lemma 1.4.9. Hence εE is an equivalence as stated in (v).

At the same time, we have shown that E ' E
∼
' R
∼

for a small subcategory R of E ,
proving that (i) also follows from (iv). The same argument can be repeated under the
hypothesis (v) to prove that (v) implies (i).

This completes the proof of the main Theorem 1.4.5.

Notice that, in a roundabout way, we have established Lemma 1.3.14.

Finally, for later reference we state a version of Lemma 1.4.9 whose proof is contained
in that of 1.4.9.

Lemma 1.4.11 Let I, R, S be as in 1.4.9 and assume conditions (i), (ii), (iii) of 1.4.9
but drop (iv). Let S be a fixed object of S. Assume (in place of (iv)) that there is an

effective epimorphism of the form I(R)
p //S, R ∈ Ob(R), moreover, with the same R,

there is another epimorphism of the form I(R′′) → S′ = I(R) ×S I(R). Then there is
an object R of R such that I(R) ' S.

For the proof of the lemma, notice that the condition replacing (iv) contains exactly
what is needed in the proof of 1.4.9 to show the existence of the required R. We note
that we also say ‘S is exactly covered via I’ for the condition in 1.4.11 replacing (iv) of
1.4.9.

Appendix to Chapter 1.
Concepts of local character, examples.

The aim of this appendix is to present a few examples of topoi, trying to motivate the
notions of site and topos.

Just as set theory formalizes the notion of “collection”, one can consider that topos
theory formalizes the notion of “concept”. In fact, a concept may be considered as a
“variable extension”, parametrized by the domains of applications of the concept. When
one disposes of a notion of “localization” at the level of the domains of application, one
arrives to the basic notion of “concept of local character”.

A few examples will hopefully clarify these remarks.

1. The concept of “real-valued continuous function defined on an open set of a topo-
logical space X” has, as domains of applications the open sets Open(X) of X. The
family

〈CR(U)〉U∈Open(X)

where
CR(U) = all real-valued continuous functions defined on U
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is a “variable extension” parametrized by Open(X). Notice, however, that Open(X) is a
category (and not just a set) whose objects are the open sets of X and its morphisms are
the inclusions. In this context, CR, rather than the family parametrized by Open(X), is
a functor

CR : Open(X)op → Set

which acts on inclusions by restrictions.
The concept in question may be identified with this functor.
Let us notice that we have a notion of localization at the level of the domains of

application (of the concept), namely every open covering of an open set U is a localization
of U . Furthermore, the concept in question (i.e., “real valued continuous function”) is
of local character in the following sense: if 〈Ui〉i∈I covers U , then

(i) Every f ∈ CR(U) may be recovered from its localizations, i.e. if g ∈ CR(U) is such
that f |Ui = g|Ui , for all i ∈ I, then f = g.

(ii) (Glueing condition for compatible families.) If 〈fi〉i∈I is a family such that
fi ∈ CR(Ui), for all i ∈ I and

(∗) fi|Ui∩Uj = fj |Ui∩Uj , for every i, j ∈ I,

then there is f ∈ CR(U) such that f |Ui = fi, for all i ∈ I.

The reader will notice that (i) and (ii) are equivalent to require that the diagram

CR(U)
∏
i∈I
CR(Ui)

∏
i,j∈I

CR(Ui ∩ Uj)// //// is exact.

2. The concept of “solutions of a finite system of polynomial equations p1 =
0, . . . , pm = 0 with integer coefficients in the indeterminates X1, . . . , Xn” may be iden-
tified with the functor

S :R → Set

such that

S(A) = {〈a1, . . . , an〉 ∈ An : 〈a1, . . . , an〉 is a common root of p1, . . . , pm in A}.

By R we mean the category of commutative rings with 1. Sometimes one considers,
instead of R, the full subcategory Rf �

� // R of finitely presented rings, i.e. of the form
Z[X1, . . . , Xn]/〈f1, . . . , fm〉. The reason is that Rf is (equivalent to a) small category

and we can talk e.g. of SetRf .
At first sight, no notion of localization hits the eye. However, several are available,

in particular the Zariski localization in Rop defined as follows:
if A

Ia //A
[

1
a

]
∈ R is the solution of the universal problem of inverting a ∈ A, (see

e.g. Atiyah-MacDonald [1969]), the family

A

A
[

1
a1

]

A
[

1
an

]...

33

++

where a1 + · · · + an = 1 will be considered as a localization in Rop (hence a “co-
localization” in R). Furthermore, the empty family is considered as a co-localization of
the null ring.
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Intuitively, one can think of
(
A
[

1
ai

])
i≤n

as an “open cover” of A in Rop. (This is

just that if one describes Rop as the category of affine schemes.)
Let us answer the question whether our concept is of local character.
To make the analogy with our previous example closer, let us first notice that the

functor S is representable by the ring B = Z[X1, . . . , Xn]/〈p1, . . . , pm〉.
Indeed

hB(A) = (the set of ring homomorphisms from B to A) ' S(A).

(Since every “solution” 〈a1, . . . , an〉 ∈ S(A) gives a unique homomorphism of B to A
via Xi 7→ ai.)

But this means that S ' hB , i.e., S is representable by the ring B.
Let us now formulate the analogues of (i) and (ii) of our previous examples.

(i)’ Every f ∈ hB(A) may be recovered from its localizations, i.e., if g ∈ hB(A) is
such that

Iai(f) = Iai(g) ∈ hB
(
A

[
1

ai

])
for every i ≤ n,

then f = g.

(ii)’ if 〈fi〉i≤n is a family such that fi ∈ hB
(
A
[

1
ai

])
for all i ≤ n and furthermore,

(∗)′ B A
[

1
ai

]
A
[

1
aiaj

]
fi // // = B A

[
1
aj

]
A
[

1
aiaj

]
fj // //

then there is f ∈ hB(A) such that all the diagrams

B A

A
[

1
ai

]
f //

fi   
Iai
��

commute.
We notice that this condition is the exact analogue of (∗) in our first example,

thinking of A
[

1
ai

]
as an open subset of A (in Rop), since,

Ui ∩ Uj = Ui ×U Uj in the category Open(X) and

A

[
1

aiaj

]
= A

[
1

ai

]
×A A

[
1

aj

]
in Rop.

Now (i)’ and (ii)’ are consequences of the following

Proposition. In R, the push-out,

A

A
[

1
a

]

A
[

1
b

] A
[

1
ab

]88

&&

''

77

is a pull-back, provided that a+ b = 1.
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Proof. We shall only prove that elements of A
[

1
a

]
, A

[
1
b

]
having the same image in

A
[

1
ab

]
come from an element of A. The rest of the proof is left to the reader.

We first note that a+ b = 1 implies that the ideal 〈an, bn〉 is the unit ideal A, for all
n ≥ 0, since (using the binomial expansion)

1 = (a+ b)2n−1 = λan + µbn, for some λ, µ ∈ A.

(This argument was pointed out to us by E. Dubuc.)
Let s

an ∈ A
[

1
a

]
and t

bm ∈ A
[

1
b

]
be such that s

an = t
bm in A

[
1
ab

]
. We may obviously

assume that m = n.
Therefore, there is p ≥ 0 such that

(ab)p(sbn − tan) = 0 in A, i.e.,

apbms = ambpt for m = p+ n.

By the observation at the beginning

1 = λam + µbm, for some λ, µ ∈ A

and we can define
z = λaps+ µbpt ∈ A.

Then,

amz = λapsam + µambpt

= λapsam + µapbms

= aps(λam + µbm) = aps

and this shows that the canonical homomorphism A→ A
[

1
a

]
sends z into s

an ∈ A
[

1
a

]
.

Similarly, A→ A
[

1
b

]
sends z into t

bn ∈ A
[

1
b

]
.

To check uniqueness of z, assume that z′ is such that z = z′ in both A
[

1
a

]
and A

[
1
b

]
.

Then there are p, q ≥ 0 such that apu = bqu = 0, where u = z − z′. We may assume
that p = q. From our observation 1 = λap +µbp for some λ, µ ∈ A and this implies that
u = λapu+ µbpu = 0.

Let us notice that this Proposition implies, more generally, that any representable
functor

F :R → Set

is local for the Zariski localization on Rop.
In particular, the concepts of “being invertible” and “being an element” are of local

character, since they may be identified with the representable functors

hZ[X,Y ]/〈XY−1〉 and hZ[X], respectively.

3. The concept “partial element of a set X” may be analyzed as follows: the domains
of applications from a complete Heyting Algebra H whose elements may be thought as
“degrees of existence”. The concept itself may be identified with a certain functor

X :Hop → Set

such that, intuitively,

X(h) = {x ∈ X : degree of existence of x is at least h}.
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Turning the tables, the degree of existence of x could be defined (having X available)
as the largest h ∈ H such that x ∈ X(h). Unfortunately, such an x does not always
exist for an arbitrary functor.

It does exist, however, precisely when the following condition is satisfied:

if h0 =
∨
{h : x ∈ X(h)}, then x ∈ X(h0).

On easily checks that this condition may be expressed as follows:

if h =
∨
i∈I

hi, then X(h) =
⋂
i∈I

X(hi).

These remarks suggest to consider the family 〈hi〉i∈I as a localization of h, whenever
h =

∨
i∈I hi. Our condition expresses the local character of the concept “partial element

of X”.

4. (This example will be discussed more fully and from a syntactical point of view
in Chapter 9.)

Let T be a first order finitary theory in a countable language L. Let Mod(T ) be
the category of countable models of T with algebraic homomorphisms (i.e., preserving

relations and operations in the following sense: M
f //N is algebraic if 〈a1, . . . , an〉 ∈

RM ⇒ 〈fa1, . . . , fan〉 ∈ RN for every primitive n-ary relation symbol R, with a similar
clause for operations).

If φ(x1, . . . , xn) is a coherent formula of L, i.e., obtained from the atomic formulas
by using ∨, ∧, ∃, ↑ (true), ↓ (false) as the only logical operators, then φ gives rise to a
functor

φ( ) : (Mod(T )op)op → Set

defined by

φ(M) = {〈a1, . . . , an〉 ∈ |M |n : M |= φ[a1, . . . , an]}.

Indeed all coherent formulas are obviously preserved by algebraic homomorphisms.
An exercise of [CK] tell us that the converse is true.

Proposition. Let φ(x1, . . . , xn) ∈ L. Then φ( ) is a subfunctor of the nth power of the
forgetful functor | | iff φ is T -equivalent to a coherent formula.

We shall call a functor definable if it is of this form (i.e., of the form φ( ), for some
coherent formula φ ∈ L).

A natural transformation φ(x1, . . . , xn)( ) η //ψ(x1, . . . , xm)( ) is definable if there is
a coherent formula Φ(x1, . . . , xn; y1, . . . , ym) such that Φ(M) is the graph of the function
ηM , for all M ∈ Mod(T ).

We let D(T ) be the subcategory of SetMod(T ) consisting of definable functors and
definable natural transformations.

Proposition. D(T ) has finite limoo , images which are stable under pull-backs and supre-
mum (of finite families of sub-objects of a given object) which are also stable under
pull-backs.

Proof (Sketch). Let us recall some definitions: a finite sup A =
∨
i∈I Ai is stable

(under pull-backs) if for every B → A ∈ D(T ) B '
∨
i∈I Ai ×A B.

An image A
f // //B (i.e., such that f does not factor thru a proper sub object of B) is

stable under pull-backs if for every C → B ∈ D(T ), the horizontal lower arrow is again
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an image in the diagram

A B

A×B C C.

f // //
OO

//

OO

For the proof, we use the fact that every category of functors, in particular SetMod(T ),
satisfies the conclusion of the Proposition. (Indeed limoo , images and sups are computed
point-wise and so we are dealing essentially with Set.)

Let F,G ∈ |D(T )|. Then θ( ) is the product F ×G, where

θ(x1, . . . , xn, xn+1, . . . , xm) = φ(x1, . . . , xn) ∧ ψ(xn+1/x1, . . . , xn+m/xm)

and F = φ( ), G = ψ( ). Notice that the canonical projections F×G π1 //F , F×G π2 //G
are also definable, e.g.,

π1(x1, . . . , xn+m; y1, . . . , yn) = θ ∧ y1 = x1 ∧ · · · ∧ yn = xn.

The final object of D(T ) is the functor ↑( ) which is also the final object of SetMod(T ).
Let us indicate the existence of images. Assume that

φ(x1, . . . , xn)( ) η //ψ(x1, . . . , xm)( )

is definable by a formula Φ(x1, . . . , xn; y1, . . . , ym). Then the functor image of φ under

η, in SetMod(T ), is definable by the formula

∃x1 · · · ∃xnΦ(x1, . . . , xn; y1, . . . , ym).

Details are left to the reader.
The category D(T ) can be made into a site by defining a localization of A ∈ |D(T )| as

a finite family 〈Ai
fi //A〉i∈I such that A =

∨
i∈I Im(fi), where Im(fi) denotes the image

of Ai under fi. This localization will be called the precanonical localization. (One should
notice that the stability of images and sups assures us that this is indeed a localization.)

Definition. A category satisfying the conclusion of the Proposition will be called logical.

A functor between logical categories is logical if it preserves finite limoo , finite sups and
images.

Corollary. The inclusion functor D(T )→ SetMod(T ) is logical.



Chapter 2

Interpretation of the logic L∞ω
in categories

Introduction

Categorical formulations of logic were initiated by W. Lawvere, c.f. Lawvere [1965] and
other references in Kock and Reyes [1977]. In particular, the categorical (or “functo-
rial”) interpretation of quantifiers is due to Lawvere, loc. cit. In the present work, the
fundamental notion is the interpretation of formulas of the logic L∞ω in categories. This
device is necessary to make the connections between ordinary formulations in logic on
the one hand, and categorical logic on the other, explicit. The categorical interpretation
of logic appears first in the work of Mitchell [1972]. It was Joyal and Reyes (c.f. Reyes
[1974]) who isolated the notion of a logical category (in loc. cit. “regular category with
stable sups”) as the basic notion for categorical logic.

§1. The logic L∞ω
In this section we briefly describe the basic terminology related to the infinitary logic

L∞ω. For more details, c.f. e.g. Barwise [1975]. For the many-sorted formulation we
need, c.f. also Feferman [1968].

A language L is a collection of symbols falling into the following disjoint classes:

(1) a non-empty set of elements which are called sorts,

(2) a set of finitary sorted predicate symbols,

(3) a set of finitary sorted operation symbols.

In more detail: a predicate symbol R in class (2) is equipped with a natural number n,
the number of places of R; R is called an n-ary predicate symbol. Also, R is equipped
with an assignment of a sort si (a symbol in group (1)) to each i = 1, . . . , n; si is the sort
of the ith place of R. The operative effect of this assignment will be that only variables
of the right sort can occupy a given place when forming formulas using R. We write
“R ⊂ s1 × · · · × sn” to indicate the “sorting” of R. Similarly, an operation symbol f in
class (3) is equipped with a natural number n, the number of places of f ; f is called an
n-ary operation symbol. Moreover, f is equipped with sorts si for i = 1, . . . , n, si being
called the sort of the ith place of f and finally, also with an additional sort s, called
the sort of the value of f . We write f : s1 × · · · × sn → s, anticipating the “intended
meaning” (c.f. below).

47
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A 0-ary operation symbol is called an individual constant.
Given a language L, we form the logic L∞ω based on L by using some additional

symbols. These additional symbols are as follows:

(4) a set of free (individual) variables of sort s, for each sort s in L; this set should be
infinite but can be taken to be a countable set irrespective of the cardinality of L,

(5) a set of bound (individual) variables of sort s, for each sort s in L; similarly as
under (4), this set can be taken to be a countably infinite set for each s.

(6) ≈, the symbol for identity;
∨

, (infinitary) disjunction symbol;
∧

, (infinitary) con-
junction symbol; ¬, negation symbol; →, implication symbol; ∃, existential quan-
tifier symbol; ∀, universal quantifier symbol.

On the basis of the symbols, we define terms, atomic formulas and formulas of L∞ω
as follows.

Every free variable and every individual constant is a term, in fact, a term of the
sort originally assigned to it. If f is an n-ary operation symbol, n > 0, and in particular
f : s1× · · · × sn → s, and if t1, . . . , tn are terms of the sorts s1, . . . , sn, respectively, then
ft1 · · · tn is a term of sort s.

We remark that by the foregoing description we meant to give an inductive definition
of the set of all terms; in particular, every term is one that is obtained in the way
described. As is familiar from many analogous situations, the definition could be phrased
as an explicit definition of the set of all terms as the smallest set satisfying certain
obvious closure conditions. (Actually, the more complicated notion “t is a term of sort
s” is being defined by induction.) As another remark, note that the exact identity of
the object ft1 · · · tn is largely irrelevant except that we should be able to recover each
of f , t1, . . . , tn from ft1 · · · tn in a unique fashion (“unique readability”). These remarks
apply, mutatis mutandis, to the definition of formulas below.

The atomic formulas of L∞ω are the expressions of the form Pt1 · · · tn, with P an
n-ary predicate symbol and with t1, . . . , tn terms, or of the form t1 ≈ t2, with ≈ the
symbol for identity, and t1, t2 terms, subject to the following restrictions on sorts. If
P ⊂ s1 × · · · × sn, then t1, . . . , tn must have sorts s1, . . . , sn, respectively. In t1 ≈ t2, t1
and t2 must have the same (but otherwise arbitrary) sort.

The formulas of L∞ω are formed by repeatedly applying the logical operators to
formulas and sets of formulas. We also stipulate that our formulas should contain finitely
many free variables only. We take for granted the notion of substitution: φ(x/w) denotes
the result of substituting w for x at each occurrence of the free variable in φ. Accordingly,
the class of formulas is the least class X (actually, a proper class) such that

(i) X contains all atomic formulas;

(ii) X contains ¬φ, φ→ ψ,
∧

Θ,
∨

Θ whenever φ, ψ ∈ X, Θ ⊂ X is a set (as opposed to
being merely a subclass of X) and there are altogether finitely many free variables
occurring in the formulas in Θ; and

(iii) X contains ∃wφ(x/w) and ∀wφ(x/w) whenever x is a variable actually occurring
as a free variable in φ ∈ X and w is a bound variable not occurring in φ.

The requirement in (iii) is only for the sake of convenience. We can circumvent this
restriction by considering e.g. ∃x(φ ∧ x ≈ x) instead of ∃xφ.

We will usually suppress our distinction between the two classes of variables, namely
the free and bound variables. Accordingly, we refer to ∃xφ, x being a free variable in φ,
meaning ∃wφ(x/w).
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A few more remarks on the formalities of quantification. When forming ∃xφ, i.e.
∃wφ(x/w), it is irrelevant what w we use as long as w does not occur in φ. Taking now
a free variable y not occurring in φ, we can form φ′ = φ(x/y). Since φ′(y/w) = φ(x/w),
what we denote by ∃yφ′(y), i.e. ∃wφ′(y/w), becomes identified with ∃xφ. This has the
consequence that whenever a finite sequence ~x of variables and a formula of the form
∃xφ is given, we can always assume that x is not among the ~x; namely, we can pass
to the form ∃yφ′ with such a y. Briefly put, we do not distinguish between alphabetic
variants of formulas which differ only in the exact identity of bound variables (but in
which the same pairs of occurrences of bound variables are occupied by equal bound
variables).

The usual way of writing φ ∧ ψ for
∧
{φ, ψ} and φ ∨ ψ for

∨
{φ, ψ} will be adopted.

The empty conjunction
∧
∅ will be denoted by > (“true”), the empty disjunction

∨
∅

by ⊥ (“false”).
The formula φ is a subformula of the formula ψ if “φ is constructed as an interme-

diate step in the construction of ψ”. More precisely, we have the following inductive
definition. The only subformula of an atomic formula is itself. The subformulas of

∧
Θ

are:
∧

Θ itself as well as the subformulas of all the elements of Θ; similarly for
∨

Θ. The
subformulas of ¬φ are ¬φ itself as well as all the subformulas of φ. There is a similar
clause for each of φ→ ψ, ∃xφ and ∀xφ.

A subclass F of the class of all formulas of L∞ω is called a fragment of L∞ω if (a)
with each formula φ ∈ F all the subformulas of φ also belong to F and (b) F is closed
under substitution: if φ is in F , t is a term of L, x is a free variable in φ, then φ(x/t) is
in F .

A (Gentzen) sequent of F is an object of the form Φ ⇒ Ψ (with ⇒ a new symbol)
where Φ and Ψ are finite (possible empty) sets of formulas belonging to F . A theory in
F is a set of sequents of F .

We notice that the intersection of fragments is again a fragment and this allows us
to speak of the fragment generated by a set of formulas.

The set of finitary formulas of L is denoted by Lωω and it is the fragment F of L∞ω
such that each of

∧
Θ ∈ F and

∨
Θ ∈ F implies that Θ is a finite set; briefly, only finite

conjunctions and disjunctions are allowed. Lω1ω is the fragment where only countable
(possibly finite) conjunctions and disjunctions are allowed.

Another kind of restriction leads to other fragments that are important for us. The
coherent logic Lg∞ω is the fragment in which we have unrestricted use of

∨
and ∃,

∧
can be applied only to finite sets and the rest of the logical operators cannot be used at
all. In other words, the formulas of Lg∞ω form the least class X containing the atomic
formulas such that if Θ is a subset of X, Σ is a finite subset of X, φ ∈ X, and x is free
in φ, then

∨
Θ ∈ X,

∧
Σ ∈ X and ∃xφ ∈ X. The fragments Lgωω, Lgω1ω are defined

naturally as Lgωω = Lωω∩Lg∞ω, Lgω1ω = Lω1ω∩Lg∞ω. A theory in Lg∞ω is called coherent,
one in Lgωω finitary coherent.

The primary meaning of formulas is given by their standard interpretation in (ordi-
nary) structures. A (many-sorted) structure M of type L is a function with domain L
subject to the following conditions:

(1) for every sort s in L, M(s) is a set;

(2) for every predicate symbol R in L, R ⊂ s1×· · ·× sn, M(R) is a subset of M(s1)×
· · · ×M(sn);

(3) for every operation symbol f in L such that f : s1 × · · · × sn → s, M(f) is an
operation M(s1) × · · · × M(sn) → M(s). In particular, if f is an individual
constant of sort s, M(f) ∈M(s).
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An important point is that we allow the (partial) domains M(s) of M to be empty.
In model theory, usually the domains are stipulated to be non-empty. This difference
slightly affects what sequents are considered logically valid; c.f. below.

The basic notion is that of the truth of a formula in a structure, once free variables
have been interpreted by fixed but arbitrary elements in the structure. Let φ be a
formula, with its free variables among x1, . . . , xn, xi of sort si, and let ai ∈M(si). Then
we write

M |= φ[a1, . . . , an] or

M |= φ[x1/a1, . . . , xn/an] or

M |= φ[~a]

for: φ is true in M when xi is interpreted as ai, or: the ai satisfy φ in M . The
notion of truth has a straightforward inductive definition, suggested by the terminology
introduced above relating to formulas. In particular, e.g. we have

M |= (
∧

Θ) [~a] ⇔ for every φ ∈ Θ,M |= φ[~a].

M |= (
∨

Θ) [~a] ⇔ for at least one φ ∈ Θ,M |= φ[~a].

M |= (∃xφ)[~a] ⇔ for some a ∈M(x),M |= φ[x/a,~a]

(here M(x) = M(s) where s is the sort of x). Also, it is important to keep in mind that
equality (≈) is always interpreted by real equality. Formally,

M |= (t1 ≈ t2)[~a] iff tM1 [~a] = tM2 [~a],

where tM1 [~a] is the value of the interpretation of the term t when the free variable xi is
assigned the value ai (i = 1, . . . , n).

§2 Some categorical notions
Here we briefly enumerate the handful of simple categorical notions that the inter-

pretations of formulas in categories rests on.
All categories in this work are assumed to have finite left limits, i.e., the left limit,

or inverse limit, of every finite diagram in the category should exist. Left limits are
determined only up to a unique isomorphism over the given diagram, in the well-known
sense. It is also well known that it is enough to assume the existence of certain finite
left limits in order to have all finite left limits, viz. the existence of

(1) a final object 1 (= empty product);

(2) the product of any two objects;

(3) the equalizer of two morphisms with the same domain and with the same codomain.

We use the following standard notation concerning products. Let a product

X1 × · · · ×Xn

X1 Xn
· · · · · ·

π1

��
πn

��

be given. If A
fi //X is a morphism for each i = 1, . . . , n, then 〈f1, . . . , fn〉, or 〈f1, . . . ,

fn〉π1,...,πn , or 〈f1, . . . , fn〉π, will denote the unique morphism f :A → X1 × · · · × Xn

such that πi ◦ f = fi, i = 1, . . . , n.
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We fix a category with finite left limits for the rest of this section.
For a given object X, a subobject of X is determined by a monomorphism A

� � // X
and two monomorphisms A

� � // X, B
� � // X determine the same subobject of X if there

are morphisms A
//oo B such that both

A X

B

� � //

?�

OO

""
and

B X

A

� � //

?�

OO

""

commute. We talk about the subobject A �
� // X, with a certain measure of abuse of

language. We say that the subobject A
� � // X is smaller than (≤) B

� � // X if there is a
(necessarily unique) morphism A→ B such that

A X

B

commutes.

� � //

?�

OO

""

The ≤-relation partially orders the set of subobjects of X. As a consequence of the
existence of left limits, we have that in this partial order the inf (or: meet) A ∧ B of
two elements (i.e., the greatest element C such that C ≤ A, C ≤ B) exists; in fact, it is
given by C

� � // X in the pullback

A X

C B.

p.b.

� � //

� � //
?�

OO

?�

OO

Given an arbitrary set Θ of subobjects of a given object X, the inf of Θ, denoted by∧
Θ, is the greatest subobject of X that is ≤ than any element of Θ. For an infinite set

Θ,
∧

Θ does not necessarily exists. For the empty set Θ = ∅,
∧
∅ equals the maximal

subobject X �
� id // X.

Given a set Θ of subobjects of X,
∨

Θ, the sup of Θ, is the smallest subobject (if it
exists) among those that are ≥ than any subobject in Θ.

∨
{A,B} is denoted A ∨ B.

The phrase “R has finite sups” means that for any finite family (including the empty
one) of subobjects of a given object in R, the sup of the family exists.

A morphism A→ Y is called surjective if whenever B → Y is a monomorphism such
that A→ Y factors through B → Y :

A Y

B

SS
//

""
� ?

OO

then B → Y as a subobject of Y is the maximal subobject, i.e., B → Y is an isomor-
phism. A surjective morphism is always an epimorphism but not necessarily conversely.
To show the first claim, assume that f is surjective and in

A
f //B

h1 //
h2

//C,

we have h1 ◦ f = h2 ◦ f . Let Equ(h1, h2) → B be the equalizer of h1 and h2. By
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the universal property of the equalizer, A
f //B factors through Equ(h1, h2) → B. By

the definition of surjectivity, this implies that Equ(h1, h2) → B is an isomorphism,
Equ(h1, h2) ' //B. But of course, this means that h1 = h2, as required. Under reason-
able assumptions, a morphism is surjective iff it is an “effective epimorphism” in the
sense of SGA4, I. 10.3; we return to this point in the next Chapter.

Given a diagram

A X

Y

� � //

f

��

the image of A
� � // X under f is the subobject ∃f (A)

� � // Y such that there is a surjective
g making the following commute:

A X

∃f (A) Y

� � //

g
��

f

��
� � //

The image ∃f (A)
� � // Y , if it exists, is uniquely determined as a subobject of Y .

It is easy to see that this definition is equivalent to the following: the image ∃f (A)
� � // Y of A �

� // X is the smallest subobject B �
� // Y such that A �

� // X
f //Y factors

through B
� � // Y . Namely, suppose that in

A X

B Y

� � //

g

��
f

��
� � //

g is surjective and let C
� � // Y be another subobject such that A

� � // X
f //Y factors

through C �
� // Y ; we want to show that there is B → C such that B → C �

� // Y is
B �
� // Y . Consider the “intersection”:

B ∧ C =
p.b.

B ×Y C C

B Y.

//
� _

��

� _

��
� � //

By the universal property of the pullback, we will have A→ B∧C such that the following
is commutative

A

B ∧ C C

B Y

))((

g

""

//
� _

��

� _

��
� � //

By the surjectivity of g, B ∧ C → B is an isomorphism. Denoting by j−1 its inverse,

B
j−1

// B ∧ C → C is the desired morphism.
This shows that if B is the image ∃f (A) according to the first definition, then it is

that according to the second definition as well. The converse is easier.
The phrase “R has images” means that for every subobject A �

� // X and every mor-
phism X → Y , ∃fA→ Y exists. Notice that this is equivalent to saying: every morphism

A
f //Y in R is the product ip of a surjective morphism p and a monomorphism i.
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The foregoing notions suffice to interpret formulas in Lg∞ω, which is our primary
interest. Next we mention the rest of the notions that are used in interpreting the full
language L∞ω.

The Boolean complement of a subobject A of X, if it exists, is the subobject B of X
such that A ∨ B = X and A ∧ B = 0. Here X is the maximal subobject X id //X and
0 is the minimal subobject of X, the sup of the empty family. Again, B as a subobject
is uniquely determined if it exists at all, at least in case the subobject lattice of X is
distributive (which will mostly be the case).

The Heyting complement of a subobject A of X, if it exists, is the maximal subobject
B of X such that A∧B = 0. B is again uniquely determined; if the Boolean complement
of A exists, then the Heyting complement equals the Boolean complement.

Intuitionistic implication is formulated in the notion of Heyting implication A → B
of the two subobjects A and B of X. A → B, if exists, is the maximal subobject C of
X such that A ∧ C ≤ B. A→ 0 is the Heyting complement of A.

There is a Boolean formulation of the universal quantifier, based on the identity
∀xAx = ¬∃x¬Ax. We formulate an “intuitionistic” notion. Given

A X

Y

� � //

f

��

the dual image (for lack of a better expression) of the subobject A �
� // X, denoted ∀f (A),

is the largest subobject B → Y such that the pullback f−1(B) �
� // X factors through

A �
� // X.

A X

YB

f−1(B)

� � //

� � //

+ �

99

f

����

OO

Finally, let us mention an expression that is a common generalization of the Heyting
→ and ∀. Suppose we are given

A1

A2

X

Y

� y

++
% �

33

f

��

By ∀f (A1 → A2) we mean the largest subobject B �
� // Y of Y such that (f−1(B) ∧

A1) �
� // X factors through A2

� � // X. Putting f = idX , we get Heyting implication, and
putting A1 = X, we get the dual image ∀f (A2).

Finally, we make a few remarks on the above notions in the category of sets, Set.
First of all, the reader should be familiar with the meaning of left limits in Set.

Two monomorphisms A
f //X, B

g //X determine the same subobject of X just in
case the images f(A) ⊂ X, f(B) ⊂ X coincide. Thus, subobjects in Set mean subsets.
The lattice (actually: complete Boolean algebra) structure of the subobjects of X is that
of the subsets X determined by inclusion. In particular, inf and sup are intersection and
union, respectively.
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The image ∃f (A) �
� // Y in

A X

∃f (A) Y

� � //

�� ��
� � //

is nothing but the usual image of the subset A ⊂ X under f . The dual image ∀f (A)→ Y
in

A X

∀f (A) Y

� � //

��
� � //

is determined by y ∈ ∀f (A) ⇔ ∀x ∈ X[f(x) = y → x ∈ A], as it is easily seen.

§3 The categorical interpretation

Let R be a fixed category with finite left limits. Let L be a language as described
in §1. The notion of an R-valued structure (or: R-structure) of type L is a natural
generalization of that of an ordinary structure.

An R-structure M of type L is a function with domain L such that

(1) for every sort s in L, M(s) is an object of R;

(2) for every predicate symbol R in L, R ⊂ s1 × · · · × sn, M(R) is a subobject
M(R)→M(s1)× · · · ×M(sn) in R;

(3) for every operation symbol f in L such that f : s1 × · · · × sn → s, M(f) is a
morphism M(f) :M(s1) × · · · ×M(sn) → M(s) in R. If f is an individual constant of
sort s, M(f) is a morphism 1→M(s).

Remark There is a certain amount of ambiguity in the notion, e.g. because products
are determined only up to a (unique) isomorphism. A more precise version would be
something like this:

(2′) for R ⊂ s1 × · · · × sn, M specifies a particular product

M(s1)× · · · ×M(sn)

M(s1) M(sn)
· · · · · ·

π1

��
πn
��

as well as a particular monomorphism M(R)
� � // M(s1)× · · · ×M(sn);

(3′) a similar version for operation symbols.

However, we will not find it necessary to insists on the more precise version.

Notice that if R is the category of sets, an R-structure is essentially what we called
an ordinary structure before.

Next we turn to the interpretation of terms and formulas. Let M be an R-structure
of type L.

For a sequence ~x = (x1, . . . , xn) of distinct variables of respective sorts s1, . . . , sn, we
define M(~x) = M(s1)× · · · ×M(sn). For a term t of sort s, having all its free variables
among ~x = (x1, . . . , xn), M~x(t) will be defined and it will be a morphism M(~x)→M(s).
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Let t := xi. M~x(xi) is defined as the canonical projection M(~x)
πi //M(xi)

Let t = ft1 · · · tn, ti of sort si, t of sort s. Then M~x(t) is the composite indicted by
the following diagram

∏n
i=1M(si) M(s)

M(~x)

M(si)
...

(i=1,...,n)

M(f) //

〈M~x(t1),...,M~x(tn)〉

OO

M~x(t)

<<πi

ss

M~x(ti)

kk

Next we give the interpretation of formulas. As a general remark, we note the
following. Let φ be a formula with its free variables among ~x = (x1, . . . , xn). Then
M~x(φ), the interpretation of φ in M , will be a subobject of M(~x), provided M~x(φ) is
defined at all. M~x(φ) will be defined if and only if all the categorical operations called
for by the various logical operators can actually be performed in R.

The interpretation M~x(t1 ≈ t2) of the atomic formula t1 ≈ t2 is given as the following
equalizer (more precisely, the corresponding subobject of M(~x)) where s is the common
sort of t1 and t2:

M~x(t1 ≈ t2) M(~x) M(s)� � //
M~x(t1) //

M~x(t2)
//

Let Pt1 · · · tn be an atomic formula and let ti be of sort si. Then M~x(Pt1 · · · tn) is
given by the following pull back diagram∏n

i=1M(si) M(P )

M(~x) M~x(Pt1 · · · tn)

? _oo

〈M~x(ti)〉ni=1

OO OO

? _oo

In the next few clauses, we will deal with subobjects of M(~x). We define

M~x(
∧

Θ) =
df

∧
{M~x(θ) : θ ∈ Θ}

M~x(
∨

Θ) =
df

∨
{M~x(θ) : θ ∈ Θ}

On the right hand side,
∧

and
∨

mean the inf and sup operations on subobjects of
M(~x). The interpretations M~x(

∧
Θ), M~x(

∨
Θ) exist if and only if each M~x(θ) exists

(θ ∈ Θ) and the inf (sup) on the right hand side exists.
To define M~x(∃yφ), first note that without loss of generality we can assume that y

is not among the ~x. Let π be the canonical projection M(~x, y)→M(~x). We define

M~x(∃yφ) = ∃π(M~x,y(φ)).

The above is sufficient for the definition of the interpretation of Lg∞ω. The following
last clause takes care of the full logic L∞ω:

M~x(∀~y(φ→ ψ)) = ∀π(M~x,~y(φ)→M~x,~y(ψ))

where π is the canonical proyection

π :M(~x~y)→M(~x)
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for disjoint sequences ~x and ~y of variables.
We note that, in order to take care of ¬, →, ∀ (which are of secondary interest to

us anyway) at the same time, we adopt the convention that the formula ∀~y(φ → ψ) is
considered as built up directly from φ and ψ. In other words, φ→ ψ is not a subformula
of ∀~y(φ→ ψ); its subforumlas are itself, φ, ψ and the subformulas of the latter. If ∀~y is
the empty sequence, we are essentially reduced to φ → ψ, and if φ is >, we have ∀~yψ.
By this device, e.g. we will have to state only two rules in our formal system in Chapter
5, instead of four (or six), relating to →, ∀ (and ¬).

In view of the meaning of the relevant operations in Set, it is clear that the categorical
interpretation in Set reduces to the standard interpretation (c.f. §1). More precisely, if
M is a Set-structure, it is easy to see that the subobject M~x(φ) �

� // M(~x), as a subset
of M(~x) = M(x1) × · · · ×M(xn), coincides with the set {〈a1, . . . , an〉 ∈ M(x1) × · · · ×
M(xn);M |= φ[a1, . . . , an]}.

Returning to interpretations in a general category, we note that the same ambiguity
as in the notion of an R-structure appears in the notion of an interpretation. The
interpretation M~x(t) of a term is only given relative to a specification of the product
M(~x) = M(x1)×· · ·×M(xn). Once this product is given, the morphism M~x(t) :M(~x)→
M(s) is also given. More particularly, if we compute the interpretation M~x(t) relative
to two different copies of the product

X

M(xi)

· · · · · ·

(i=1,...n)

πi

��
and

X ′

M(xi)

· · · · · ·

(i=1,...n)

π′i
��

obtaining f :X →M(s) and f ′ :X ′ →M(s), then the unique isomorphism j :X ′ ' //X
such that π′i = πi◦j (i = 1, . . . , n) will carry f into f ′: f ′ = f ◦j. The reader is invited to
check this by going through the definition of M~x(t). We can make an analogous detailed
statement to what extent interpretations of formulas are determined.

Given a sequent Φ ⇒ Ψ, we say that the R-structure M satisfies it, in symbols:
M |= Φ⇒ Ψ if ∧

{M~x(φ) : φ ∈ Φ} ≤
∨
{M~x(ψ) : ψ ∈ Ψ}.

Here ~x is the sequence of all free variables in the sequent Φ ⇒ Ψ and
∧

,
∨

denote inf
and sup on the subobjects of M(~x). It is understood that M |= Φ⇒ Ψ implies, among
other things, that M~x(φ) are all defined for φ ∈ Φ ∪ Ψ, moreover, the sup on the right
hand side is defined.

In particular, with a sequent
φ⇒ ψ

with single formulas on both sides, M |= φ⇒ ψ means that

M~x(φ) ≤M~x(ψ)

where ~x is the sequence of variables occurring free either in φ of in ψ.

§4. Expressing categorical notions by formulas:
the first main fact

In this section, we will show that certain simple properties of diagrams (e.g., that it
is a product diagram, etc.) can be expressed by the truth of certain (Gentzen) sequents.
This fact has a rather tautologous nature; nevertheless one has to do some work to
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establish it in the form needed. At the end of the next chapter, there is a discussion how
this so called ‘first main fact’ (namely, that such an expression is possible) combines
with the ‘second main fact’ (c.f. the next chapter) to give a way of applying logic to
categories.

Let R be a given category with finite left limits, fixed throughout this section. There
is a canonical language associated with R as well as a canonical interpretation of this
language, as follows.

Define the language L = LR by declaring that the sorts in L are exactly the objects
of R, that each morphism f :A → B in R is a unary operation symbol, with sort A
associated to its only place and sort B “associated to its value”, and that there are
no other symbols in L. In other words, L is obtained by forgetting the composition
law of the category R, but retaining the domain-codomain-relationships. Thus L is “R
itself”. Consequently, the “identity” map on L is an R-structure of type L. If we call
this ‘identical interpretation’ M , then we can e.g. talk about M~x(φ), for a formula φ.
The meaning of the interpretation M~x(φ) will be the result of reading the formula φ
with the symbols understood as objects and morphisms in R, and the logical operators
understood as operations in R. We will write [φ]~x for M~x(φ), or simply [φ], if ~x are
exactly the free variables in φ, with M the canonical interpretation. We also use the
notation [t], or [t]~x, for the interpretation of terms in the canonical structure.

To give an example, consider the formula f(g(x)) ≈ h(x) in the canonical language
L. First of all, this is syntactically well-formed, i.e. it is a formula to begin with, if and
only if f, g and h are morphisms with domains and codomains as shown:

X Y

Z

g //

h ##
f

��

and also, x has to be a variable of sort X. Next, [f(g(x))] turns out to be the composite
f ◦ g :X → Z. The interpretation of the formula, [f(g(x)) ≈ h(x)], is the equalizer of
the two morphisms f ◦ g and h:

[f(g(x)) ≈ h(x)] X Z.
� � //

f◦g //

h
//

Finally, the sequent⇒ f(g(x)) ≈ h(x) (with empty left hand side) is true in the canonical
interpretation M , or: true in R as we might say it, if and only if the diagram above is
commutative. This latter fact is equivalent to saying that h = f ◦ g iff the equalizer of
f ◦ g and h is idX . This last fact is well-known and easily seen.

This example shows how categorical facts are expressed, indeed quite naturally, by
the truth of sequents of the canonical language inR (i.e., in the canonical interpretation).
Below there will be more of this kind. Next, we make a couple of simple remarks.

The subobject [f(x) ≈ y] of X × Y , for a morphism X
f //Y, should naturally be

called the graph of f . Although the literal definition of [f(x) ≈ y] coming from Section
3 is something a bit more complicated, it is easy to see that [f(x) ≈ y] is the same thing
as the subobject

X �
� 〈idX ,f〉 // X × Y

where we use the notation 〈·, ·〉 in the way described in Section 2. Hence, to say that a
given subobject given by the monomorphism R

� � // X × Y is identical to the graph of
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f , is equivalent to saying that there is an isomorphism X oo
' //R, making the following

commute:

X X × Y

R

� � 〈idX ,f〉 //

+ �

88OO
'
��

Now, let A �
� f // X be a monomorphism. We claim that the subobject A �

� f // X
is denoted by the formula ∃a(f(a) ≈ x). Consider the following diagram

A A×X

B X

A

� � 〈idA,f〉 //

� � //

g

��
can.

��
OO

+ �
f

88

""

The claim is equivalent to saying that (i) there is A //A making the outer quadrangle

commute and (ii) whenever B �
� // X is a monomorphism such that there is A

g //B
with the inner quadrangle commuting, then there is A //B such that B X

A

� � //
OO

+ � f

99

commutes. Although the whole claim is trivial, let us see why it is true.

A A×X

X

〈idA,f〉 //

f %%
can.

��

By definition, the composition A
〈idA,f〉 // A×X can. //X is A

f //X. So clearly, in (i) we

can take A
idA // A. But for the same reason, if we have A

g //B as in (ii), then

A

B X

g

��

f

%%� � //

is commutative, so we can take g for A //B. Notice that we have shown that the
image needed for [∃a(f(a) ≈ x)] to be defined indeed always exists whenever f is a
monomorphism.

The last remark gives a way of denoting subobjects in the canonical language. It
is also possible to simply extend the canonical language to include a symbol for one or
more subobjects in R. E.g., given a subobject R

� � // X × Y , we can introduce a new
symbol R˜ , or just R, declared to be a binary relation symbol with its places assigned
the sorts X and Y . Then, in the canonical interpretation, [R˜xy] is by definition the
subobject R and we can use R˜ in building compound formulas.

Similarly, we can extend the canonical language to include an n-ary operation symbol,
corresponding to a morphism

f :X1 × · · · ×Xn → Y.
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Denoting the operation symbol also by f , f has the obvious sorting. The same morphism
f :X → Y could correspond to more distinct operations symbols, depending on how X
is considered to be, a product X1 × · · · ×Xn.

The extended canonical language corresponding to a given category contains all possi-
ble predicate and operation symbols described above. The extended canonical language
has the obvious canonical interpretation in the category itself.

When we talk about the canonical language, unless otherwise indicated, usually we
understand it to be the narrower sense, i.e. having only unary operation symbols and
no predicate symbols.

We mention another example of interpreting formulas that we will have occasion to
use. Consider

A1 B

A2

f1 //

f2

OO

and the formula f1a1 ≈ f2a2. As it is expected, and easy to see, the interpretation
R = [f1a1 ≈ f2a2] �

� i // A1 × A2 is the pullback (fibered product) A1 ×B A2. More
precisely

A1 B

A2R

f1 //

f2

OO

π2i
//

π1i

OO

is a pullback diagram, where π1, π2 are the canonical projections A1 A1 ×A2 A2.
π1oo π2 //

Returning to graphs of morphisms, we claim

Proposition 2.4.1 If R �
� // X × Y is the graph of some morphism X → Y , then the

following two sequents are true in R:

Rxy ∧Rxy′ ⇒ y ≈ y′,
⇒ ∃y Rxy.

Then omit the easy proof. Note that these two sequents are natural expressions of the
notion of a functional relation. Our first main aim is to establish a converse of 2.4.1, c.f.
2.4.4 below.

The following lemma is completely trivial on the basis of the definitions.

Lemma 2.4.2 If f is a monomorphism and it is surjective, then it is an isomorphism.

The following lemma takes more work.

Lemma 2.4.3 Suppose R �
� // X × Y is univalent, i.e. the first of the two sequents in

2.4.1 is true in R. The the composite

pX i :R i //X × Y pX //X,

with pX the canonical projection, is a monomorphism.

Proof. We will first spell out the hypothesis in a diagrammatical way. Let us introduce
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the canonical projections in the following product diagrams:

X × Y

X

Y

p = (pX , pY )

pX
88

pY &&

R× Y

R

Y

q = (qR, qY )

qR
88

qY &&

X × Y × Y

X

Y

Y

ρ = (ρ1, ρ2, ρ3).

ρ1
44

ρ2 //

ρ3 **

We first note that the interpretations [Rxy]xyy′ , [Rxy′]xyy′ can be identified as follows:

[Rxy]xyy′ :R× Y �
� j1=〈pX iqR,pY iqR,qY 〉ρ // X × Y × Y,

[Rxy′]xyy′ :R× Y �
� j2=〈pX iqR,qY ,pY iqR〉ρ // X × Y × Y.

Also, [y ≈ y′]xyy′ is:

X × Y �
� j=〈pX ,pY ,pY 〉ρ // X × Y × Y.

Using the interpretation of ∧ as a pullback, and using that Rxy ∧Rxy′ ⇒ y ≈ y′ holds,
we get the commutative diagram

R× Y

X × Y × Y

X × Y R× Y

P = [Rxy ∧Rxy′]xyy′

j1
;;
j

OO
j2

cc

cc ;;OO

such that the outer diagram is a pullback.

Let S
f1 //
f2

//R be two morphisms such that pX if1 = pX if2; we have to show that

f1 = f2. Consider the morphisms

S
h1=〈f1,pY if2〉q //R× Y,

S
h2=〈f2,pY if1〉q //R× Y.

(Assuming that we are in Set, i is an inclusion, and the products are standard Cartesian
products, we will have that h1 is the map s 7→ 〈x, y2, y2〉 and h2 is s 7→ 〈x, y2, y1〉 where
f1(s) = 〈x, y1〉, and f2(s) = 〈x, y2〉.)

We can check easily that

j1h1 = 〈pX if1, pY if1, pY if2〉ρ (2)

j2h2 = 〈pX if2, pY if1, pY if2〉ρ (3)

By the hypothesis on f1 and f2, we have j1h1 = j2h2, hence by the universality of the
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pullback we have the following commutative diagram:

R× Y

X × Y × Y

X × Y R× Y

P

S

j1
;;
j

OO
j2

cc

ee 99OO

h1

[[

h2

CC

OO

Let the composite S → P → X×Y be g = 〈g1, g2〉p. Then jg = 〈pX , pY , pY 〉ρ·〈g1, g2〉p =
〈g1, g2, g2〉ρ. Since jg = j1h1 = j2h2, from (2) and (3) we obtain

pY if1 = pY if2,
pX if1 = pX if2.

By the universal property of the product X
pXoo X×Y

pY // Y, we obtain that if1 = if2,
hence f1 = f2 (since i is a monomorphism). �

Let us call R
� � // X × Y a functional relation (“with domain X and codomain Y ”)

if the two sequents in 2.4.1 are true (in R).

Theorem 2.4.4 Every functional relation R �
� i // X × Y is the graph of a unique mor-

phism X
f //Y .

Proof. Consider

R X × Y Y

X

i // pY //

pX

��pX i %% f=pY i(pX i)
−1

99

By 2.4.3, pX i is a monomorphism. By the truth of ⇒ ∃y Rxy, we clearly have that pX i
is surjective. Hence, by 2.4.2, pX i is an isomorphism. Define f = pY i(pX i)

−1. Then

X
i(pX i)

−1

//X × Y is identical to 〈idX , f〉, and we have the commutative diagram

X X × Y

R

� � 〈idX ,f〉 //

* 
 i

77
pX i '

OO

Hence, R is the graph of f , We leave it to the reader to check the uniqueness of f . �

We make a remark on a slight variant of the last theorem. Using the same notation
as there, assume that X is a product X1 × · · · × Xn. Then a subobject R → X × Y
can be regarded as a subobject of X1 × · · · ×Xn × Y . The functionality axioms can be
written

Rx1 · · ·xny ∧Rx1 · · ·xny′ ⇒ y ≈ y′,

⇒ ∃y Rx1 · · ·xny;

it is immediate that indeed these two axioms are equivalent to the original two when R
was regarded binary. So, we have that under the assumption that the last two sequents
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hold in R, there is a morphism f :X1 × · · · ×Xn → Y whose graph is R→ (X1 × · · · ×
Xn)× Y .

Next, we formulate and prove our second main aim in this section, which is “the first
main fact” in relating logic and categories. We give a list of sets of one or more axioms
whose meaning will be immediately obvious when understood in Set. Their expected
roles in the case of an arbitrary category R with finite limits is stated in Theorem 2.4.5.
Under each heading, first we exhibit a diagram, then we list a few axioms using objects
and morphisms of the diagram and finally, we state the “intended meaning”. Lower case
letters a, b, c, d, e, . . . denote variables of the sort denoted by the corresponding upper
case letter.

1. Axiom for identity

A
f //A;

⇒ fa ≈ a;

f = idA.

2. Axiom for commutative diagram

A

B

C

f 88

h
//

g

&&

⇒ gfa ≈ ha;

h = g ◦ f.

3. Axiom for monomorphism

A
f //A;

fa ≈ fa′ ⇒ a ≈ a′;
f is a monomorphism.

4. Axioms for terminal object

A;

⇒ a ≈ a′,
⇒ ∃a(a ≈ a);

A is a terminal object.

5. Axioms for equalizer

E A B;
ε //

f //
g
//

εe ≈ εe′ ⇒ e ≈ e′,
⇒ fεe ≈ gεe,

fa ≈ ga⇒ ∃e(εe ≈ a);

ε is the equalizer of f and g.
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6. Axioms for product

C

A B;

f

��

g

��

fc ≈ fc′ ∧ gc ≈ gc′ ⇒ c ≈ c′,
⇒ ∃c(fc ≈ a ∧ gc ≈ b);

C is the product of A and B, with projections f and g.

7. Axiom for initial object

A;

a ≈ a⇒ ;

A is an initial object.

8. Axioms for sup

Ai

B X (i ∈ I);

� _

fi

��
� �

g
//∨

i∈IAi˜ (x)⇒ B˜ (x),

B˜ (x)⇒
∨
i∈IAi˜ (x);

(Remark Here B˜ (x) denotes ∃b(gb ≈ x) as we introduced above; similarly for Ai˜ (x).)

B �
� g // X is the sup of the Ai

� � fi // X.

9. Axioms for image

A B;
f //

⇒ ∃a(fa ≈ b);
f is surjective.

10. Axioms for inf

Ai

B X (i ∈ I);

_�

fi
��

� �

g
//

B˜ (x)⇒
∧
i∈IAi˜ (x),∧

i∈IAi˜ (x)⇒ B˜ (x);

c.f. the remark under item no. 8

B �
� g // X is the inf of the Ai

� � fi // X.
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11. Axioms for dual image

X

B Y

A1

A2 f

��
� �

g
//

� y f1

++
% �

f2

33

B˜ (y)⇔ ∀x[(fx ≈ y ∧A1˜ (x))→ A2˜ (x)].

Remark Φ⇔ Ψ is an abbreviation for two sequents jointly: Φ⇒ Ψ and Ψ⇒ Φ.

Theorem 2.4.5 The above axioms express their intended meaning. That is, given R,
an arbitrary category with finite left limits, if given a diagram in R as indicated under
any one of the headings 1-11, the diagram satisfies the condition stated last under the
heading if and only if all of the axioms under the heading are true in R.

Proofs. ad 6, products: (i) Assume first that the two axioms hold in the category.
Consider the subobject R = [fc ≈ a ∧ gc ≈ b] → A × B × C and, via the canonical
isomorphism A×B×C ' (A×B)×C, consider R as a subobject of D×C, D = A×B.
The canonical projections πA :A × B → A, πB :A × B → B are introduced. We first
claim that R is a functional subobject of D × C, “with domain D and codomain C”.
Making use of the remark after 2.4.4, the claim means that the sequents

Rabc ∧Rabc′ ⇒ c ≈ c′

⇒ ∃c Rabc

are both true in R. It turns out that this fact is equivalent to the assumption that the
two “axioms for product” hold. The second axiom ⇒ ∃c Rabc is actually identical to
the second axiom ⇒ ∃c(fc ≈ a ∧ gc ≈ b) “for products”. The equivalence of the two
forms of the first axiom could be verified by a straightforward computation right at this
point but we prefer deferring it to the next chapter.

Granting the functoriality of R, we have a morphism A × B h //C whose graph is
R.

Let h′ be the morphism C h′ //A × B resulting from the universal property of the
product A × B, such that πA ◦ h′ = f , πB ◦ h′ = g. The next thing to realize is that
R→ (A×B)×C is also the graph of the morphism h′, now with domain C and codomain
A×B, i.e., in the opposite sense to h; and this holds without any assumption on f and
g. This is an easy exercise in first definitions.

Next, we state a general fact. Let R
� � // D × C be a subobject of a product D × C.

If R is the graph of D h //C and in the opposite sense, also of C h′ //D, then h and
h′ are inverses of each other, hence h, h′ are isomorphisms. This fact also is left to the
reader as an exercise to check.

Returning to D = A × B and A × B h //C, C h′ //A × B as above, we now have

that the canonical morphism C h′ //A × B such that πA ◦ h′ = f , πB ◦ h′ = g is an

isomorphism. This fact is sufficient for having that A
foo C

g //B is a product diagram

(since it is an isomorphic copy of A
πAoo A×B πB //B). This completes the proof in one

direction.

(ii) To show the other direction, assume that A
foo C

g //B is a product diagram.

We can now essentially reverse our previous argument. Taking A
πAoo A× B πB //B to



65

be another product, the subobject R �
� // (A×B)×C as defined in part (i) is the graph

of the canonical map h′ :C → A × B. But now h′ is an isomorphism. Denoting its
inverse by h, R will be the graph of h as well, now with A × B as domain and C as
codomain. By 2.4.1, R, in the sense: “with A×B as domain and C as codomain”, will
be functional. As we said in part (i), this fact is equivalent to having the two “axioms
for product” hold. �

ad 8, sups: This case is completely tautologous. By definition, the condition that the
axioms hold is equivalent to saying that [

∨
i∈IAi˜ (x)] is defined and is both ≤ and ≥

than [B˜ (x)], i.e., that [
∨
i∈IAi˜ (x)] = [B˜ (x)]. But [B˜ (x)] = B �

� g // X by earlier remarks;

also [
∨
i∈IAi˜ (x)] =

∨
i∈IAi, with one side defined iff the other is, and with Ai now

abbreviating the subobject Ai
� � fi // X. In other words, the axioms are equivalent to

saying that B =
∨
i∈IAi, as required. �

ad 9, images: Trivial. Given f :A→ B, [fa ≈ b], the graph of f , is the subobject

A
� � 〈idA,f〉 // A×B.

To say that⇒ ∃a(fa ≈ b) holds is, by definition, equivalent to saying that the composite

A �
� 〈idA,f〉 // A×B πB //B is surjective. But this composite is nothing but f . �

Further remarks on the proof of 2.4.5. The case 2, “commutative diagram”,
was discussed as a first example in the meaning of formulas. The cases 1, 3 and 4 are
very easy. The case of equalizers is similar to that of products worked out above. The
rest are more or less tautologous as shown by the last two proofs.
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Chapter 3

Axioms and rules of inference
valid in categories

§1 Some simple rules

We begin by discussing a small fragment of L∞ω, which we call Horn-logic, and denote it
by LH . The only logical operator in LH is finite conjunction. Accordingly, the formulas
in LH are the ones that are built up from arbitrary atomic formulas using only

∧
applied to finite sets. Without loss of generality, the formulas can be taken to be finite
conjunctions

π1 ∧ · · · ∧ πn

of atomic formulas, together with > (true). For the purposes of this discussion, a sequent
of LH will mean one of the form φ⇒ ψ with single formulas φ, ψ of LH .

Throughout this section, let R be a category with finite left limits and let L be its
extended canonical language. Let T be a set of sequents of LH , σ a single sequent. Let
us write T |= σ for: σ is a logical consequence of T , meaning that whenever M is an
ordinary (Set-)structure that is a model of T , then also M is a model of σ. The following
simple result is an example for a completeness theorem more instances of which we will
see later.

Proposition 3.1.1 Suppose T |= σ and that every axiom in T is true in R (under the
canonical interpretation). Then σ is true in R.

Proof. The only kind of structures of type L we need are the functors Hom(A,−),
with objects A of R. Given A,

Hom(A,−) :R → Set

is the functor F such that F (B) = HomR(A,B) = Hom(A,B) and F (f) : Hom(A,B)→
Hom(A,B′) (for f :B → B′) is the map such that F (f)(g) = fg, for any g ∈ Hom(A,B).
Hence, F = Hom(A,−) is automatically a structure of type L, in the narrower sense of
the canonical language L; the sort B is interpreted as Hom(A,B), the operation symbol
f :B → B′ as F (f). Moreover, as is well-known and also easy to check, Hom(A,−)
preserves all projective (left) limits in R, and it preserves monomorphisms. Hence,
denoting Hom(A,−) by MA, we have that an n-ary predicate symbol R �

� //X1×· · ·×Xn,
and an n-ary operation symbol f :X1 × · · · × Xn → Y are interpreted by the subset
MA(R)

� � // MA(X1)× · · · ×MA(Xn) and the map MA(f) :MA(X1)× · · · ×MA(Xn)→

67
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MA(Y ), respectively; so we can regard MA as an interpretation in Set of the extended
canonical language L.

Let φ be a formula of LH and let R = [φ]~x
� � i // X = X1×· · ·×Xn be the canonical

interpretation of φ in R. We claim that the interpretation of φ by MA, (MA)~x(φ) is

nothing but MA(R) �
�MA(i) // MA(X). This is an easy consequence of the facts that MA

preserves left limits and that the interpretation of formulas in LH uses finite left limits
only.

An immediate consequence of this claim is that if a sequent of LH is true in R, then
it will remain true in all models MA, A ∈ ObR.

As a final preliminary step, consider monomorphisms R1
� � i1 // X and R2

� � i2 // X
and assume that for every A ∈ ObR, the subsets MA(R1), MA(R2) of X satisfy

MA(R1) ⊆ MA(R2). Then we claim that the subobject R1
� � i1 // X of X is ≤ the

subobject R2
� � i2 // X. In fact, as it is easy to see, it is enough to consider A = R1!

Now, assume the hypotheses of the proposition. Since every axiom in T is true in R,
every axiom in T is true in the structure MA, for any A ∈ ObR. By the assumption,

MA satisfies σ, for any A ∈ ObR. If σ = φ⇒ ψ, [φ]~x = R1
� � i1 // X [ψ]~x = R2

� � i2 // X

then MA(φ) is MA(R1) �
�MA(i1)// MA(X) and MA(ψ) is MA(R2) �

�MA(i2)// MA(X). Since
MA(R1) ≤ MA(R2) for any A ∈ ObR, we have R1 ≤ R2, i.e. φ ⇒ ψ is true in R, as
claimed. �

Remark For a more general context for the last proposition, c.f. Kock and Reyes [1977]
and the references there.

As an application of the last proposition, we complete the proof of 2.4.5, for the case
of products. Defining the subobject R �

� // A×B × C as we did there by

R = [fc ≈ a ∧ gc ≈ b]

we have that the two sequents σ1, σ2

Rabc ⇒ fc ≈ a ∧ gc ≈ b
fc ≈ a ∧ gc ≈ b ⇒ Rabc

are true in R.

Let σ3 be: fc ≈ fc′ ∧ gc ≈ gc′ ⇒ c ≈ c′,
and σ4: Rabc ∧Rabc′ ⇒ c ≈ c′.

Then clearly {σ1, σ2, σ3} |= σ4,

and {σ1, σ2, σ4} |= σ3,

in the sense of ordinary Set-models. Hence, by 3.1.1 σ3 is true in R iff σ4 is, as required
in the appropriate place the proof of 2.4.5.

We now turn to discussing the rest of the logical operators. We start with ∃f .

Proposition 3.1.2 Given X
f //Y , then the following are equivalent for arbitrary sub-

objects A of X and B of Y , provided that ∃fA exists:

(i) A ≤ f−1(B),

(ii) ∃fA ≤ B.
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The proposition is essentially equivalent to the definition of ∃fA. The direction
(i)→(ii) uses the universal property of the pullback f−1(B). We note that it is es-
sentially this form in which Lawvere [1965] first introduced the categorical notion of
existential quantifier. Similarly, he used that ‘adjoint’ formulation of ∀ as formulated in

Proposition 3.1.3 With the notation of 3.1.2, if ∀f (A) exists, then the following are
equivalent

(i) f−1(B) ≤ A,

(ii) B ≤ ∀f (A).

A generalization of 3.1.3 is

Proposition 3.1.3’ Supposing that ∀f (A1 → A2) exists, the following are equivalent for
any B → Y .

(i) f−1(B) ∧A1 ≤ A2,

(ii) B ≤ ∀f (A1 → A2).

Given subobjects A �
� // X × Y , and B �

� // Y , the previous propositions applied to the
projection πY :X × Y → Y , we obtain that

Corollary 3.1.4 A∼xy ⇒ B∼y
and ∃xA∼xy ⇒ B∼y
are equivalent, and similarly

B∼y ⇒ A∼xy
and B∼y ⇒ ∀xA∼xy
are equivalent, provided [∃xA∼xy] ([∀xA∼xy]) is defined. (Here A∼xy and B∼y are formulas

such that [A∼xy] = A �
� // X × Y , [B∼y] = B �

� // Y .)

Similar facts hold with an arbitrary formula φ(x, ~y) in place of A∼xy, etc., provided

[φ(x, ~y)], etc., are defined.

Proposition 3.1.6 The composition gf of two surjective morphisms is surjective.

Proof. Suppose A
f //B and B

g //C are surjective. Suppose D �
� // C is a monomor-

phism such that gf factors through it:

A B C

D

f //

h
))

g //

?�

OO

By the universal property of the pullback g−1(D), we have A→ g−1(D) such that

A B C

Dg−1(D)

f //

h

))��
//

g //

?�

OO

6�

HH

is commutative. Since f is surjective, g−1(D) → B is an isomorphism. Letting B →
g−1(D) be its inverse, the composite

B → g−1(D)→ D
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shows that g factors through D �
� // C. Since g is surjective, D → C is an isomorphism.

�

As an immediate consequence, we have the following

Corollary 3.1.6 Given A �
� // X

f //Y
g //Z,

∃gf (A) = ∃g(∃f (A)).

Consider the projection

X × Y × Z X × Y X

X × Z

p //

p′ '' q′

99
q //

and a subobject A→ X × Y × Z. We obtain

Corollary 3.1.7 ∃y∃zA∼xyz ⇐⇒ ∃z∃yA∼xyz
holds in R, provided the required interpretations exist in R.

The reason is that both sides, when interpreted, become ∃f (A) where f = qp = q′p′.
An easy fact is

Proposition 3.1.8 For A→ X, B → X, X
f //Y if A ≤ B and both ∃f (A) and ∃f (B)

exist, then ∃f (A) ≤ ∃f (B).

Next, we derive a formula connecting sups and ∃.
Proposition 3.1.9 Suppose Ri

� � // X (i ∈ I) and X
f //Y are given.

(i) Assume that
∨
i∈IRi, ∃f (

∨
i∈IRi) and ∃f (Ri) (i ∈ I) all exist. Then

∨
i∈I∃f (Ri) =

∃f (
∨
i∈IRi)

(ii) The same equality holds if we assume that
∨
i∈IRi, ∃f (Ri) (i ∈ I), and

∨
i∈I∃f (Ri)

all exist.

Proof. (ad i). ∃f (Ri) ≤ ∃f (
∨
i∈IRi) follows from 3.1.8. Assume that each ∃f (Ri)

� � // Y
factors through B �

� // Y . Consider f−1(B) �
� // X. We obtain that Ri ≤ f−1(B), i ∈ I.

Hence
∨
i∈IRi ≤ f−1(B) and thus

∃f (
∨
i∈IRi) ≤ B. �

The proof of (ii) is similar.

Corollary 3.1.10 With subobjects Ai
� � // X × Y , we have that ∃y

∨
i∈IAi∼ xy ⇐⇒∨

i∈I∃yAi∼ xy holds in R, provided the interpretations

[
∨
i∈IAi∼ xy], [∃y

∨
i∈IAi∼ xy], [∃yAi∼ xy]

or the ones [
∨
i∈IAi∼ xy], [∃yAi∼ xy], [

∨
i∈I∃yAi∼ xy] exist.

§2. Stability and distributivity
In order that sups and images behave sufficiently well, we have to require that they
be stable, i.e. stable under pullbacks. “Stability” is used here in the same sense as
“universality” is in SGA 4.
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Let L be the extended canonical language of R as before. All formulas and terms
are in L∞ω and [φ], [t] refer to the canonical interpretation.

Definition 3.2.1 (i) A morphism A
f //B is called stable surjective if it is surjective

and for every B′
g //B, f ′ :A×B B′ → B′ in the pullback diagram

A B

A×B B′ B′

f //
OO

g

OO

f ′
//

is surjective too.

(ii) Given A �
� // X

f //Y , the image ∃f (A) �
� // Y is called stable if the surjective map

h in
A X

∃f (A) B′

� � //

h
��
� � //

f
��

is stable surjective.

Given A
� � // X

f //Y , the stability of the image ∃f (A) is equivalent to the following.

Let Y ′
g //Y be any morphism. Form the pullback

X ′ X

Y ′ Y.

h //

f ′

��
f

��
g

//

Then we have that ∃f ′(h−1(A)) exists and equals g−1(∃f (A)).

Remark (ii) is the so-called Beck-Chevalley condition, c.f. e.g. Kock-Reyes [1977].

(iii)Given Ai
� � // X (i ∈ I) such that

∨
i∈IAi

� � // X exists, we say that the sup
∨
Ai is

stable if for any X ′
g //X,

∨
i∈Ig

−1(Ai) exists and equals to g−1(
∨
i∈IAi).

(iv) Given A1
� � // X, A2

� � // X, and X
f //Y , the generalized dual image

∀f (A1 → A2)→ Y

is called stable if for any

Y ′
g //Y,

for the pullback

X ′ X

Y ′ Y

h //

f ′

��
f

��
g
//

we have that ∀f ′(h−1(A1)→ h−1(A2)) exists and equals to g−1(∀f (A1 → A2)).

(v) Let φ be a formula of L such that [φ]~x exists, with ~x the sequence of free variables in
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φ. We say that φ is stable if every image, sup and dual image evaluated in the course
of computing [φ]~x is stable.

Given a sequence ~x of distinct variables ~x = 〈x1, . . . , xn〉, xi of sort Ai (an object
in R), let [~x] denote the product A1 × · · · × An. Let ~x, ~y be two sequences of distinct
variables, ~x contained in ~y. Let p be the canonical projection [~y]→ [~x].

A first consequence of the definition is

Proposition 3.2.2 With the previous notation, if φ is a stable formula with free variables
among ~x, we have that

M~y(φ) = p−1(M~x(φ)).

The proof is an easy induction on the complexity of φ.
Recall that φ(t/x) denotes the result of formally substituting the term t for x at each

occurrence of x in φ. Here t has the same sort as x. In elementary logic, one has the
substitution lemma saying that, roughly, one can evaluate φ(t/x) by first evaluating at t
and then using the value thus obtained as the value for x in evaluating φ. We are going
to state the substitution lemma for the categorical interpretation.

Let φ, t, x and φ(t/x) as above.

Substitution lemma 3.2.3 Suppose φ is a stable formula. Suppose t does not contain
the variable x. Let ~y be a sequence of variables not containing x but containing all free
variables in φ(t/x). Then we have a pullback diagram as follows

[φ]x~y [x]× [~y]

[φ(t/x)]~y [~y]

� � //

� � //

OO
〈[t]~y,id[~y]〉
OO

Remarks This uses the morphism

[t]~y : [~y]→ [x]

obtained by interpreting t. Also, if we denote 〈[t]~y, id[~y]〉 by g, the assertion is equivalent
to the equality [φ(t/x)]~y = g−1([φ]x~y).

As another remark, we note that, of course, we could substitute t for x even if t does
contain x free. However, in this case we can choose a free variable x′ such that x′ is new,
i.e. it does not occur in φ or t, form φ′ = φ(x′/x) and have φ(t/x) = φ′(t/x′). Now, the
last substitution is of the kind in the lemma. Applying the lemma and eliminating φ′ we
can show the existence of a pullback

[φ]x~y [x]× [~y]

[φ(t/x)]x~y [x]× [~y]

� � //

� � //

OO
〈[t]x~y,p〉
OO

where p is the canonical projection [x]× [~y]
p // [~y].

Proof of 3.2.2. The proof is by induction on the complexity of the formula φ. For
atomic formulas, the assertion follows from familiar commutation properties of left limit
diagrams. For conjunctions

∧
Σ, one has an automatic stability of infs that gives the
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desired result. For the rest of the logical operators, one has to use stability as postulated
for logical operators in φ. We will show the case φ = ∃zψ.

Without loss of generality, we assume that z does not occur in t, and z 6= x. Then we
have that the formula φ(t/x) is identical to ∃z(ψ(t/x)). Let A be the subobject [ψ]x~yz
of X = [x]× [~y]× [z] and consider the following pullback diagram, taking the role of the
pullback diagram in Definition 3.2.1(ii):

[x]× [~y]× [z] [~y]× [z]

[x]× [~y] [~y]

〈[t]x~yz,id[~yz]〉//

can.
��

can.
��

〈[t]x~y,id[~y]〉
//

Denote the last pullback diagram more briefly by

X ′ X

Y ′ Y

h //

f ′

��
f

��
g

//

as in 3.2.1(ii). Then [φ(t/x)]~y = [∃z(ψ(t/x))]~y

= ∃f ′([ψ(t/x)]~yz).

By the induction hypothesis, the substitution lemma is true for ψ. Apply it to get

[ψ(t/x)]~yz = h−1([ψ]x~yz) = h−1(A).

So [φ(t/x)]~y = ∃f ′h−1(A). By the stability of φ, and 3.2.1(ii), the latter equals

g−1(∃f (A)) = g−1([φ]x~y). �

The main consequence of the substitution lemma is

Proposition 3.2.4 For a stable formula ∃xφ, the sequent

φ(t/x)⇒ ∃xφ

is valid.

Proof. Without loss of generality, we can assume that x does not occur in t. Putting
together the diagrams of the substitution lemma and the definition of [∃xφ]~y we get the
commutative diagram

[φ(t/x)]~y [~y]

[φ]x~y [x]× [~y]

[∃xφ]~y [~y]

� � //

� � //
��

��

��

〈[t]~y,id[~y]〉=g
��

Since the composition [~y]
g // [x]× [~y]→ [~y] is the identity, [φ(t/x)]~y ≤ [∃φ]~y. �

Another formulation of the substitution lemma is 3.2.5 below. Let φ, or φ(x1, . . . , xn),
be a formula whose free variables are exactly the distinct free variables x1, . . . , xn = ~x.
Let t1, . . . , tn be arbitrary terms such that ti is of the same sort as xi (i = 1, . . . , n) and
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let ~y be a sequence of free variables containing all the variables in any of t1, . . . , tn. Let
φ(t1, . . . , tn) denote the result of substituting ti for xi, i = 1, . . . , n.

Corollary 3.2.5 With the above notation, if φ is stable, we have a pullback diagram

[φ(x1, . . . , xn)]~x [~x] = [x1]× · · · × [xn]

[φ(t1, . . . , tn)]~y [~y]

� � //

� � //

OO
〈[t1]~y,...,[tn]~y〉
OO

The proof can be given by repeated application of 3.2.3.
A direct consequence of stability is

Proposition 3.2.6 If the sup
∨
i∈IAi of subobjects of X is stable, and B is another

subobject of X, then
B ∧

∨
i∈IAi =

∨
i∈I(B ∧Ai).

As a consequence, if all finite sups exist and are stable, the subobjects of X form a
distributive lattice.

Similarly we have

Proposition 3.2.7 (i) If, for A �
� // X

f //Y , the image ∃f (A) is stable, and B �
� // Y

is another subobject, then

∃f (f−1(B) ∧A) = B ∧ ∃f (A).

(ii) The sequent
∃y(B∼ x ∧ A∼ xy) ⇐⇒ B∼ x ∧ ∃yA∼ xy

is valid if the formula ∃yA∼ xy is stable.

Next we formulate some special properties of infs and dual images. Allowing that
our remark might be obscure, we note that while the above principles were all intuition-
isitically valid, distributivity as we introduce it below is only classically valid.

In the rest of this section, we assume that R has finite sups, i.e., sups of finite families
of subobjects always exist.

Suppose the inf
∧
i∈IAi

� � // X exists. We say that it is distributive if for any B �
� // X,

B∨
∧
i∈IAi =

∧
i∈I(B∨Ai). We say that

∧
i∈IAi is distributive in a stable way (or stably

distributive) if for every X ′
f //X,

∧
i∈If

−1(Ai) is distributive. Note that stability of
finite sups implies that finite infs are distributive.

Given ∀f (A1 → A2) �
� // Y , with

A1

A2

X

Y

� z

,,
$ � 22

f

��

we say ∀f (A1 → A2) is distributive if for every B �
� // Y , ∀f (A1 → (A2 ∨ f−1(B)) exists

and is equal to ∀f (A1 → A2) ∨ B. We talk about distributivity in a stable way if (in
addition) ∀f (A1 → A2) is stable, and for every pullback diagram

X ′ X

Y ′ Y

h //

f ′

��
f

��
g

//
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∀f ′(h−1(A1) → h−1(A2)) is distributive. We call a formula (of the canonical language)
distributive if it is stable, and each inf and ∀f needed to evaluate it in R is distributive
in a stable way.

Finally, in this section, we formulate the second main fact about the categorical
interpretation. We ask the reader to look up the two formal systems we introduce
in Chapter 5. In the formal systems, axioms and rules of inferences are given and a
corresponding notion of derivability is defined. An instance of a rule of inference is of
the form

{σi : i ∈ I}
σ

with one or more hypotheses σi and a conclusion σ; each of σi, σ is a sequent. Let R
be a category with finite left limits, L its canonical language, and let F be a fragment
of L∞ω. We say that F is stable (distributive) (in R) if every formula in F can be
interpreted in R, and actually, every formula in F is stable (distributive). We say that
an instance of a rule is valid (in R) in case the truth of all the hypotheses of the instance
implies the truth of the conclusion in R.

We denote by T `1 σ (T `2 σ) the fact that “σ is a formal consequence of T”, according
to the formal system of Section 1 (Section 2) of Chapter 5. Here we call these two formal

systemsG1
T andG2

T , respectively. In other words, T `1 σ iff σ es obtained from the axioms
of G1

T by repeated applications of the rules of inference.

Soundness Theorem 3.2.8 (i) Assume R has stable finite sups. Assume the fragment
F is distributive in R, and T is a theory (set of sequents) in F all of whose elements are
true in R. Then all axioms of G1

T belonging to F , and all instances of rules of G1
T with

conclusions belonging to F , are valid in R. Hence, if T `1 σ and R satisfies all sequents
in T , then R satisfies σ (in the canonical interpretation).

(ii) Assume F is a coherent fragment (F ⊂ Lg∞ω), F is stable in R, and T is as before.
Then the same conclusion holds with respect to the “one sided” system G2

T .

Proof. Above we collected all the necessary facts needed for the proof.

(ad (i)) The axioms (A1) and the rules (
∧
⇒), (⇒

∨
) are direct consequences of the

definitions and the don’t use stability of distributivity.

(ad (A2)T=) The equality axioms that are added to T to form T= are all true under the
ordinary interpretation, and the are in LH , so by 3.1.1 they are true in R. Starting with
this fact, we have to use the substitution lemma to prove (A2)T= . If Θ⇒ Γ belongs to
T=, then it is true in R. Using the shorthand ~t for t1, . . . , tn,

[
∧

Θ(~t)]~y =
∧
θ∈Θ[θ(~t)]~y,

[
∨

Γ(~t)]~y =
∨
γ∈Γ[γ(~t)]~y.

Denoting 〈[t1]~y, . . . , [tn]~y〉 : [~y]→ [~x] by g, by 3.2.5 we have

[φ(~t)]~y = g−1([φ]~x)

for φ ∈ Θ, or φ ∈ Γ. Hence

[
∧

Θ(~t)]~y = g−1([
∧

Θ]~x) and [
∨

Γ(~t)]~y = g−1([
∨

Γ]~x)

by the stability of finite sups in R. Since A ≤ B obviously implies g−1(A) ≤ g−1(B),
we have

[
∧

Θ(~t)]~y ≤ [
∨

Γ(~t)]~y,
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hence clearly Φ, Θ(~t)⇒ Φ, Γ(~t) is true as desired.

(ad ⇒
∧

) By distributivity of the inf
∧
θ∈Θ[θ]~y, we have that∧

θ∈Θ[
∨

Ψ ∨
∧

Θ ∨ θ]~y = [
∨

Ψ ∨
∧

Θ]~y ∨ [
∧

Θ]~y = [
∨

Ψ ∨
∧

Θ]~y.

Suppose [
∧

Φ]~y ≤ [
∨

Ψ ∨
∧

Θ ∨ θ]~y for all θ ∈ Θ. By the definition of
∧

, we can take
the inf

∧
θ∈Θ of the right hand side sub objects and still have a valid inequality. By the

equality deduced first, we obtain exactly the desired conclusion.

(ad
∨
⇒) This is very similar to the previous proof, using 3.2.6 in the appropriate

place.

(ad ∃ ⇒) Since y does not occur in
∧

Ψ, by 3.1.2 (or 3.1.4) the hypothesis implies that

∃y(
∧

Φ ∧ ∃xθ(x) ∧ θ(y))⇒ Ψ

is true. Since y does not occur in
∧

Φ and ∃xθ(x), and by the stability of the sup in
[∃yθ(y)], 3.2.7 yields that the left-hand-side is equivalent to∧

Φ ∧ ∃xθ(x) ∧ ∃yθ(y)

hence to
∧

Φ ∧ ∃xθ(x). Therefore,∧
Φ ∧ ∃xθ(x)⇒ Ψ

is true as required.

(ad ⇒ ∃) Let ~y be the set of all free variables in the hypothesis. We assume that

[
∧

Φ]~y ≤ [
∨

Ψ]~y ∨ [∃xθ(x)]~y ∨ [θ(t)]~y.

By 3.2.4, [θ(t)]~y ≤ [∃xθ(x)]~y, hence [
∧

Φ]~y ≤ [
∨

Ψ]~y ∨ [∃xθ(x)]~y. By the free-variable-
proviso of the rule (⇒ ∃), ~y is exactly the set of free variables in the conclusion. Hence,
the last equality means exactly that the conclusion is true in R.

(ad ∀ ⇒) This is similar to (⇒ ∃); the details are omitted.

(ad ⇒ ∀) We use 3.1.3’ and the distributivity of the ∀-formula involved. Let ~x be the
set of free variables in the conclusion

X = [~x]× [~y]

Y = [~x]

f :X → Y the canonical projection

B = [
∧

Φ]~x
� � // Y

(then [
∧

Φ]~x~y = f−1(B) )

A1 = [φ(y)]~x~y
� � // X

A2 = [ψ(y)]~x~y
� � // X

C = [
∧

Ψ ∨ ∀~z(φ→ ψ)]~x
� � // Y

so [
∧

Ψ ∨ ∀~z(φ→ ψ)]~x~y = f−1(C).

With this notation, the hypothesis can be written

f−1(B) ∧A1 ≤ A2 ∨ f−1(c).
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Hence, by 3.1.3’, we have

B ≤ ∀f (A1 → (A2 ∨ f−1(c)))

provided the right hand side is defined. But of course [∀~z(φ → ψ)]~x = [∀~y(φ(~y) →
ψ(~y))]~x = ∀f (A1 → A2) and the latter is distributive. Hence ∀f (A1 → (A2 ∨ f−1(c)))
exists and is equal to [∀~z(φ → ψ)]~x ∧ C. Thus the last inequality is equivalent to the
validity of the conclusion of the rule.

The rule (CUT)T = is left to the reader. The free-variable-proviso is used as in (⇒ ∃).
(ad (ii)) The details are similar, and sometimes simpler, than those for (i). Since we
don’t have infinite infs or ∀’s, we don’t need distributivity. Also, since the sequence have
only one formula on the right hand side, we don’t need the blanket assumption on the
stability of finite sups (although of course, we need the stability of the sups that are
built into formulas of F ).

§3. Further categorical notions and their expression
by formulas

In this section we will relate some notions in SGA4 Exposé I, Section 10 with our present
framework. Notice that by our blanket assumption that all our categories have finite left
limits, some of the distinctions in SGA4 automatically disappear. Let R be a category
fixed throughout this section and L be the canonical language of R.

In SGA4, we have the definitions: an object 0 is an initial object if for every object
A, there is exactly one morphism 0→ A. 0 is a strict initial object if, in addition, every
morphism B → 0 is an isomorphism.

Proposition 3.3.1 Let 0 be the minimal subobject of 1, 1 the empty product. Assume
that 0→ 1 as the empty sup is stable. Then 0 is a strict initial object.

Proof. The stability means that the minimal subobject 0A → A is 0×A A.
� �can. project.//

Let f, g be two morphisms B //// 0A; we claim f = g. The reason is that both graph(f)
and graph(g) are subobjects of B× 0A = 0A×B ; by the minimality of 0A×B , graph(f) =
graph(g) = 0A×B , thus f = g. The claim implies that, a fortiori, the canonical projection
0A → 0 is a monomorphism. By the minimality of 0 �

� // 1, it follows that the canonical
projection 0A → 0 is an isomorphism. This clearly gives us a morphism 0 → A. By
referring to graphs again, it is easy to see that there can be only one 0 → A. Finally,

let B
f // 0 be a morphism. With R = graph(f)

� � // B × 0, we have the commutative
diagram

R B

B × 0

0.

∼ //

∼
��

� _

i
��

mM

||

{ [

〈idB ,f〉

yy

Since by minimality, i is an isomorphism too, it follows that f is an isomorphism. �

We have the following definition in loc. cit.:

Definition 3.3.2 (i) A family Ai
fi //B (i ∈ I) of morphisms is called an effective

epimorphic family if the following is satisfied: for any C and any family

Ai
gi //C (i ∈ I)
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such that for the pullback diagram

Ai ×B Aj
Ai

Aj
B

eji 22

eij

,,

fi
,,

fj

22

we have gie
j
i = gje

i
j, for any choice of i, j ∈ I, there is a unique morphism B

g //C
such that

gi = gfi

for all i ∈ I.

(ii) 〈fi : i ∈ I〉 is a universal (or stable) effective epimorphic family if, in addition, it

remains effective epimorphic after pulling back along any B′ h //B, i.e., for the pullback
diagrams

Ai B

Ai ×B B′ B′

fi //
OO

h

OO

f ′i

//

〈f ′i : i ∈ I〉 is effective epimorphic.

Remark This condition is equivalent to saying that the family (Ai
fi //A)i∈I belongs to

the finest Grothendieck topology in which the representable presheaves of R are sheaves:
c.f. loc. cit. or Chapter 1. Also notice that an effective epimorphic family is epimorphic,
meaning that whenever g1 and g2 are such that g1fi = g2fi for all i ∈ I, then g1 = g2.
This is a consequence of the uniqueness part of the definition.

Proposition 3.3.3 Assume that R has stable images, i.e. for every A
� � // X

f //Y ,
∃f (A)

� � // Y exists, and it is stable. Also assume that, for a given set I, sups of families
{Bi �

� // X; i ∈ I} of subobjects indexed by I exist and they are stable. Then the following
are equivalent:

(i) {Ai
fi //B : i ∈ I} is an effective epimorphic family.

(ii) B =
∨
i∈I∃fi(Ai).

Moreover, every effective epimorphic family indexed by I is stable.

Proof. (i) ⇒ (ii): Assume (i) and in addition, let D �
� ` // B be a monomorphism

such that each fi factors through `:

Ai ×B Aj Ai B,

D

eji // fi //

hi
"" `

<<
fi = `hi.

From fie
j
i = fje

i
j and the fact that ` is a monomorphism, we deduce that

hie
j
i = hje

i
j .

Hence, by (i), there is g :B → D such that

hi = gfi. Then

`hi = `gfi

i.e. fi = `gfi for all i ∈ I.
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Since the family is epimorphic, it follows that `g = idB . Considering now g` :D → D,
we have

`g` = ` idD

since both sides equal `. Since ` is a monomorphism, g` = idD. We see that our

assumptions on D ` //B leads to the conclusion that ` is an isomorphism.

Now assume that each ∃fi(A) �
� // B exists. To show that B =

∨
i∈I∃fi(Ai), take

D �
� ` // B, such that each ∃fi(Ai) ≤ D. Then D �

� ` // B will have the property we as-
sumed above, hence D, as a subobject, equals to B by what we proved above, completing
the proof.

(ii) ⇒ (i): This is the direction where we have to use the existence of stable images and
sups in an essential way. Assume (ii) and assume that the gi are given as in 3.3.2(i).
Consider the formula φ(b, c):∨

i∈I∃ai(fiai ≈ b ∧ giai ≈ c).

By assumption, the subobject R = [φ(b, c)] �
� // B × C exists. We claim that it is

functional, “with domain B and codomain C”.

First notice that the assumption gie
j
i = gje

i
j can be equivalently written as the truth

of the sequent

fiai ≈ fjaj ⇒ giai ≈ gjaj .

This can be easily seen, on the basis of our remarks in the previous chapter relating
fiber products and formulas. Consider

fiai ≈ b ∧ giai ≈ c ∧ fjaj ≈ b ∧ gjaj ≈ c′ ⇒ c ≈ c′.

Since this is a consequence of the previous sequent in ordinary models, by 3.1.1, it is
true in R. Using the stability of images, by 3.1.4 and 3.2.7 (or, by the validity of the
rule (∃ ⇒), c.f. 3.2.8), we infer

∃ai(fiai ≈ b ∧ giai ≈ c) ∧ fjaj ≈ b ∧ gjaj ≈ c′ ⇒ c ≈ c′

and then again

∃ai(fiai ≈ b ∧ giai ≈ c) ∧ ∃aj(fjaj ≈ b ∧ gjaj ≈ c′)⇒ c ≈ c′.

By the definition of sups, prefixing
∨
i∈I to the whole left side, what we get is still valid.

By stability and 3.2.6, and doing the same with
∨
j∈I , we obtain∨

i∈I∃ai(fiai ≈ b ∧ giai ≈ c) ∧
∨
j∈I∃aj(fjaj ≈ b ∧ gjaj ≈ c

′)⇒ c ≈ c′.

i.e., R∼bc ∧ R∼bc
′ ⇒ c ≈ c′, showing the first part of the claim that R is functional. For

later reference, we note that the truth of the sequent∨
i∈I∃ai(fiai ≈ b ∧ giai ≈ c) ∧ fjaj ≈ b⇒ gjaj ≈ c (1)

is contained in our previous arguments.

Turning to the second part, notice first of all

⇒ ∃c(giai ≈ c).
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Hence by 3.2.7, 3.1.7 and 3.1.10, we successively have that

fiai ≈ b ⇒ ∃c[fiai ≈ b ∧ giai ≈ c]
∃ai fiai ≈ b ⇒ ∃ai ∃c[fiai ≈ b ∧ giai ≈ c]
∃ai fiai ≈ b ⇒ ∃c ∃ai[fiai ≈ b ∧ giai ≈ c]∨

i∈I∃ai fiai ≈ b ⇒ ∃c
∨
i∈I∃ai[fiai ≈ b ∧ giai ≈ c]

are all true. The last left hand side, when interpreted, equals to the subobject∨
i∈I∃fi(Ai),

which equals to B by assumption. Thus we have

⇒ ∃c Rbc

as desired.
Having that R is functional, by 2.4.4 we have g :B → C such that

gv ≈ c ⇔
∨
i∈I∃ai[fiai ≈ b ∧ giai ≈ c]

is true (in R). The required equality gj = gfj is equivalent to saying

gb ≈ c ∧ fjaj ≈ b⇒ gjaj ≈ c

which is equivalent to (1) above.
Finally, we have to show the uniqueness of g. Suppose g′ has the property that

gi = g′fi for i ∈ I. Then we successively have

fiai ≈ b ∧ g′b ≈ c ⇒ giai ≈ c,
fiai ≈ b ∧ g′b ≈ c ⇒ fiai ≈ b ∧ giai ≈ c,

∃ai(fiai ≈ b) ∧ g′b ≈ c ⇒ ∃ai(fiai ≈ b ∧ giai ≈ c)
(
∨
i∈I∃ai(fiai ≈ b)) ∧ g′b ≈ c ⇒

∨
i∈I∃ai(fiai ≈ b ∧ giai ≈ c)

with justifications that should by now be familiar. Since the first conjunct ‘is true’ (it
is the full subobject B when interpreted), we obtain

g′b ≈ c⇒ gb ≈ c

i.e. g′ = g, as promised.
The ‘moreover’ part is clear on the basis of the equivalence of (i) and (ii) and the

assumed stabilities. �

Corollary 3.3.3’ If R has stable images, then any surjective morphism is an effective
epimorphism. Conversely, and effective epimorphism is always surjective (without any
hypothesis).

Proof. The first statement is contained in 3.3.3, with I a singleton. The second part
is established by our proof of the implication (i) ⇒ (ii) of 3.3.3.

As another application, we discuss disjoint sums.

Definition 3.3.4 We say that B is the disjoint sum of the objects Ai (i ∈ I), B =∐
i∈I Ai, with canonical injections fi :Ai → B if the following axioms hold:

(i) fiai ≈ fia′i ⇒ ai ≈ a′i (fi is a monomorphism)
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(ii) Ai∼ (b) ∧Aj∼ (b)⇒ ⊥ for i 6= j, i, j ∈ I.

(iii) b ≈ b⇒
∨
i∈IAi∼ (b);

here Ai∼ stands for ∃ai(fiai ≈ b).

The definition of disjoint sum in SGA4 is as follows: the diagram

Ai B

...

...

fi //

is a coproduct (i.e., and inductive limit), the fi are monomorphisms, and Ai ×B Aj is
an initial object, for i 6= j, i, j ∈ I. Also, the disjoint sum B =

∐
i∈I Ai is stable if for

any C
g //B, C =

∐
i∈I g

−1
i (Ai).

Proposition 3.3.5 Assume that R has stable images, stable sups indexed by the fixed
set I, and also, a stable empty sup. Then B =

∐
i∈I Ai, with canonical injections

fi :Ai → B, according to Definition 3.3.4, iff it is the disjoint sum according to the
definition in SGA4. Moreover, the disjoint sum

∐
iAi is stable.

Proof. Suppose the conditions of 3.3.4 are satisfied. By 3.3.4(ii) and 3.3.1, we have
that Ai ×B Aj is an (actually strict) initial object for i 6= j. We have to show that

Ai B

...

...

fi //

is a coproduct. By 3.3.4(iii) and 3.3.3, the family 〈fi : i ∈ I〉 is effective epimorphic.
Referring to the definition of ‘effective epimorphic’, we see that any system 〈gi : i ∈ I〉
of morphisms gi :Ai → C satisfies the ‘compatibility condition’ in 3.3.2; this is because
each fi is a monomorphism (by (i)) and Ai ×B Aj is an initial object for i 6= j. Hence,
for any such 〈gi : i ∈ I〉 there is a unique g :B → C such that gi = gfi as required.

The converse is left to the reader. �

Definition 3.3.6 A subobject R
� � // X ×X is called and equivalence relation (on X) if

the following are true in R

⇒ Rxx

Rxx′ ⇒ Rx′x

Rxx′ ∧Rx′x′′ ⇒ Rxx′′

Remark Using the arguments given for 3.1.1, it is easy to see that this definition is
equivalent to the one given in SGA4, which we don’t repeat here (c.f. Chapter 1).

Definition 3.3.7 Let R �
� // X × X be an equivalence relation. We call a morphism

X
p //Y a quotient of R if the following are satisfied

(i) ⇒ ∃x(px ≈ y)(p is surjective)

(ii) Rxx′ ⇒ px ≈ px′.

In SGA4, we find the following definition: Given an equivalence relation R �
� i // X×X,

or R
π1 //
π2

//X with πj = pj ◦ i, p1, p2 :X ×X → X the canonical projections, R is called
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effective if there is a commutative diagram

R X

X Y

π1 //

π2

��
p

��
p

//

which is cartesian (a pullback), and in which p is an effective epimorphism. Also, R is
called stable effective if p is a stable effective epimorphism.

Proposition 3.3.8 Every effective equivalence relation has a quotient. Conversely, if R
has stable images, then every equivalence relation having a quotient is stable effective.

Proof. Immediate by 3.3.3’. �

Proposition 3.3.9 Assume the equivalence relations in R are stable effective, in the
sense of SGA4 (c.f. after 3.3.7). Then R has stable images.

Proof. Let A
f //B be an arbitrary morphism. Let R �

� // A × A be the subobject

[fa ≈ fa′]. In other words, R is A ×B A
π1 //
π2

//A with π1, π2 the canonical projections.

Clearly, R is an equivalence relation (e.g. by 3.1.1). Let A
p //C be a quotient of R, by

3.3.8 p is surjective and since R is stable effective, p is stable surjective. It follows that

⇒ ∃a pa ≈ c (2)

holds in R and ∃a(pa ≈ c) is a stable formula. By the definitions involved, we also have

pa1 ≈ pa2 ⇔ fa1 ≈ fa2. (3)

Since p is an effective epimorphism, and

A×B A A

A C

π1 //

π2

��
p

��
p

//

is a pullback, by the definition of ‘effective epimorphism’ it follows that there is i :C → B
such that f = ip, we have

pa1 ≈ c1 ∧ pa2 ≈ c2 ∧ ic1 ≈ ic2 ⇒ c1 ≈ c2

(c.f. 3.1.1). By the stability of the formula ∃a(pa ≈ c) and (1), we successively have that
the following hold in R:

∃a1(pa1 ≈ c) ∧ pa2 ≈ c2 ∧ ic1 ≈ ic2 ⇒ c1 ≈ c2
pa2 ≈ c2 ∧ ic1 ≈ ic2 ⇒ c1 ≈ c2

∃a2(pa2 ≈ c2) ∧ ic1 ≈ ic2 ⇒ c1 ≈ c2
ic1 ≈ ic2 ⇒ c1 ≈ c2

(c.f. 3.2.7). The last fact means i is a monomorphism. �

Proposition 3.3.10 Assume that the equivalence relations in R are stable effective.
Assume that R has coproducts

∐
i∈I Ai indexed by the fixed set I. Then R has sups
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∨
i∈IAi of subobjects Ai, indexed by I, of a given object. If the coproducts indexed by I

are stable, then the sups indexed by I are stable as well.

Proof. Let Ai
� � αi // X be subobjects, i ∈ I. Let E =

∐
i∈I Ai be the disjoint sum

of the objects Ai, with canonical injections ji :Ai → E. Since
∐
i∈I Ai is a coproduct,

there is a unique f :E → X such that αi = fji, for i ∈ I.

E
∐
i∈I Ai C X D

Ai

g // //

h

55

f

&&� �

γ
// ? _δoo

� _
αi
��

ji

xx

α′i

%%

Using 3.3.9, let g :E → C be surjective and C
γ //X a monomorphism such that f =

γg. We claim that the subobject C
� � γ // X is the sup of the subobjects Ai

� � αi // X,

C =
∨
i∈IAi. To verify this, let the monomorphism D �

� δ // X be such that each αi
factors through δ, α = δα′i (i ∈ I). By the coproduct property of E, there is h :E → D
such that α′i = hji for i ∈ I. Then, for f ′ = δh, we have f ′ji = αi for i ∈ I, hence

f = f ′ = δh. Since ∃f (E) = C
� � γ // X and E

f //X factors through δ, it follows

that the subobject C
� � γ // X is ≤ the subobject D

� � δ // X. This shows that, indeed,
C =

∨
i∈IAi. Verifying stability is left to the reader.

Proposition 3.3.11 Assume that R has stable images, stable finite sups, quotients of
all its equivalence relations and disjoint sums. Then every epimorphism is surjective.

Proof. Suppose that A
f //B is an epimorphism. Let C = B

∐
B be the disjoint

sum, with canonical injections i1, i2 :B → C. Let A1∼ (c), A2∼ (c) denote the formulas
∃a(i1fa ≈ c), ∃a(i2fa ≈ c), respectively. Define the subobject R

� � // C × C by

R∼(c, c′) ⇔ c′ ∨ ((A1∼ (c) ∨ A2∼ (c)) ∧ (A1∼ (c′) ∨ A2∼ (c′))).

Using the distributivity of the subobject-lattices in R, it is quite easy to check that R

is an equivalence relation. Let C
p //D be a quotient of R; hence

R∼(c, c′) ⇔ pc ≈ pc′. (4)

Notice that by the definition of R, ⇒ R∼(i1fa, i2fa) is true, hence pi1f = pi2f . Since f
is an epimorphism, pi1 = pi2.

Using (4) again, pi1 = pi2 implies that

⇒ R∼(i1b, i2b)

holds. Since the sum C = B
∐
B is disjoint, i1b ≈ i2b is false, i.e., its interpretation is

the zero subobject. It follows that

⇒ (A1∼ (i1b) ∨ A2∼ (i1b))

holds. Again by disjointness, [A2(i1b)] = 0B , i.e., we have ⇒ A1∼ (i1b), i.e. ⇒ ∃a(i1fa ≈
i1b). Since i1 is a monomorphism, ⇒ ∃a(fa ≈ b) follows which is equivalent to saying
that f is surjective. �
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§4 Logical categories

In this section we introduce those kinds of categories that best represent first order logic,
both finitary and infinitary.

Definition 3.4.1 The category R is called logical if the following are satisfied:

(i) R has finite left limits,

(ii) R has stable finite sups,

(iii) R has stable images.

In the course of this work, it should become clear that the notion of a logical category
can be regarded as the basic notion in a categorical formulation of logic. In Chapter
8 we will show that, in a sense made precise there, logical categories are the same as
theories in a finitary coherent Lgωω. There are good reasons why it is better to take Lgωω
as basic rather than Lωω; we will discuss them below. Notice that Set, the category of
sets, is logical.

Definition 3.4.2 A functor F :R → S between logical categories is called logical if it
preserves finite left limits, finite sups and images.

Remarks E.g. the phrase “F preserves finite sups” means that whenever Ai (i ∈ I) are
subobjects of X in R, I is a finite set, then the subobject F (

∨
i∈IAi) of F (X) in S is

the sup of the subobjects F (Ai), i ∈ I:

F (
∨(R)
i∈IAi) =

∨(S)
i∈IF (Ai).

The notion of a logical functor is the categorical rendering of the notion of a model,
and of an interpretation of a theory in another theory, at the same time.

The notion of pretopos was introduced by Grothendieck, SGA4, Exposé VI, in con-
nection with coherent toposes. We will return to this connection in Chapter 9. One
of the main results of this work, Theorem 7.1.8 in Chapter 7, shows that pretopoi are
characterized by an interesting abstract property. On the other hand, in Chapter 8 we
show that every logical category can be ‘completed’ to a pretopos. First we state the
definition of a pretopos in our preferred terminology and the proceed to show that it is
equivalent to Grothendieck’s definition.

Definition 3.4.3 A pretopos P is a logical category having the additional properties:

(iv) P has quotients of equivalence relations,

(v) P has finite disjoint sums.

Remark In more detail, (iv) means that every equivalence relation in P has a quotient
in P, (v) means that every finite family of objects in P has a disjoint sum in P.

Grothendieck gives the following definition (SGA4, Exposé VI, 3.11) P is a pretopos
if (a) it has finite left limits, (b) P has stable finite disjoint sums (in the sense of SGA4,
c.f. above), (c) the equivalence relations of P are effective, (d) every epimorphism in P
is stable effective, (e) P is small. We will ignore the smallness condition and show that
Grothendieck’s definition (minus (e)) is equivalent to ours.

First assume that P is a pretopos according to 3.4.3. Then (b), (c) and (d) follow,
respectively, by 3.3.5, 3.3.8, 3.3.11 and 3.3.3’. Conversely, if P satisfies (a) to (d), then
P has stable effective equivalence relations (by (c) and (d) jointly). Hence, by 3.3.9
and 3.3.10 P is logical. Finally, as stated in 3.3.5 and 3.3.8, the requirements regarding
disjoint sums and equivalence relations are the same if we formulate them as in 3.4.3, or
as in (b) and (c).
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Notice that according to these arguments, (d) can be relaxed to read: “every effective
epimorphism is stable effective” without changing the notion of pretopos. Actually,
another inessential change is to drop (d) entirely but strengthening (c) requiring stable
effectiveness of equivalence relations. This last version should be considered the “SGA4
definition” in our opinion.

Notice that, as an immediate consequence of our definition of the notions, a logical
functor F :P → S automatically preserves finite disjoint sums, equivalence relations and
quotients of equivalence relations.

Next we give “infinitary generalizations” of our previous notion, finally arriving at
(Grothendieck) topoi and geometric morphisms. Let κ be an infinite regular cardinal
number.

Definition 3.4.4 A category R is called κ-logical if it satisfies:

(i) R has finite left limits

(ii)κ R has stable < κ-sups, i.e. every family of power < κ of subobjects of a
fixed object has a stable sup.

(iii) R has stable images.

Definition 3.4.5 A functor F :R → S between κ-logical categories is called κ-logical if
it preserves finite left limits, < κ-sups and images.

Definition 3.4.6 A κ-pretopos is a κ-logical category having the additional properties:

(iv) P has quotients of equivalence relations,

(v)κ P has disjoint < κ-sums.

Putting κ = ℵ0, we obtain the notion of (ordinary) pretopos.
If we remove the restrictions on the size of sups and sums we arrive at

Definition 3.4.7 A ∞-pretopos is a category P satisfying (i), (ii)∞, (iii), (iv), (v)∞
with (i), (ii) and (iv) from 3.4.5 and 3.4.6; and (iii)∞, (v)∞ as follows:

(ii)∞ P has stable sups of arbitrary sets of subobjects of a given object,

(v)∞ P has arbitrary disjoint sums (according to Definition 3.3.4).

This notion is practically the same as the notion of topos.

Proposition 3.4.8 A category P is a (Giraud) topos (c.f. 1.4.3 if and only if it is an
∞-pretopos and has a set of generators.

The proof is immediate on the basis of 3.3.5, 3.3.8 (for the ‘if’ direction) and 3.3.9,
3.3.10 (for the ‘only if’ direction).

Definition 3.4.9 A functor M : E1 → E2 between ∞-pretopoi is ∞-logical if it preserves
finite left limits, arbitrary sups and images.

Proposition 3.4.10 A functor M : E1 → E2 between (Giraud) topoi (or ∞-pretopoi) is
continuous (or M is an E2-model of E1, c.f. Chapter 1, Section 3) if and only if M is
∞-logical.

Proof. Suppose M is continuous. Then M preserves effective epimorphic families. So
it preserves images. If

∨
i∈IAi = B → X, then (Ai → B)i∈I is an effective epimorphic

family (c.f. e.g. 3.3.3). Hence M preserves sups. It follows that M is ∞-logical. Con-
versely, if M is∞-logical then by 3.3.3 it immediately follows that M preserves effective
epimorphic families. �

Finally, we fill in the holes that were left in Chapter 1.
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Proposition 3.4.11 (= 1.4.6) In an∞-pretopos (in a Giraud topos), every epimorphic
family is stable effective.

Proof. Suppose that (Ai
fi //A)i∈I is an epimorphic family. Consider the subobject

B =
∨
i∈I∃fi(Ai)

� � j // A. With gi :Ai → B such that igi = fi (for i ∈ I), it is easy

to see that B =
∨
i∈I∃gi(Ai). Hence by 3.3.3, (Ai

gi //B)i∈I is an effective epimorphic

family. Using only the epimorphic property of (Ai
fi //A)i∈I , we can directly verify that

B
j //A is an epimorphism.

Ai B A Cgi
//

fi

))
j

// ////

By 3.3.11, j is surjective and since it is a monomorphism, j is an isomorphism. Hence

(Ai
fi //A)i∈I is an effective epimorphic family, since (Ai

gi //B)i∈I is such.

The stability of (Ai
fi //A)i∈I is asserted, in fact, in 3.3.3. �

Proposition 3.4.12 (= 1.3.13) If a functor M : E1 → E2 between topoi preserves
finite left limits and all small inductive limits, then M preserves (effective epimorphic)
families.

Proof. From the hypothesis is follows that M preserves disjoint sums (defined in the

sense of SGA4). Moreover, if R
p1 //
p2

//A is an equivalence relation in E1 and p is a quotient

of R, i.e.,

R

A

A

B

p1 33

p2 ++

p

++

p

33

is both a pullback and a push out, then the same is true of

MR

MA

MA

MB

Mp1 33

Mp2
++

Mp
++

Mp

33

en E2. From these two facts it follows, through the ways images and sups are constructed
from quotients of equivalence relations and disjoint sums (coproducts) in 3.3.9 and 3.3.10,
that M preserves images and sups. Finally, by 3.3.3, it follows that M preserves effective
epimorphic families. �

On Sublemma 1.4.10, we should say this. Let I :R → S be conservative and left
exact. If A and B are subobjects of X in R, then from IA ≤ IB (as subobjects of IX)
in S it follows that A ≤ B; this is immediately seen by considering the monomorphisms
A×X B → A. Next, look at the sequents defining equivalence relations in 3.3.6. Using
the left exactness of I as well as the last statement, we have that if these sequents are
true for the image IR �

� // IX × IX, then they are true for R �
� // X ×X, what is the

claim in 1.4.10 about equivalence relations. Faithfulness follows by considering a sequent
expressing the equality of two morphisms.

Lemma 3.4.13 Suppose F is a κ-logical morphism between κ-pretopoi (κ is an infinite
regular cardinal or κ =∞). Then F preserves disjoint < κ sums.
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This is immediate on the basis of the “logical” definition 3.3.4 of disjoint sum.

§5 Summary of the two main facts
Recall that we called the two main facts in applying logic to categories: the first, sum-
marized mainly in 2.4.5, is the fact that properties of diagrams could be expressed by
using formulas (note that additional such facts were proved in this Chapter); the sec-
ond, 3.2.8, is the soundness of certain ordinary ‘complete’ formal system with respect
to the categorical interpretation. Both these facts were formulated in the context of the
canonical language of a given category and the canonical interpretation of this language.
First we show how they generalize to a much more general situation.

Let us start with an arbitrary category S (with finite left limits), an ‘arbitrary’
language L and an interpretation of L in S, i.e. an S structure of type L

M :L→ S.

Let LS be the canonical language of S. We can translate the logic L∞ω into (LS)∞ω
such that M ‘becomes’ the canonical interpretation of LS as follows. First of all, regard
M as a map between languages

M :L→ LS .

In more detail, a sort s of L is mapped to the sort M(s) of LS (an object of S),
and operation symbol f : s1 × · · · × sn → s of L is mapped to the operation symbol
M(f) :M(s1)× · · · ×M(sn)→M(s) of LS (which is the same as the morphism M(f),
together with the specification of the product M(s1) × · · · ×M(sn)) and similarly for
predicate symbols. In connection with the translation M :L → LS we’ll write sM , fM

etc. for M(s), M(f), respectively.
Now, this ‘translation’ of L into LS carries over naturally to the corresponding logics.

First of all, the variables of L should be mapped in a 1-1 way into the variables of LS
such that the free (bound) variables of sort s are mapped to free (bound) variables of sort
sM . To simplify notation, let us identify variables of sort s with those of sM ; though,
strictly speaking, one has to be careful since for distinct s and s′ sM might be equal to
(s′)M . Once this identification is made, we can define the translate φM of a formula of
L∞ω to be a formula in (LS)∞ω by simply replacing each symbol of L by its M -image
in LS . Of course, this involves a translate tM of terms t of L as well. E.g. we will have

(ft1 · · · tn)M = (fM )tM1 · · · tMn ,
df

(Pt1 · · · tn)M = (PM )tM1 · · · tMn
(
∨

Σ)M =
∨
{φM : φ ∈ Σ},

etc. We also have the natural notion of the M -translate σM of a sequent σ. Now notice
the following trivial fact:

Proposition 3.5.1 The interpretation of a formula φ in L∞ω by M in S coincides with
the canonical interpretation of its translate φM by the canonical interpretation of LS .
I.e.,

M~x(φ) = [φM ]~x

in the sense that either side is defined once the other is and they are equal (as subobjects
of the object M(~x) in S). As a consequence, for a sequent σ in L∞ω, M |= σ iff σM is
true in the canonical interpretation of LS .

We want to apply this device to the following situation. Let M :R → S be a
functor between the categories R and S. We are interested in whether M preserves e.g.
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finite left limits, or images, etc.; in general, whether, for a given diagram in R with a
certain property, the image of the diagram by M in S still has the same property (now
understood in S). We say that a property P of a diagram D is described by axioms
if a result of the sort of the ones listed in 2.4.5 is true, in an arbitrary category. This
means that there is a set of axioms, call it A, such that the diagram D in R has P iff
(each axiom in ) A is true in the canonical interpretation of LR. Actually, we should
talk about AR, the specialization of the general form of the axioms in the category
R. Notice the following fact: (*) Given the functor M :R → S, the set AR of axioms
formulated for D in R, when translated vie the above translation (·)M of LR into LS
becomes the set AS , the ‘same’ axioms formulated for the image M(D). This can be
seen by inspecting each item referred to in 2.4.5.

Next, let us emphasize that any functor M :R → S is an S-structure of type LR.
Conversely, let M be an S-structure of type LR,

M :LR → S

M is almost a functorR → S; namely it maps objects ofR to objects of S and morphisms
of R into morphemes of S, with the appropriate domains and codomains. If we require
that M also satisfies the axioms in groups 1 and 2 before 2.4.5 (axioms for identity and
commutative diagram), then (and only then) M becomes a functor R → S. This means
that the property of M :LR → S of being a functor is described by axioms.

Metatheorem 3.5.2 Suppose D is a diagram in R with property P where P is a
property described by a set of axioms AR, formulated in LR. Let M be an S-structure
M :LR → S. Then M satisfies all axioms in AR if and only if M preserves the property
P for D, i.e. the image M(D) of D by M in S has property P understood in S.

Proof. M(D) has property P off (**) the axioms in AS are true in the canonical
interpretation of LS . Now, by fact (*) the axioms in AS are exactly the M -translates of
the axioms in AR. Hence, by 3.5.1, (**) is equivalent to saying that M , an S-structure
of type LR, satisfies AR. �

As an example, we mention the following. Suppose we have the product diagram

A
foo C

g //B in R and M :R → S is a functor. Then M preserves the given product
off M (as an S-structure of type LR) satisfies the “axioms for product” stated for the
given diagram.

We will now apply our discussion to a particular case. Let R be a logical category.
We define the internal theory TR of R (as a logical category) as given by the following
axioms in (LR)ωω:

(i) the ‘axioms of category’, i.e., (a) each axiom for identity (Group 1 before 2.4.5)

for every identity map A
f //A, f = idA in R, (b) each axiom for commutative diagram

(Group 2), for each commutative diagram

A

B

C

f 55

h
//

g

))

in R;

(ii) the ‘axioms for left limits’, i.e. those in groups 3, 4, 5 and 6 (3 is superfluous),
corresponding to diagrams in R that do indeed have the respective property;

(iii) axioms for finite sups, i.e. all those acceding to Group 8, with finite sets I, for
true sups in R;
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(iv) axioms for images, i.e. all those according to Group 9, for true images in R.

Notice that each axiom in TR is true in R, by 2.4.5. Recall that every functor
M :R → S is a structure of type LR and conversely, every S-structure M of type LR is
a functor M :R → S once it satisfies axioms (i).

The next theorem is the full formulation of the ‘first main fact’ for the ‘logical’ case:

Theorem 3.5.3 Given the logical categories R and S, the logical functors M :R → S
are exactly the S-models of the internal theory TR of R.

The theorem is immediate on the basis of our lengthy discussion above.
We have a similar result for the “κ-logical” case. Now the axioms include all axioms

for < κ-sups, call the (ii)κ.
Notice that the internal theory of a logical category is a finitary coherent theory.

The internal theory of a κ-logical category is formulated in Lg∞ω, actually Lg∞ω (the last
notion refers to the fact that all disjunctions are cover sets of power < κ).

Next we turn to a discussion of the use of the second main fact, Theorem 3.2.8. Let
M :L→ S be an S-structure of type L, F a fragment of L∞ω. We say that F is stable
(distributive) with respect to M if the translate φM in LS of every formula φ of F is
stable (distributive) as defined above. (E.g., if S is a logical category, F is Lgωω, then F
is stable with respect to any M :L→ S.)

Theorem 3.5.4 (i) Assume S has stable finite sups. Assume the fragment F is dis-
tributive with respect to M :L → S and T is a theory in F all of whose elements are
true in S. Then if T `1 σ, then M |= σ.

(ii) Assume F is a coherent fragment, F is stable with respect to M :L→ S and T is as

before. Then, if T `2 σ, then M |= σ.

The proof is immediate, using 3.5.1 and 3.2.8. �

Finally, we show a typical application of the two main facts, together with a theorem,
the Gödel completeness theorem, borrowed from logic. In Chapter 5, we will prove

Completeness Theorem Let T be a finitary coherent theory (in Lgωω), σ a sequent of

Lgωω. Suppose that σ is not a consequence of T , T `2/σ. Then there is a model M of T
that is not a model of σ.

We use Göde’s completeness theorem to prove

Theorem 3.5.5 Completeness Theorem for logical categories (Deligne-Joyal)
Let R be a small logical category.

(i) If A and B are two subobjects of X in R such that A 6≤ B then there is a logical
functor M :R → Set such that M(A) 6≤M(B) (the latter being a subset of M(X)).

(ii) There is a set I (of the power max(ℵ0, card(Ob(R)),homR(A,B) (A,B∈Ob(R)))
and a logical functor

M :R → SetI

that is faithful.

Proof. (AD (i)): Let L be LR, the canonical language of R. Let A∼ (x), B∼ be formulas
in Lgωω such that [A∼ (x)] = A, [B∼ (x)] = B. Notice that the assumption means that
A∼ (x) ⇒ B∼ (x) does not hold in the canonical interpretation, i.e., in R. Let T = TR,
the internal theory of R. We have that the axioms of T are true in R. We also have
that T `2/A∼ (x) ⇒ B∼ (x); otherwise by the soundness theorem (either 3.2.8, or 3.5.4)
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we would have that A∼ (x) ⇒ B∼ (x) would be true in R, contrary to the assumption.
Hence, by the completeness theorem, there is a model M of T , M :T → Set such
that M |=/ A∼ (x) ⇒ B∼ (x). Hence, by the completeness theorem, there is a model M of
T , M :T → Set such that M |=/ A∼ (x) ⇒ B∼ (x). Using 3.5.3, M is a logical functor
M :R → Set. Clearly M(A) 6≤M(B) as required.

(AD (ii)): For any object X, and any pair A, B of subobjects of X such that
A 6≤ B, form i(X,A,B), and let I be the set of all such indices i. For i = (X,A,B), let
Mi :R → Set be a logical functor such that Mi(A) 6≤Mi(B). The functor M :R → SetI

is defined so that its ith coordinate is Mi. We leave it to the reader to check that M
satisfies (ii).

Remarks 1. There is a “purely categorical” proof of this theorem, c.f. a sketch in
Reyes [1974] or Kock and Reyes [1977] and the proof of the related theorem of Deligne
in SGA4, Exposé 6, pp. 63-72. Inspection shows however that the categorical proof is
no essentially different from the usual proofs of Gödel completeness theorem (c.f. the
remark in Kock and Reyes [1977] on the connection to Henkin’s method).

2. The categorical completeness theorem, 3.5.5, is equivalent to Göde’s completeness
theorem. First of all, we have shown that 3.5.5 can be derived from Gödel’s completeness
theorem formulated for the formal system “ `2 ” (described in Chapter 5). Conversely,

Göde’s completeness for “ `2 ” can be inferred from 3.5.5(i) via the construction of the
“associated logical category” of a theory, described in Chapter 8. Finally, we emphasize
that although negation and →, ∀ are not present in `2 or in the notion of a logical
category, completeness for logical categories, i.e. for coherent logic, already contains
completeness for full first order logic. The reason is that a logical functor M :R →
S between logical categories automatically preserves every Boolean complement that
exists in R. Therefore, if we modify logical categories and logical functors to Boolean
categories and Boolean functors by requiring the existence and preservation of Boolean
complements, the the Boolean version of 3.5.5 is simply a special case of 3.5.5 itself.
The Gödel type completeness for an appropriate formal system can now be inferred via
the construction of a Boolean category associated to a theory in full finitary first order
logic.



Chapter 4

Boolean and Heyting valued
models

Introduction

In this chapter we discuss the interpretation of formulas of L∞ω in a certain kind of
Grothendieck topos, namely the category of sheaves over a partial ordering, and as the
main special case of this the category of sheaves ShB over a complete Boolean algebra
B. D. Higgs [1973] has given an alternative description of such toposes (for the case of
a complete Heyting algebra). This description will be useful for us because it identifies
models in ShB in the sense of Chapters 1 and 2 with what logicians have called a (general)
B-valued model, c.f. e.g. Mansfield [1972]. In Chapter 5, working with the formulation
familiar to logicians, we present detailed proofs of completeness theorems for Boolean
valued models. Using the Higgs identifications, in Chapter 6 we will be able to derive
“purely categorical” formulations of “completeness theorems” from those in Chapter 5.

In Section 1, we give definitions related to Heyting valued (and in particular, Boolean-
valued) models in the ordinary “logical” sense. Some refinements of he ordinary formu-
lation are needed because of the possibility of “empty domains”.

In Section 2, we describe the identifications mentioned above. Finally, in Section 3,
we state some facts concerning Boolean valued models that are needed later.

§1 Heyting and Boolean valued models

Let H be a complete Heyting algebra (c.f. e.g. Rasiowa and Sikorski [1963], in particular,
H may be a complete Boolean algebra). An H-valued structure M , appropriate for a
given many-sorted language L, consists of

(i) The (partial) domains |M |s for each sort s in L, which are arbitrary sets. The
sets |M |s can be stipulated to be non-empty, and also disjoint from each other, without
loss of generality.

(ii) Interpretations PM , fM , cM and ≈M of all the symbols P (relation symbol), f
(operation symbol), c (individual constant) in L, and ≈, as follows. Let P be e.g. ternary
with places having the respective sorts s1, s2, s3. Then PM : |M |s1×|M |s2×|M |s3 → H.
fM and cM are defined without reference to H, exactly as in the two-valued case (c.f.
Chapter 2, Section 1). (Remark there is a natural “Heyting” (“Boolean”) interpretation
of operations that is more general than ours, but it turns out that our more restricted
notion is sufficient for our purposes.) The interpretation of equality is actually given

91
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separately on each partial domain |M |s. We have ≈M,s : |M |s×|M |s → H for each sort
s in L. Usually, we omit the second superscript and write ≈M .

(iii) “Membership functions” ‖ ·‖ = ‖ ·‖s : |M |s → H, for each s. ‖a‖ serves to tell us
“with what value in H the existence of a ∈ |Ms| as an element of M is admitted.” E.g.,
if ‖a‖ = 0, then we can discard a from |M |s without any essential change in M (c.f.
below). It is essential that elements a ∈ |M |s can have all “degrees” ∈ H of existence
‖a‖ in M . We will write ‖~a‖ for ‖a1‖ · ‖a2‖ · · · ‖an‖ if ~a = 〈a1, a2, . . . , an〉, (for β, γ ∈ H,
β · γ is synonymous with β ∧ γ). (Remark strictly speaking, the membership functions
are not necessary since it will turn out that they could be defined as ‖a‖ = ‖a ≈ a‖, c.f.
below. We have found, however, that their separate mention is more natural.)

(iv) There are some conditions on the above items (basically: equality axioms) that
can be formulated later more conveniently.

We will use the notation |M |x, or even |M |t, for |M |s if x is a variable of sort s, t is
a term of sort s.

Given M , an H-valued structure for the language L, the terms of L have the obvious
interpretation in M just as in the case of ordinary models. In particular, if t is a term,
x1, . . . , xn are free variables including all the variables in t, ai ∈ |M |xi (i = 1, . . . , n)
then

tM [a1/x1, . . . , an/xn]

or simply
tM [a1, . . . , an]

is defined and it is an element of |M |t.
Next we describe the interpretation of L∞ω in M . Given a formula φ in L∞ω, distinct

free variables x1, . . . , xn such that each free variable of φ is among the xi (but some xi
might not actually occur in φ) and elements ai ∈ |M |xi , we are going to define the
H-value of φ when xi is interpreted by ai, in notation

‖φ[a1/x1, . . . , an/xn]‖M , or simply

‖φ[a1, . . . , an]‖, or

‖φ[~a]‖ if ~a = 〈a1, . . . , an〉.

A slight change in the definition of ‖φ[~a]‖ with respect to the familiar definition is
effected by the presence of the “membership-values” ‖a‖. In particular, the definition
is so designed that we always have ‖φ[~a]‖ ≤ ‖a‖, i.e., the truth-value of a formula is no
greater that the degree of existence of the interpreting elements. Accordingly, we define
for an atomic formula φ := Pt1 · · · tm

‖φ[~a]‖ = ‖~a‖ · PM (b1, . . . , bm)

where bi = tMi [~a]. Similarly,

‖t1 ≈ t2 [~a]‖ = ‖~a‖ · ‖b1 ≈ b2‖

with bi as before. The following inductive rules complete the definition: (on the right
hand sides ¬, →, ∧ (or: ·) denote the usual operations in H,

∧
X ,

∨
X denote the

order-theoretic infimum and supremum, respectively, of the elements in the set X ⊂ H)

(1) ‖¬φ[~a]‖ = ‖~a‖ · ¬‖φ[~a]‖

(2) ‖(φ→ ψ)[~a]‖ = ‖~a‖ · (‖φ[~a]‖ → ‖ψ[~a]‖)
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(3) ‖(
∧

Θ)[~a]‖ = ‖~a‖ ·
∧
{‖θ[~a]‖ : θ ∈ Θ}

(4) ‖(
∨

Θ)[~a]‖ = ‖~a‖ ·
∨
{‖θ[~a]‖ : θ ∈ Θ}

(5) ‖(∀xφ)[~a]‖ = ‖~a‖ ·
∧
{‖~a‖ → ‖φ[a/x,~a]‖ : a ∈ |M |x}

(6) ‖(∃xφ)[~a]‖ = ‖~a‖ ·
∨
{‖~a‖ · ‖φ[a/x,~a]‖ : a ∈ |M |x}.

Remarks The interpretation of the formulas of the form ∀~z(φ → ψ) is obtained by
reading them as if they were built up using the primitives ∀, →. The factor ‖~a‖ on the
right in line (3) can be omitted whenever Θ is non empty without changing the value
(since then ‖~a‖ ≥ ‖θ[~a]‖ for some θ ∈ Θ). The factor ‖~a‖ in lines (4) and (6) can
always be omitted without changing values. If ~a is the empty sequence (i.e., there are
no free variables to be interpreted), then ‖~a‖ is understood (as an “empty meet”) to be
1 = 1H. In a natural way, we may use abbreviated notation, e.g. as follows. For

‖(x ≈ y)[a/x, b/y]‖

we write ‖a ≈ b‖. So we have

‖a ≈ b‖ = ‖a‖ · ‖b‖ · (≈M (a, b)).

Also, ‖P (a, b, c)‖ = ‖P (x, y, z)[a/x, b/y, c/z]‖ = ‖a‖ · ‖b‖ · ‖c‖ · PM (a, b, c), etc.

Turning to the interpretation of Gentzen sequents, we say M satisfies Φ⇒ Ψ, M |=
Φ⇒ Ψ if

‖(
∧

Φ)[~a]‖ ≤ ‖
∨

Ψ[~a]‖

for any ~a = 〈a1, . . . , an〉 in |M |. Here ai interprets xi, and x1, . . . , xn are exactly the
distinct free variables occurring in Φ ∪ Ψ. This definition coincides with saying that
M |= Φ⇒ Ψ if ‖∀~x(

∧
Φ→

∨
Ψ)‖M = 1.

Finally, we can return to point (iv) above concerning the requirements on the H-
valued structure M . These are that M should satisfy the following axioms of equality:

⇒ x ≈ x
x ≈ y ⇒ y ≈ x

x ≈ y, θ(x) ⇒ θ(y)

where x, y are variables of the same sort, θ(x) is any atomic formula (and θ(y) is obtained
by substituting y for x in θ(x)). Spelling out some consequences of these requirements,
we obtain that

‖a ≈ a‖ = ‖a‖
‖a ≈ b‖ = ‖b ≈ a‖

‖a ≈ b‖ · ‖b ≈ c‖ ≤ ‖a ≈ c‖
‖a ≈ b‖ ≤ ‖a‖ · ‖b‖

and also
‖a ≈ b‖ ≤ ‖fM (a) ≈ fM (b)‖
‖~a‖ ≤ ‖fM (~a)‖.

We note that every H-valued structure will satisfy “the axiom for equality with
respect to an arbitrary formula”, in other words

‖a1 ≈ a′1‖ · · · ‖an ≈ a′n‖ · ‖φ[~a for ~x]‖ ≤ φ[~a for ~x]‖.
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Finally, let us point out that the ordinary (standard) interpretation of L∞ω is essen-
tially a special case of the above, namely, when H is the two-element Boolean algebra
2. Given M , an H-valued structure with H = 2 according to the codification in this
section, define M∗ by |M∗|s = {a ∈ |M |s : ‖a‖M = 1}, fM∗ = fM restricted to the
|M |s, etc. Since ‖~a‖M ≤ ‖fM (~a)‖M , the operations fM

∗
are well-defined on the sets

|M∗|s. M∗ will still differ from an ordinary structure since we have that ≈M∗ is not
necessarily the true identity. But the relations ≈M,s will be sufficiently well-behaved so
that we can perform the familiar construction of the quotient, M ′ = “M∗/ ≈M∗”. M ′

is the ordinary structure that M can be identified with for all practical purposes.

§2 Sheaves over Heyting algebras

Any partial ordering P can be considered a site (c.f. Chapter 1) in the following well-
known way. First of all, P is regarded as the category whose objects are the elements of
P and whose morphisms are: exactly one arrow a→ b for those a, b such that a ≤ b, no
arrow between a, b otherwise (the definitions of composition and identity morphisms are
the uniquely given). Secondly, using the order theoretic supremum, we declare that the
family (ai)i∈I (where ai ≤ a for all i ∈ I) covers a iff

∨
i∈Iai = a where

∨
i∈Iai stands

for the sup of the ai. (
∨
i∈Iai = a hence means that a is the smallest element such that

ai ≤ a for all i ∈ I.) If, in particular, P is a Heyting algebra, then P as a category will
have left limits. The topology on P just described is identical to the canonical topology
in the sense of Chapter 1, Section 1.

ShP denotes the category of sheaves over P as a site. For P = H, a complete Heyting
algebra, D. Higgs has given an alternative description of ShH. We are going to define
the category of H-valued sets, denoted SetH. An object of SetH, i.e., and H-valued set,
is a pair (X, δ) with X an arbitrary set and

δ :X ×X → H

satisfying the following conditions:

δ(x, x′) = δ(x′, x)

δ(x, x′) · δ(x′, x′′) ≤ δ(x, x′′).

(Intuitively, δ(x, x) is the degree of existence of x in (X, δ), and is denoted sometimes
‖x‖. Also, δ(x, y) is the degree of equality of x and y, and it is denoted ‖x = y‖ as well.
Notice that ‖x = y‖ ≤ ‖x‖ · ‖y‖, in particular, ‖x = x‖ = 1 may fail.) A morphism in
SetH,

f : (X, δ)→ (Y, ε)

is a map
f :X × Y → H

such that the following are true:

ε(y, y′) · f(x, y) ≤ f(x, y′)

δ(x, x′) · f(x, y) ≤ f(x′, y)

f(x, y) · f(x, y′) ≤ ε(y, y′)

δ(x, x) =
∨
y∈Y f(x, y).

This last condition implies that

f(x, y) ≤ δ(x, x)
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and the third one that
f(x, y) ≤ ε(y, y).

(Intuitively, we have in mind an “H-valued map” F :X → Y for which it makes sense
to ask for the value of y = F (x), for x ∈ X, y ∈ Y , denoted ‖y = F (x)‖. What we
actually define is the function ‖· = F (·)‖, i.e., the intention is that f(x, y) = ‖y = F (x)‖.
Under this interpretation, the above conditions express the “H-valued functionality” of
F . E.g., the last condition says that “F (x) is always defined” with value ‖x‖.)

The composition of two morphisms (X, δ)
f // (Y, ε) and (Y, ε)

g // (Z, η) is the func-
tion

h :X × Z → H
defined by

h(x, z) =
∨
y∈Y f(x, y) · g(y, z).

It is easy to check that h is actually a morphism and the law of associativity holds. The
identity morphism

i : (X, δ)→ (X, δ)

is defined by i(x, y) = δ(x, y).

Theorem 4.2.1 (D. Higgs [1973]). The categories ShH and SetH are equivalent.

It is the category SetH that we can relate ordinary logical construction to more
easily. The rest of this section is devoted to explaining in what precise sense an H-
valued structure for the language L, and a (categorical) interpretation L → SetH of L
is SetH are essentially the same thing.

Given M , an H-valued structure for L as defined in Section 1, this is how we define
M :L → SetH (there will not be any confusion by our use of M to denote this second
item too).

(i) For a sort s in L, we put M(s) to be the H-valued set (X, δ) = (|M |s, ‖· ≈ ·‖),
i.e.

δ(a, b) = ‖a ≈ b‖.
Since M satisfies the equality axioms, M(s) is indeed and H-valued set.

(ii) Notice that the product in SetH

(X1, δ1)× · · · × (Xn, δn)

is (X, δ) where X = X1 × · · · × Xn and δ(~x, ~x′) = δ1(x1, x
′
1) · · · δn(xn, x

′
n), with the

projections
πi : (Xi, δi)→ (X, δ)

i.e.,
πi :Xi ×X → H,

defined by πi(x
′
i, 〈x1, . . . , xn〉) = δi(x

′
i, xi).

Now, for an operation symbol f : s1 × · · · × sn → s we define M(f) :M(s1) × · · · ×
M(sn)→M(s) by

M(f)(〈x1, . . . , xn〉, x) = ‖x1‖ · · · ‖xn‖ · ‖x ≈ fM (x1, . . . , xn)‖.

The latter value is the value of the formula v ≈ f(u1, . . . , un) with ui interpreted by xi,
v by x. It is easy to check that M(f) thus defined is indeed a morphism

M(f) :M(s1)× · · · ×M(sn)→M(s)



96 CHAPTER 4. BOOLEAN AND HEYTING VALUED MODELS

in SetH.

(iii) Let P be an n-place relation symbol P �
� // s1×· · ·×sn. We define the subobject

M(P )
� � i // M(s1)× · · · ×M(sn) =

df
X as follows. As an object, we put M(P ) = (X, δ)

where δ(~x, ~x′) = ‖x1 ≈ x′1‖ · · · ‖xn ≈ x′n‖ · PM (x1, . . . , xn) where ~x = 〈x1, . . . , xn〉,
~x′ = 〈x′1, . . . , x′n〉. For the morphism i :M(P )→ X we put i(~x, ~x′) = δ(~x, ~x′) (“inclusion
map”). It is easy to check that i :M(P )→ X is a monomorphism in SetH.

Having legitimately defined M as an interpretation M :L→ SetH, we can evaluate
formulas of L∞ω in M , i.e., can consider M~x(φ)

� � // M(~x). We now establish a link
between this interpretation and the H-valued interpretation introduced in the preceding
section.

Given any formula φ of L∞ω, define the object M̂~x(φ) = (X, δ) in SetH as follows:

X = |M |x1 × · · · × |M |xn ,

δ(~a,~a′) = ‖a1 ≈ a′1‖ · · · ‖an ≈ a′n‖ · ‖φ[~a for ~x]‖M

It can be easily seen that (X, δ) is an H-valued set. Define i : M̂~x(φ) → M(~x) by
i(~a,~a′) = δ(~a,~a′) to obtain the subobject

M̂~x(φ)
� � i // M(~x)

Proposition 4.2.2 (i) With the above notations, M̂~x(φ) �
� // M(~x) is isomorphic, as a

subobject, to M~x(φ).

(ii) M |= σ for a sequent σ of L∞ω in the categorical sense iff M |= σ in the sense
of Section 1.

The proof of (i) is a straightforward induction on the complexity of φ, and (ii) is an
easy consequence of (i) and the definitions involved.

4.2.2 is a generalization of the basic fact stated in Chapter 2, Section 3 that relates
Tarski type truth definition for ordinary models and the categorical interpretation in
Set. The reader will find that there is a word-for-word translation of any detailed
verification of the latter fact into one of 4.2.2.

Finally, let us mention that conversely, every categorical interpretation M :L →
SetH can be derived from an H-valued structure M as above, but for this a slightly more
general definition of H-valued structures is needed, namely, the definition of operations
fM should be made appropriately “H-valued”.

§3 Boolean homomorphisms

In certain important cases, Boolean-valued models give rise to two-valued (or ordinary)
ones, by way of a two-valued homomorphism on the value-algebra. Placing our discussion
into a slightly more general context, let B, B0 be two complete Boolean algebras, and
let h :B → B0 be a homomorphism (preserving the finitary Boolean operations ¬, ∧, ∨).
Since in infinitary logic, we have to deal with infinitary

∧
,
∨

, we will have to consider
approximately stronger notions of homomorphism. We say that h preserves the sup

∨
X ,

where X is a subset of B, or the inf
∧
X , if

h(
∨(B)X ) =

∨(B0){h(β) : β ∈ X}
h(
∧(B)X ) =

∧(B0){h(β) : β ∈ X}
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respectively.
Let M be a B-valued structure and let F be a fragment of L∞ω; assume F is a set

(as oppose to a proper class). The disjunctions, conjunctions and quantified formulas
in F coupled with elements of |M | induce sups and infs of certain subsets of B that we
call the logical sups and infs induced by M and F . E.g., a formula

∧
Σ(~x) in F and

appropriate elements ~a in |M | induce the “logical” inf
∧(B){‖φ[a,~a]‖ : a ∈ |M |x}. Now,

assume that h :B → B0 is a homomorphism preserving all the logical sups and infs in B
induced by M and F . Then, we claim, there is an essentially unique B0-valued structure
denoted M/h such that |M/h|s = |M !s for any sort s of L and we have

(1) ‖φ[~a]‖M/h = h‖φ[~a]‖M

for any formula φ in F . Our claim is practically obvious. First of all, the required
equality suggests the definition of M/h as follows

‖a‖M/h = h(‖a‖M )

fM/h(~a) = fM (~a)

PM/h(~a) = h(PM~a)

(or, = h‖P (~a)‖M ,which does not make any difference for (1))

≈M/h (a, b) = h(≈M (a, b)).

Then a straightforward induction on φ in F shows that (1) is true for all φ in F ; we will
use the homomorphism property as well as the preservation properties of h.

What is left is to see that homomorphisms with the appropriate additional preser-
vation properties exist in sufficient numbers.

The following is a classical result. C.f. e.g. Rasiowa and Sikorski [1963].

Theorem 4.3.1 (Rasiowa-Sikorski Lemma). Let B be a Boolean algebra. Given an
element b 6= 1 in B, and given countably many sups and infs:

∨
Xi,

∧
Yi existing in B,

There is a two-valued homomorphism h :B → 2 preserving the given sups and infs and
such that h(b) = 0.

Corollary 4.3.2 Let L be a countable language, F a countable fragment of L∞ω. Let
Σ be a set of sequents of F , σ a sequent of F . Assume that there is a (non-trivial)
complete Boolean algebra B and a countable B-valued model M of Σ (i.e., M |= σ′ for
σ′ ∈ Σ) such that M |=/ σ. Then there is an ordinary model M ′ of Σ such that M |=/ σ.

Remark “M is countable” means that each set |M |s is countable. Actually, the count-
ability assumption on M is not necessary (by the B-valued downward Löwenheim-Skolem
theorem), but the present version is sufficient for our purposes.

Proof of 4.3.2 By assumption b =
df
‖(∀)σ‖ =

df
‖∀~x(

∧
Φ ⇒

∨
Ψ)‖ (where σ := Φ ⇒ Ψ,

~x is the sequence of free variables in σ) is 6= 1. Let, by the Rasiowa-Sirkoski lemma,
h :B → 2 be a homomorphism preserving all logical sups and infs induced by M and F ,
and such that h(b) = 0 and let M ′ = M/h. By the identity (1) M |= Σ implies M ′ |= Σ.
Also, since h(b) = 0, (1) implies that M ′ |=/ σ. M ′ is essentially identical to an ordinary
model, c.f. our discussion of this point in Section 1. �

Another situation when we can guarantee the existence of two-valued models is when
the fragment F is finitary, i.e., when for every conjunction

∧
Σ ∈ F , or disjunction∨

Σ ∈ F , Σ is a finite set. We briefly describe the situation as follows.

Definition 4.3.3 A B-valued structure M is called full if for any formula ∃xφ(x, ~x) in
L∞ω, and any ~a in |M |, b = ‖∃xφ(x, ~x)[~a/~x]‖ = ‖φ(x, ~x)[a/x,~a/~x]‖ for some a ∈ |M |x
i.e., the sup defining b is actually a maximum.
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Proposition 4.3.4 For any B-valued structure M (B is a complete Boolean algebra),
there is a full B-valued structure M ′ such that M ′ is L∞ω-equivalent to M , i.e.,

M |= σ ⇔ M ′ |= σ

for any sequent σ of L∞ω.

The proof (and further information on Boolean-valued models) can be found in Rosser
[1969]. Incidentally, the construction of M ′ is closely related to the construction of the
sheaf over B that corresponds to a given B-valued set, in the sense of Higgs’ theorem
4.2.1.

Proposition 4.3.5 Suppose F is a finitary fragment, Σ is a set of sequents in F , σ is a
sequent of F , and M is a B-valued model of Σ for B a non-trivial Boolean algebra such
that M |=/ σ. The there is an ordinary two-valued model M ′ |= Σ such that M ′ |=/ σ.

Proof. First of all, by 4.3.4, we can assume that M is full. Now, by the Stone
ultrafilter existence theorem, there is a homomorphism h :B → 2 such that h(b) = 0
where b =

df
‖(∀)σ‖ 6= 1. Putting M ′ = M/h, we can prove the identity (1) above for

finitary formulas φ in F . All conjunction and disjunctions involved are finitary, so h will
automatically preserve them. The sups (and infs) corresponding to quantifiers will also
be automatically preserved because M is full. It follows that M ′ satisfies the assertions.
�

There is one more matter we have to deal with in this section, viz. the construction
of the complete Boolean algebra of regular open subsets of a partially ordered (p.o.) set
P. Let P = (P,≤) be a p.o. set. A subset U of P is called open if p ≤ q, q ∈ U imply
p ∈ U . The regularization of a set U ⊂ P , U∗, or ¬¬U , is defined as

U∗ = {p ∈ P : ∀q ≤ p ∃r ≤ q r ∈ U}.

If U is open, so is U∗. An open set U is called regular if U∗ = U ; U∗ is always regular.
It is well-known (and it is easy to show) that the regular open subsets of P endowed
with inclusion as a partial orienting will form a complete Boolean algebra, denoted by
P∗. For future reference, we note the following easily proved additional facts:

(i) the 0 and 1 of P∗ are ∅ and P , respectively,

(ii) if U ⊆ V then U∗ ⊆ V ∗,
∨
i∈IU

∗
i = (

⋃
i∈I Ui)

∗ where “
∨
i∈I” denotes the Boolean

sup in the sense of P∗.

(iii) U∗1 ∧ U∗2 = (U1 ∩ U2)∗ = U∗1 ∩ U∗2 .

Here U, V , etc., denote arbitrary open sets.



Chapter 5

Completeness

Introduction

In this chapter we will give two completeness theorems, one for the full logic L∞ω, and
the other for the coherent sub logic Lg∞ω of L∞ω. Here we briefly discuss some of the
features of the proof systems and the completeness proofs.

The first system (call it G) refers to arbitrary fragments of the full language L∞ω.
The proof system G we formulate is a Gentzen-type system for deriving Gentzen se-
quents. The completeness of G is proved with respect to interpretations in models with
truth values in non-trivial complete Boolean algebras. Our proof is an inessential mod-
ification of Mansfield’s proof in Mansfield [1972] for a related system. However, the
following features of the proof system as compared to traditional formulations should
be emphasized:

(i) G refers to many-sorted logic, and in this respect is related to Feferman’s formu-
lation in Feferman [1968].

(ii) G is heard to be sound with respect to interpretations when one or more of the
partial universes are allowed to be empty. This feature is essential for our purposes.
The effect of “possibly empty domains” can be summarized in the following simple
way. With the notable exception of ∃ ⇒ and ⇒ ∀, all rules have to have the feature
that each free variable occurring in at leas one premise should actually occur free in
the conclusion. It turns out that this takes care of excluding the introduction of the
“existential assumption” of the non-emptiness of a domain. Some rules in the ordinary
Gentzen system already have this feature, some others have to be restricted by requiring
the above as a proviso.

(iii) The system G is for deriving sequence from (non-logical) assumptions (axioms)
hence some form of the cut-rule is necessary. We have formulated a cut-rule in which
the cut formulas are allowed to be exactly the substitution instances of the formulas φi,
ψj , in any of the assumption sequents φ1, . . . , φn ⇒ ψ1, . . . , ψm. Hence, with the empty
set of non-logical axioms, our system reduces to the basic Gentzen type cut-free system.
Although the resulting generalization of Gentzen’s Hauptsatz can be derived from the
original version with not too much (but non-zero amount of) effort, the generalization
seems to be interesting even for finitary logic. We have learned that Barwise [1967]
contains this type of restricted cut rule.

We will give full proofs mainly to emphasize the naturalness of G from the point of
view of the completeness proof. We will indicate that G can be recovered from a certain

99
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plan of the completeness proof. This feature is one aspect of the naturality of Gentzen
type systems – and is well-known for logicians. We include this discussion for the benefit
of the non-logicians.

Our second system is one that can work only with the sub logic Lg∞ω. It is a “one
sided” system in which the right-hand-sides of the sequents do not ‘change’ at all during
the derivations. We have found good implicit use of this system in the proofs in Chapter
7. This system seems to be new. It is interesting to note that this system too is the
result of a certain outline of a completeness proof.

§1 A Boolean-complete formalization of L∞ω

We remind the reader of some of the features of the logic L∞ω as considered in this
book; for more detailed information, c.f. also Chapter 2. It is based on a language L
appropriate for many sorted logic.

There is a distinction, in the usual manner, between free and bound variables al-
though in notation this is mostly neglected. E.g. for a formula φ(x) with a free variable
x, ∃xφ(x) actually denotes the formula ∃wφ(w) where w is a bound variable not occur-
ring in φ(x) and φ(w) is obtained by substituting w for x. There is a similar convention
applied to the use of the universal quantifier. It has the logical operators∧

(conjunction; applicable to any set of formulas with altogether
finitely many free variables)∨
(disjunction; applicable similarly as

∧
)

∃ (existential qualifier; applied to a single variable at a time)

∀ − (· → ··) (compound universal quantifier).

If φ(x1, . . . , xn), ψ(x1, . . . , xn) are formulas with the indicated free variables and ~z is
a sequent of distinct variables, then ∀~z(φ→ ψ) is a formula. We consider the formulas
∀xφ, φ→ ψ and ¬φ as special cases obtained as ∀x(↑→ φ), ∀∅(φ→ ψ) and ∀∅(φ→↓).

A fragment F of L∞ω is any class of formulas that is closed under (i) subformulas,
(ii) substitution of terms of L for free variables. Note that ∀~z(φ → ψ) has φ and ψ as
subformulas but not φ→ ψ.

A sequent of F is a formal expression of the form Φ → Ψ with finite sets Φ, Ψ of
formulas of F . A theory in F is an arbitrary set of sequents of F .

For an interpretation M , in the ordinary (set-valued) sense, we allow M to have
empty partial domains. For a theory T and a sequent σ, both in a given fragment F ,
we write T |= σ to mean that σ is true in any ordinary (set-valued) model of T . We

will sometimes write T |=b σ to mean that σ is true in every Boolean-valued model of T .
(For a discussion of Boolean-valued models, see Chapter 4.)

It is very instructive to consider how one can arrive at a proof system, by starting
out with the outline of a proposed completeness proof. We will indicate this process
under the assumption that the fragment F is a countable set; in this case we can aim at
set-valued models. Accordingly, assume that we have some notion

T ` σ (“σ is derivable from T”)

with a given fixed theory T in F , and with a variable sequent σ of F ; we now show
requirements arising from a proposed proof of the fact that

T |= σ ⇒ T ` σ.
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Assume T 6` σ, i.e., σ is not derivable. We seek to construct a model M of T such that
M |=/ σ. We wish to construct M out of a pair 〈H1, H2〉 of sets of formulas in F in a way
such that we will have:

(i) the domain of M consists of the terms whose (free) variables occur free in at least
on formula in H1 ∪H2, and

(ii) for any formula φ(~x) in F , with the indicated free variables which are all in |M |,
the domain of M , we have that

(ii)a φ(~x) ∈ H1 if and only if φ(~x) is true in M (with ~x interpreting themselves in
|M |) and

(ii)b φ(~x) ∈ H2 if and only if φ(~x) is false in M .

Intuitively, what will happen is that by a gradual building of the sets H1, H2 we
approximate the total description of which formulas of F are true in M .

Next we observe that these conditions put some requirements on H1 and H2, some
examples of which are:

(iii) H1 ∩H2 = ∅.

(iv) For every φ ∈ F with free variables in |M |, either φ ∈ H1, or φ ∈ H2.

(v) If
∧

Θ ∈ H1, then every φ ∈ Θ belongs to H1.

(vi) If
∧

Θ ∈ H2, then some φ ∈ Θ belongs to H2.

Spelling out all these conditions, we obtain what we call a Hintikka pair 〈H1, H2〉.
(Since our proof below will be “Boolean valued” and hence formally quite different, there
is no point in spelling out the full definition of a Hintikka pair.) Then we verify that in
fact, every Hintikka pair defines a model satisfying (ii). We notice that in the notation
of Hintikka pair one of H1, H2 is redundant since e.g., H2 = F − H1. However, from
the point of view of the proof, the given one is the natural formulation of the notion.

The next step is to translate the required properties of M into properties of 〈H1, H2〉.
E.g., we force M not to satisfy σ = Φ0 ⇒ Ψ0 by requiring Φ0 ⊂ H1 and Ψ0 ⊂ H2.
(Notice that these relationships indeed mean that σ fails to hold in M for the particular
elements denoted by the free variables in Φ0, Ψ0.) To say that an arbitrary sequent
Φ(x1, . . . , xn)⇒ Ψ(x1, . . . , xn) holds in M is equivalent to saying that it is not the case
that Φ(t1, . . . , tn) ⊂ H1 and Ψ(t1, . . . , tn) ⊂ H2, where

Φ(t1, . . . , tn) = {φ(t1/x1, . . . , tn/xn) : φ ∈ Φ}

Ψ(t1, . . . , tn) = {ψ(t1/x1, . . . , tn/xn) : ψ ∈ Ψ}

for any set t1, . . . , tn of terms having the respective sorts of x1, . . . , xn.
The next task is to construct 〈H1, H2〉. We seek to construct Hi (i = 1, 2) as an

increasing union
⋃
n<ωH

i
n of finite sets Hi

n. Naturally, we set H1
0 = Φ0 and H2

0 = Ψ0.
It is very natural now to impose the following induction hypothesis on 〈H1

n, H
2
n〉: T 6`

H1
n ⇒ H2

n, referring explicitly to ` for the first time. Next we see that all required
closure properties of ` (i.e. the rules of inference) can be recovered from the assumption
that the construction of the Hi

n can indeed be performed. To start with, we will ensure
(iii), i.e. the condition H1∩H2 = ∅ by making sure that H1

n∩H2
n = ∅ for all n. This in

turn will be made to hold as a consequence of the main property T 6` H1
n ⇒ H2

n. To this
end, we define ‘`’ is such a way that whenever H1

n ∩H2
n 6= ∅, then T ` H1

n mod H2
n.

This effect will be achieved by postulating each sequent of the form Φ, φ ⇒ Ψ, φ (with
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common member φ of the sets on the left and the right) an axiom, and we will have
T ` Φ, φ⇒ Ψ, φ.

To make e.g., (iv) true we should be able to do the following. Suppose H1
n, H

2
n have

been constructed such that
T 6` H1

n mod H2
n.

We take some φ whose free variables all occur in H1
n ⇒ H2

n. We want to put either
H1
n+1 = H1

n ∪ {φ} and H2
n+1 = H2

n or H1
n+1 = H1

n and H2
n+1 = H2

n ∪ {φ}, to contribute
to making (iv) true.

Hence we want that either

T 6` H1
n, φ⇒ H2

n or T 6` H1
n ⇒ H2

n, φ.

All this is equivalent to saying that the rule

Φ, φ⇒ Ψ Φ⇒ Ψ, φ

Φ⇒ Ψ

(with Φ = H1
n, Ψ = H2

n and with φ satisfying the conditions regarding the free variables)
should at least be a derived rule for our proof-system, i.e., if the two sequents above the
line are derivable from T , then so is the one under the line. The exhibited rule is the
well-known cut-rule (with a restriction on variables necessitated by the appearance of
possible empty domains).

As a final example, let us try to make (v) true. Assume that H1
n, H2

n have been
constructed so that T 6` H1

n ⇒ H2
n, and let

∧
Θ ∈ H1

n. We pick an arbitrary θ ∈ Θ and
we want to put H1

n+1 = H1
n ∪ {θ} and H2

n+1 = H2
n. Hence we want that the fact

T 6` H1
n, θ ⇒ H2

n.

is a consequence of T 6` H1
n ⇒ H2

n. In other words, taking the contra-positive, we want
that the rule

Φ,
∧

Θ, θ ⇒ Ψ

Φ,
∧

Θ⇒ Ψ
subject to θ ∈ Θ

should be at least a derived rule.
By a similar argument, we can show that condition (vi) above entails the rule

{Φ⇒ Ψ,
∧

Θ, θ : θ ∈ Θ}
Φ⇒ Ψ,

∧
Θ

with a possibly infinite set of premises.
The actual system we give below will be a bit weaker that the one recovered by

the above procedure. Essentially, what we will make sure is only that the left-to-right
implications of the above conditions (ii)a, (ii)b will hold. Then a special measure is
needed to make sure that M will be a model of T ; this is our restricted cut rule.

We warn the reader that our proof below will bear no formal resemblance to the
argument given above; this is because we will give a Boolean completeness proof. The
set-valued on will then be obtained by an application of the Rasiowa-Sikorski theorem.
Besides being more general, the Boolean construction has the advantage that it is a
canonical construction.

This should suffice to indicate how to find our rules of inference and we may turn
to the definition of our formal system. We take a fixed but arbitrary set of sequents T .
Some of the axioms and rules will depend on T . We denote the formal system associated
to T by G1

T , (and the “one-sided” system introduced later by G2
T ). Below, capital Greek
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letters denote finite sets of formulas, lower case Greek letters denote formulas in F . T=

will denote the set T ∪ {all axioms of equality}, c.f. Chapter 4, Section 1.

Axioms

(A1) Φ, φ⇒ Ψ, φ

(abbreviating Φ ∪ {φ} ⇒ Ψ ∪ {φ})

for any atomic formula φ.

(A2)T= Φ,Θ(t1, . . . , tn)⇒ Ψ,Γ(t1, . . . , tn)

provided Θ(x1, . . . , xn) ⇒ Γ(x1, . . . , xn) belongs to T=, the arbitrary terms t1, . . . , tn
are substituted for the free variables x1, . . . , xn with due regard for syntactic correctness.

Rules of Inference

(
∧
⇒)

Φ,
∧

Θ, θ ⇒ Ψ

Φ,
∧

Θ⇒ Ψ
if θ ∈ Θ

(that is, the rule is admitted if θ ∈ Θ).

(⇒
∧

)
{Φ⇒ Ψ,

∧
Θ, θ : θ ∈ Θ}

Φ⇒ Ψ,
∧

Θ

(This is a rule with possibly infinitely many premises; it becomes an axiom (with zero
premises) if Θ = ∅: Φ⇒ Ψ,

∧
∅.)

(
∨
⇒)

{Φ,
∨

Θ, θ ⇒ Ψ : θ ∈ Θ}
Φ,
∨

Θ⇒ Ψ

(⇒
∨

)
Φ⇒ Ψ,

∨
Θ, θ

Φ,⇒ Ψ,
∨

Θ
if θ ∈ Θ

(∀ ⇒)
Φ,∀~z(φ→ ψ), ψ(~t)⇒ Ψ; Φ,∀~z(φ→ ψ)⇒ Ψ, φ(~t)

Φ,∀~z(φ→ ψ)⇒ Ψ

provided all the free variables in the premises occur free in the conclusion; here φ(~t )
denotes the result of substituting the respective members of the sequence ~t of terms for
~z in φ. (It might happen that φ does not actually contain some of the variables in ~z
and thus some free variables in ~t may fail to occur in φ(~t ). Then these variables should
occur elsewhere in the conclusion. The proviso is necessary to ensure soundness with
respect to possibly empty domains.)

(⇒ ∀)
Φ, φ(~y)⇒ Ψ,∀~z(φ→ ψ), ψ(~y)

Φ⇒ Ψ,∀~z(φ→ ψ)

provided the variables in ~y do not occur free in the conclusion; φ(~y) results by substi-
tuting ~y for ~z.

Remarks on the last two rules. 1) It is instructive to check that these two rules corre-
spond to the following two “construction steps”, or closure conditions, regarding H1 and
H2 (c.f. discussion above):

(i) If ∀~z(φ→ ψ) ∈ H1, then for any ~t whose all (free) variables occur in formulas in
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H1, either ψ(~t) ∈ H1 or φ(~t) ∈ H2.

(ii) If ∀~z(φ→ ψ) ∈ H2, then for some ‘new’ variables ~y, φ(~y) ∈ H1 and ψ(~y) ∈ H2.

2) Recalling the identification of ¬φ, φ → ψ and ∀xφ with particular cases of the
compound operation ∀ · (· → ··), by specialization we obtain the familiar rules (c.f. e.g.
Feferman [1968] for ¬, → and ∀ from the last two rules.

(∃ ⇒)
Φ,∃xθ(x), θ(y)⇒ Ψ

Φ,∃xθ(x)⇒ Ψ

provided that the variable y does not occur free in the conclusion.

(⇒ ∃)
Φ⇒ Ψ,∃xθ(x), θ(t)

Φ⇒ Ψ,∃xθ(x)

provided that every free variable in the premise occurs in the conclusion.

(CutT=)
Φ, φ⇒ Ψ Φ⇒ Ψ, φ

Φ⇒ Ψ

provided each free variable in φ is free in the conclusion and φ is a substitution instance
φ′(~t) of a formula φ′(~x) such that φ′ ∈ Φ′ ∪ Ψ′ for some Φ′ ⇒ Ψ′ belonging to the set
T=.

The proof system defines the notion “σ is a formal consequence of T” in notation

T ` σ.

To this end, it is not necessary to introduce any notion of formal proof. Rather, we
define the set of formal consequences of T as the least set closed under the given rules
of inference. More precisely, let `T be the smallest set of sequents in F such that all the
axioms (A1)− (A2) belong to `T , and whenever in an instance of any one of the rules of
inference the premise (or, all the premises) belong to `T , so does the conclusion. Notice
that with any given T , in the definition of `T we consider the axioms (A2)T= depending
on T with the fixed given T and also, (Cut)T= depending on T . Naturally, we will write

T ` σ equivalently to σ ∈`T .

The next thing is to formulate the basic rationale behind the proof system, viz. its
soundness. We will do this here for the Boolean valued interpretation.

Let M be a Boolean valued model. We say that M is a model T and write M |= T ,

if every σ ∈ T has value 1 in M . We write T |=b σ to mean that every Boolean valued
model of T is a model of σ.

Theorem 5.1.1 T ` σ implies that T |=b σ.

The proof consists in a straightforward verification that all axioms have always value
1, and the whenever M |= T and M |= σ for (all) the premise(s) of an application of a
rule of inference, then M |= σ for the conclusion σ. Note that, in a roundabout way,
Theorem 5.1.1 follows from our earlier soundness result concerning categories and from
the discussion concerning Boolean valued models and ShB-valued functors. To indicate
that indeed there is something to prove, we mention that the variable conditions (e.g.
the one in the cut rule), will be used essentially in verifying soundness.
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Theorem 5.1.2 (Boolean completeness theorem for L∞ω)

T |=b σ implies T ` σ.

In fact, given any fragment F which is a set (as opposed to a proper class) and theory
T in F , there is a complete Boolean algebra B and B-valued model M such that for any
sequent σ of F ,

M |= σ iff T ` σ.

Proof. We stipulate that the set of all variables be countable, more precisely, for each
sort s, the set of variables of sort s be a denumerable infinite set, Vars. (Hence, in case
the language L is countable, the domain |M | of our model defined below will also be
countable.)

We start defining M by setting

|M |s = Terms

where Terms is the set of all terms of sort s. We define the operations corresponding to
the operation symbols in L in the obvious way:

fM (t1, . . . , tn) =
df
ft1 · · · tn

for all suitable ti and f .
The Boolean algebra B will be defined through a partially ordered set P. We define

P as the set of all sequents
p := Φ⇒ Ψ

such that
T 6` Φ⇒ Ψ,

and we define for p as above and for

p′ := Φ′ ⇒ Ψ′

the partial ordering on P by

p′ ≤ p (⇔ p′ extends p) ⇔
df

Φ ⊂ Φ′ and Ψ ⊂ Ψ′.

P is defined as the partially ordered set 〈P,≤〉. We put B to be P∗ (c.f. Chapter 4). B
is a complete Boolean algebra.

For p := Φ→ Ψ, we write Φp for Φ and Ψp for Ψ.
For an arbitrary formula φ ∈ F put

Uφ =
df
{p ∈ P : φ ∈ Φp}.

Clearly, Uφ is an open set.
Similarly, let us define the open set

Vφ =
df
{p ∈ P : φ ∈ Ψp}.

To define M , put
RM (t1, . . . , tn) =

df
U∗Rt1···tn ,

t1 ≈M t2 =
df

U∗t1≈t2 ,



106 CHAPTER 5. COMPLETENESS

for terms t1, . . . , tn and the predicate symbol R satisfying the compatibility conditions
concerning sorts.

To compete the definition of M , we define the membership functions (c.f. Chapter
4) ‖ · ‖ = ‖ · ‖s : |M |s → B by ‖t‖ = U∗t where

Ut = {p ∈ P : every (free) variable in t occurs free in Φp ∪Ψp}.

It follows that ‖t‖ = ‖~x‖ where ~x is the sequence of free variables in t. Similarly,
‖~t‖ = ‖~x‖, if ~x is the sequence of variables occurring free in at least one member of the
sequence ~t.

For an arbitrary formula θ ∈ L∞ω, ‖θ‖ denotes the value of θ in M when each free
variable in θ denotes itself (every such variable being actually an element of the domain
of M). Remember that now the (Boolean) value depends (through factors which are
values of the membership functions) sensitively on which variables are being interpreted.
Now, in the notation ‖θ‖ we understand that the variables being interpreted are exactly
the ones free in θ, i.e. ‖θ‖ stands for

‖θ[x1 for x1, . . . , xn for xn]‖M

with x1, . . . , xn exactly the distinct free variables of θ.
Merely on the basis that |M | consists of terms with the operations indexed by the

operation symbols in L defined in the trivial way, we can show by an easy induction that

‖θ[x1 for x1, . . . , xn for xn]‖ = ‖~t‖ · ‖θ(t1, . . . , tn)‖

where on the right hand side, we have substitution of ti for xi. Here ~t = 〈t1, . . . , tn〉 and
x1, . . . , xn include all the free variables of θ.

Lemma 5.1.3 U∗φ ∧ V ∗φ = 0, for any atomic φ.

Proof. Since U∗φ ∧ V ∗φ = (Uφ ∩ Vφ)∗, it is enough to see that Uφ ∩ Vφ = ∅. But it is
clear that any element p of Uφ ∩Vφ would be an axiom in group (A1), contradicting the
fact that every p ∈ P is note derivable from T . �

Lemma 5.1.4 For an arbitrary formula φ, we have

U∗φ ≤ ‖φ‖ (1)

and V ∗φ ∧ ‖φ‖ = 0. (2)

Proof. The proof is an induction on the complexity of φ. For an atomic formula
φ = Pt1 . . . tn, recall the definition of the valuation ‖φ‖:

‖φ‖ ⇔
df
‖~x‖ · PM (t1, . . . , tn)

where ‖~x‖ = ‖x1‖ · · · ‖xn‖ and ~x = 〈x1, . . . , xn〉 are all the free variables in φ.
We have PM (t1, . . . , tn) = U∗Pt1···tn = U∗φ and clearly ‖~x‖ ≥ U∗φ , hence

‖φ‖ = U∗φ .

This, together with 5.1.3, establishes the two claimed relations for φ = Pt1 · · · tn. Of
course, the other type of atomic formula, φ := t1 ≈ t2 is handled similarly.

The rest of the proof consists of the induction steps according to the definition of
formulas.
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Case 1. φ =
∧

Θ.

The induction hypothesis is that for each θ ∈ Θ, U∗θ ≤ ‖θ‖ and V ∗θ ∩‖θ‖ = ∅. The proof
of (1) for φ will use the rule (

∧
⇒), i.e. the fact that the formal theorems derivable from

T are closed under the rule (
∧
⇒), whereas the proof of (2) will use the rule (⇒

∧
).

Let p ∈ U∧
Θ, θ ∈ Θ and p′ ∈ P , p′ ≤ p, p′ := Φ⇒ Ψ := Φ,Θ⇒ Ψ (since

∧
Θ ∈ Φ).

By the definition of P and p′ ∈ P , we have that

T 6` Φ,
∧

Θ⇒ Ψ.

Hence “by the rule (
∧
⇒)”,

T 6` Φ,
∧

Θ, θ ⇒ Ψ.

In other words, for p′′ = Φ,
∧

Θ, θ ⇒ Ψ we have p′′ ∈ P , hence obviously, p′′ ∈ Uθ and
p′′ ≤ p′. We have shown that

(∀p′ ≤ p)(∃p′′ ≤ p′)p′′ ∈ Uθ,

i.e., that p ∈ U∗θ . Since p ∈ Uφ was arbitrary, we have that Uφ ⊂ U∗θ , thus U∗φ ≤ U∗θ .
Since this holds for any θ ∈ Θ, we have

U∗φ ≤
∧
θ∈ΘU

∗
θ ≤

∧
θ∈Θ‖θ‖ = ‖

∧
Θ‖ = ‖φ‖

where for the second inequality we used the induction hypothesis and for the last but
one equality, the definition of ‖ · ‖. This establishes (1) in Case 1.

For (2), we first prove

V∧Θ ≤
∨
θ∈ΘV

∗
θ . (3)

Recall that
∨
θ∈ΘV

∗
θ = (

⋃
θ∈Θ Vθ)

∗ Let p ∈ V∧Θ, p′ ≤ p, p′ ∈ P , p′ := Φ ⇒ Ψ := Φ ⇒
Ψ,
∧

Θ. Consider p′′θ =
df

Φ ⇒ Ψ,
∧

Θ, θ for each θ ∈ Θ. It can happen that none of the

p′′θ is in
⋃
θ∈Θ Vθ only if none of the p′′θ is in P , i.e., if T ` p′′θ for each θ ∈ Θ. But then

by (
∧
⇒) we obtain T ` p′, contradicting p′ ∈ P . Hence, there is θ ∈ Θ such that

p′′θ ∈
⋃
θ∈Θ Vθ. Also, p′′θ ≤ p′. We have shown

∀p′ ≤ p ∃p′′ ≤ p′ p′′ ∈
⋃
θ∈Θ

Vθ,

i.e. p ∈ (
⋃
θ∈Θ Vθ)

∗ =
∨
θ∈ΘV

∗
θ . This means that V∧ ⊂ ∨θ∈ΘV

∗
θ , showing (3).

Using (3), we argue as follows.
The induction hypothesis implies that∨

θ∈ΘV
∗
θ ∩

∧
θ∈Θ‖θ‖ = ∅.

Since
∧
θ∈Θ‖θ‖ = ‖

∧
Θ‖, this last equality, together with (3) implies (2) as desired.

Case 2, when φ =
∨

Θ, is entirely similar to Case 1 and is left to the reader.

Case 3. φ = ∃xθ(x) = ∃wθ(w).

Let p ∈ V , p′ ∈ P , p′ ≤ p, p′ := Φ ⇒ Ψ := Φ ⇒ Ψ,∃xθ(x) as before. Now, let t be
a term of the same sort as x such that all variables in t occur in p, i.e., p ∈ Ut, i.e.,
p ∈ Ut ∩ Uφ. Putting p′′ := Φ ⇒ Ψ,∃xθ(x), θ(t), by rule (⇒ ∃) we obtain that p′′ ∈ P ,
hence p′′ ∈ Vφ(t). We have shown that for every p ∈ Ut ∩ Uφ

(∀p′ ≤ p)(∃p′′ ≤ p′) p′′ ∈ Vθ(t)
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i.e.
Ut ∩ Uφ ⊂ V ∗θ(t).

It follows that

‖t‖ · V ∗φ ≤ V ∗θ(t) (4)

for an arbitrary term t ∈ |M |s where s is the sort of the variable x. Recall that by the
remark we made on substitution, we have

‖θ(t)‖ = ‖θ[t for x, x1 for x1, . . . , xn for xn]‖

(recall that ~x = 〈x1, . . . , xn〉 are all the free variables of ∃xθ(x). Since the variable x
actually occurs free in θ(x) (remember our restriction of forming ∃xθ(x)) all free variables
of t will actually occur free in θ(t), hence

‖θ(t)‖ ≤ ‖t‖

or equivalently
‖t‖ · ‖θ(t)‖ = ‖θ(t)‖.

Recalling the definition of ‖ · ‖, we now have

‖∃xθ(x)‖ = ‖∃xθ(x)[xi for xi] =
∨
t∈|M |s‖t‖ · ‖θ[t for x, xi for xi]‖

=
∨
t∈|M |s‖t‖ · ‖θ(t)‖ =

∨
t∈|M |s‖θ(t)‖.

(5)

The formulas θ(t) have complexity smaller that that of ∃xθ(x), hence the induction
hypothesis applies and we get

V ∗θ(t) ∧ ‖θ(t)‖ = 0.

Using (4) and the last statement, we get

‖t‖ · V ∗φ ∧ ‖θ(t)‖ = 0.

Since ‖θ(t)‖ ≤ ‖t‖, this implies

V ∗φ ∧ ‖θ(t)‖ = 0.

Using the expression (5) for ‖φ‖ = ‖∃xθ(x)‖, we get

V ∗φ ∧ ‖φ‖ = V ∗φ ∧
∨
t∈|M |s‖θ(t)‖ =

∨
t∈|M |s(V

∗
φ ∧ ‖θ(t)‖) = 0

as required for (2).
The other part (1) of the claim is shown by using (∃ ⇒) as follows.
Let p ∈ U , p′ ∈ P , p′ ≤ p. Let y be a free variable of the same sort as x such that

y does not occur free in p′ (there are altogether finitely many free variables in p′). Put
p′′ := Φp′ , θ(y) ⇒ Ψp′ . By rule (∃ ⇒), we obtain that p′′ ∈ P and hence of course
p′′ ∈ Uθ(y). What we have shown is

(∀p′ ≤ p)(∃p′′ ≤ p′) p′′ ∈
⋃
t∈|M |s Uθ(t),

hence, since p ∈ Uφ was arbitrary,

Uφ ⊆ (
⋃
t∈|M |s Uθ(t))

∗ =
∨
t∈|M |sU

∗
θ(t).
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The induction hypothesis tells us that U∗θ(t) ≤ ‖θ(t)‖ and we know from the previous

part of the proof that ‖∃xθ(x)‖ =
∨
t∈|M |s‖θ(t)‖. Hence

U∗φ ≤
∨
t∈|M |sU

∗
θ(t) ≤

∨
t∈|M |s‖θ(t)‖ = ‖∃xθ(x)‖

as desired.
The last case, φ = ∀~z(φ1 → ψ), is similar to, though a bit more complicated than, the

case of the existential quantifier. We have to use both parts of the induction hypothesis,
referring to U and V , to show each of the statements for φ. The details are omitted. �

Lemma 5.1.5 For a formula allowed as a cut-formula in the cut-rule (Cut)T , i.e., φ a
substitution instance of a formula in an axiom in T=, we have

U∗φ ∨ V ∗φ = ‖~x‖

where ~x is the sequence of free variables in φ.

Proof. It is clear that the left side is contained in the right. Let p ∈ U~x and p′ ≤ p,
p′ := Φ ⇒ Ψ. Hence, all of ~x occurs free in p′. Hence the following is a permissible
application of (Cut)T :

Φ, φ⇒ Ψ Φ⇒ Ψ, φ

Φ⇒ Ψ
.

According to the definition of P , this implies that either there is p′′ ≤ p′, namely
Φ, φ⇒ Ψ, such that p′′ ∈ Uφ, or there is p′′ ≤ p′, namely Φ⇒ Ψ, φ, such that p′′ ∈ Vφ.
In other words, U~x ⊆ Uφ ∨ Vφ. This is sufficient for 5.1.5. �

Corollary 5.1.6 For a formula φ as in 5.1.5,

‖φ‖ = U∗φ = ‖~x‖ − V ∗φ .

Proof. This follows immediately from 5.1.4 and 5.1.5.

End of proof of 5.1.2 We can now show that M is a model of T=. Let σ := Θ ⇒ Γ
be an axiom belonging to T=, let ~x be the sequence of the fee variables in σ, and let ~t
be a sequence of elements of the model with sorts matching those of ~x. We claim that
β = 0 in B, where β =

df
‖
∧
θ[~t]‖ − ‖

∨
Γ[~t]‖. computing β we find:

β = ‖~t‖ ·
∧
θ∈Θ‖θ(t)‖ ·

∧
γ∈Γ − ‖γ(t)‖

using ‖φ[~t]‖ = ‖~t‖ · ‖φ(~t)‖.
If ~xγ is the sequence of free variables in γ(~t), then ‖ ~xγ‖ · (−‖γ(~t)‖) = V ∗

γ(~t)
by 5.1.6.

Since clearly ‖ ~xγ‖ ≥ ‖~t‖ for γ ∈ Γ,

‖~t‖ · (−‖γ(t)‖) = ‖~t‖ · V ∗
γ(~t)

and

β = ‖~t‖ ·
∧
θ∈ΘU

∗
θ(~t)
·
∧
γ∈ΓV

∗
γ(~t)

.

Since each t in ~t does actually occur in a θ(~t) or γ(~t), the factor ‖~t‖ can be omitted and
we obtain

β =
∧
θ∈ΘU

∗
θ(~t)
·
∧
γ∈ΓV

∗
γ(~t)

= (
⋂
θ∈Θ Uθ(~t) ∩

⋂
γ∈Γ Vγ(~t))

∗.



110 CHAPTER 5. COMPLETENESS

But any p ∈ P that would belong to the intersection under the last ( )∗, would be an
axiom according to (A2)T= , hence we would have T ` p, contradicting p ∈ P . So the
intersection is empty, and β = 0 as claimed. We thus obtain that

‖
∧

Θ[~t]‖ ≤ ‖
∨

Γ[~t]‖

for any ~t, i.e., M |= Θ⇒ Γ.
This completes proving that M is a model of T=.
Since the equality axioms are included in T=, our model M also satisfies the require-

ments concerning the interpretation of ≈.
By the soundness theorem, 5.1.1, it follows that M |= σ for any σ such that T ` σ.

It remains to show the converse.
Assume T 6` σ, σ = Φ⇒ Ψ and let ~x be all the free variables in σ. But then σ is an

element of P . Consider now the Boolean value U∗σ = {p ∈ P : p ≤ σ}∗. This is a nonzero
value (since it is a non-empty set). By 5.1.4, we easily infer that U∗ ≤ ‖~x‖ · ‖

∧
Φ‖ and

U∗σ ∩ ‖
∨

Ψ‖ = 0, and thus ‖~x‖ · ‖
∧

Φ‖ 6≤ ‖
∨

Ψ‖, and a fortiori

‖σ‖ =
df

∧
t1,...,tn

(‖t1‖ · · · ‖tn‖ → (‖t1‖ · · · ‖tn‖ · ‖
∧

Φ(t1, . . . , tn)‖ →

‖
∨

Ψ(t1, . . . , tn)‖)) 6= 1B, i.e., M |=/ σ.

This completes the proof of 5.1.2. �

We will now comment on an obvious variant of the above proof-system. Let us
replace the restricted (Cut)T by the unrestricted (Cut) where φ is allowed to be any
formula of F but the variable condition is retained. This rule, and hence the whole
resulting system, is still sound, in fact even in a general categorical interpretation (c.f.
Chapter 3, Theorem 3.2.8). Let us denote derivability in this new system by `′. The we
can construct a canonical M ′ = M ′T quite the same way as M was constructed above,
and we will actually have

‖φ‖M ′ = U∗φ = ‖~x‖ − V ∗φ for any φ,

by the argument for 5.1.5 above. (Here, of course we use notation signifying the analogues
of previous entities, although not quite the same ones; e.g. even the partial ordering is
different now!) Thus M ′ behaves in a more ‘determined’ way than M . Needless to say,
M ′ also satisfies Theorem 5.1.2.

Let us now state the two-valued variants of the completeness theorem.

Theorem 5.1.7 Assume either that (i) the fragment F is finitary, i.e. F contains no
infintary disjunction or conjunction (i.e.,

∧
Σ ∈ F or

∨
Σ ∈ F implies that Σ is finite) or

that (ii) F is countable (which implies that the language L can be taken to be countable
too).

Then T ` σ if and only if T |= σ, where T |= σ means that every set-valued model of T
is a model of σ.

Proof. All the remaining work for this proof was done in Chapter 4. Consider the
canonical B-valued model M of T , constructed in the proof of 5.1.2. Assume T 6` σ.
Hence ‖σ‖M 6= 1B. Then by 4.3.2 or 4.3.5, there is a set-valued model of T that does
not satisfy σ. �

Corollary 5.1.8 (Compactness Theorem for finitary logic.) Suppose that each finite
subset of a set T of axioms in finitary logic Lωω has an (ordinary Set-) model. Then T
has a model.
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Proof. In case of a fragment in the finitary logic, it is almost obvious that T ` σ
implies that T ′ ` σ for some finite T ′ ⊂ T . Applying this and 5.1.7 for σ = false, the
assertion follows. �

§2 Completeness of a “one sided” system for
coherent logic

A coherent fragment F of L∞ω is a fragment whose formulas are coherent i.e. built up
from atomic formulas of L by using

∨
applied to arbitrary sets of formulas,

∧
applied

only to finite sets of formulas and ∃. A (one-sided) sequent of F is a sequent Θ ⇒ ψ
with Θ a finite set of formulas in F and ψ a single formula in F .

Let T be a theory in F , i.e. a set of (one-sided) sequents of F . Next we define a
formal system, relative to T ; for a sequent σ, we write T ` σ to denote the fact that σ
is deducible in the formal system.

Axioms: Θ⇒ ψ if ψ ∈ Θ.

Rules of inference:

(R
∧

1)
Θ,
∧

Σ, φ⇒ ψ

Θ,
∧

Σ⇒ ψ
if φ ∈ Σ

(R
∧

2)
Θ,
∧

Σ⇒ ψ

Θ⇒ ψ
if Σ ⊂ Θ

(R
∨

1)
Θ, φ,

∨
Σ⇒ ψ

Θ, φ⇒ ψ
if Σ ⊂ Θ

and all free variables in Σ occur fee in the conclusion.

(R
∨

2)
{Θ,

∨
Σ, φ⇒ ψ : φ ∈ Σ}
Θ,
∨

Σ⇒ ψ

(R∃1)
Θ, φ(v/t),∃xφ(v/x)⇒ ψ

Θ, φ(v/t)⇒ ψ

here, of course, v and t are of the same sort as x is.

(R∃2)
Θ,∃xφ(v/x), φ⇒ ψ

Θ,∃xφ(v/x)⇒ ψ

if v does not occur free in the conclusion.

(RT )
Θ,Θ′(t1, . . . , tn), ψ′(t1, . . . , tn)⇒ ψ

Θ,Θ(t1, . . . , tn)⇒ ψ

provided for some Θ′(v1, . . . , vn)⇒ ψ′(v1, . . . , vn) belonging to T= (for T=, c.f. last sec-
tion) and for some terms t1, . . . , tn, Θ′(t1, . . . , tn) is the set of substitution instances
θ(t1, . . . , tn) of all θ(v1, . . . , vn) in Θ′, all the free variables in Θ′ of ψ′ are among
v1, . . . , vn, ψ′(t1, . . . , tn) is the result of substitution of the ti for vi in ψ′ and finally, all
free variables that occur in the premise occur in the conclusion.

(Comment: The rule (RT ) depends on the fixed set T of sequents.)
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We define (as expected) the set of formal consequences of T relative to the given
system to be the smallest set X of sequents such that (i) each axiom is in X , and (ii)
whenever

{σi : i ∈ I}
σ

is an instance of a rule of inference and σi ∈ X for all i ∈ I, then also σ ∈ X . We write
T ` σ for “σ is a formal consequence of T”, i.e., for σ ∈ X .

We will state a completeness theorem for the proof-system T ` (·) analogous to the
one proved in the previous section. But for purposes of the later Chapter 7, we will state
a slightly more general theorem.

For a theory T as above, a T -consistency property is defined to consist of items of
the following kinds:

(i) a partially ordered set P = (P,≤) = (P,≤P);

(ii) a function f defined on P such that for p ∈ P , f(p) is a finite set of formulas in F ;

(iii) a function Var defined on P such that for every p ∈ P , Var(p) is a finite set of free
variables such that all free variables in f(p) are in the set Var(p).

The following properties are required to be satisfied (p and q denote members of P ):

(iv) if q ≤ p, then f(p) ⊆ f(q), and Var(p) ⊆ Var(q);

(v) if
∧

Σ ∈ f(p) and φ ∈ Σ, then there is q ≤ p such that φ ∈ f(q);

(vi) if Σ ⊂ f(p), then there is q ≤ p such that
∧

Σ ∈ f(q);

(vii) if φ ∈ Σ, all free variables in
∨

Σ belong to Var(p) and φ ∈ f(p), then there is
q ≤ p such that

∨
Σ ∈ f(q);

(viii) if
∨

Σ ∈ f(p), then there are φ ∈ Σ and q ≤ p such that φ ∈ f(q);

(ix) if φ(v/t) ∈ f(p), then there is q ≤ p such that ∃xφ(v/x) ∈ f(q);

(x) if ∃xφ(v/x) ∈ f(p), then there is a free variable u and some q ≤ p such that
φ(v/u) ∈ f(q);

(xi) if Θ′(v1, . . . , vn) ⇒ ψ′(v1, . . . , vn) belongs to the theory T= and Θ′(t1, . . . , tn) ⊆
f(p) (compare (RT ) above), then there is q ≤ p such that ψ′(t1, . . . , tn) ∈ f(q),
provided all (free) variables in t1, . . . , tn belong to Var(p).
(End of definition of consistency property).

The conditions (v)-(xi) correspond to the rules of the above formal system. In fact,
the following connection can be made. Define P to be the set of all sequents Θ ⇒ ψ
such that T 6` Θ⇒ ψ. Define the partial order ≤ on P by

Θ′ ⇒ ψ′ ≤ Θ⇒ ψ iff Θ ⊆ Θ′ and ψ′ = ψ.

Let f(Θ⇒ ψ) = Θ and Var(Θ⇒ ψ) = the set of free variables in Θ ∪ {ψ}.

Proposition 5.2.1 With these definitions, 〈P,≤, f,Var(·)〉 is a T -consistency property.

The verification of 5.2.1 is straightforward.
Next, we describe a Boolean-valued model constructed on the basis of a consistency

property; it will be very similar to the construction of §1.
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Let 〈P,≤, f,Var(·)〉 be a T -consistency property. Let P∗ = B be the Boolean algebra
of regular open subsets of P = (P,≤) as before. Let the universe of the B-valued model
M consist of all terms of L, more precisely, let |M |s be the set of terms of sort s. The
operations denoted by symbols in L are defined as before. We put Ut = {p ∈ P :all
variables in t belong to Var(p)} and ‖t‖ = ‖t ∈ |M |s‖ = U∗t . Also, for any formula φ in
F , we put Uφ = {p ∈ P : φ ∈ f(p)}, and we define

RM (t1, . . . , tn) = U∗Rt1···tn

and
‖t1 ≈ t2‖M = U∗t1≈t2 .

It follows as before that M is a properly defined B-structure. Let us call M the canonical
model associated with the consistency property.

Proposition 5.2.2 Let M be the canonical model of a T -consistency property. With the
notation above, we have

(i) ‖φ[~t for ~v]‖M = U∗
φ(~t for ~v)

,

(ii) M is a model of T .

The proof is very similar to the proofs in §1 and the details are omitted.
By 5.2.1 and 5.2.2 we obtain

Corollary 5.2.3 (Completeness of the coherent system). (a) For a theory T in F and
a sequent σ of F ,

T ` σ iff T |=b σ

for Boolean valued models.

(b) For a theory T in a countable or in a finitary coherent fragment F and σ a
sequent in F ,

T ` σ iff T |= σ

for ordinary (set-) models.

Finally we wish to point out the principle behind finding the one-sided axiom system
just like we did for the other axiom system. Assume F is a countable fragment of Lg∞ω,
T and σ are from F , T 6` σ and try to construct a model M of T not satisfying σ. We
wish to construct M on the basis of a set H (instead of two sets H1, H2) of formulas
such that the domain of M consists of the terms whose variables occur free in at least
on formula in H and such that for any formula φ(~x) in F with free variables in |M |

φ(~x) is true in M ⇔ φ(~x) ∈ H.

(Compare the corresponding conditions for the other axiom system.) Now we again have
that e.g. for Σ ∈ F the following should be satisfied:∧

Σ ∈ H iff Σ ⊂ H.

Instead of reformulating this condition with the aid of an H2 as was done before, we are
going to make sure directly that this equivalence holds; we will succeed because now Σ
is finite. In particular, we again construct H as an increasing union

⋃
n<ωHn of finite

sets Hn. Let σ, the fixed sequent given initially, be Θ⇒ ψ. We put H0 = Θ and as an
induction hypothesis we require

T 6` Hn ⇒ ψ.
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We will make sure that (1) holds in the following way. In one kind of step of the
construction we will have that

∧
Σ ∈ Hn and we want to put Hn+1 = H ∪Σ; in another,

we will have Σ ⊂ Hn and Hn+1 = Hn ∪ {
∧

Σ}. Notice that since Σ is finite, if Σ ⊂ H
then for some n0, Σ ⊂ Hn for all n ≥ n0 hence we will have ample opportunity to
perform the second kind of construction and make sure that

∧
Σ ∈ H. This possibility

is not available for infinite Σ.
Now reflection shows that the possibility of performing these two kinds of construc-

tions calls for exactly the two rules (R
∧

1) and (R
∧

2) given above.



Chapter 6

Existence theorems on
geometric morphisms of topoi

§1 Preliminaries

Here we collect some simple facts and notation on Grothendieck topoi we will need. For
more details, c.f. Chapter 1.

A site is a category together with a Grothendieck topology. In what follows, C will
denote a site whose underlying category (also denoted by C) is small and which has finite
limoo . A Grothendieck topology can be given by specifying a collection G0(C) of families

each of which is of the form {Ai
fi //A : i ∈ I}. Such a family can be called a basic

covering family.

We note that an arbitrary collection G0(C) of families in C of the form given above
generates a smaller Grothendieck topology G(C) in which each family in G0(C) is a
covering family, i.e., G0(C) ⊂ G(C) (c.f. Chapter 1, Section 1). Naturally, different
collections of ‘basic’ covering families might generate the same topology. From our
point of view, it is more natural to consider the site C to be given by the underlying
category with G0(C) rather than G(C).
C∼ denotes the category of all sheaves over the site C; c.f. Chapter 1, Section 2. A

Grothendieck topos is, by definition, a category equivalent to C
∼

for some small site C.
We have the canonical functor ε = εC

ε : C → C
∼

that is left exact (i.e., preserves finite left limits) and continuous; a left exact functor

F : C → R is continuous if for every basic covering family {Ai
fi //A : i ∈ I} ∈ G0(C),

we have that {FAi
Ffi // FA : i ∈ I} is an effective epimorphic family, i.e., F (A) =∨

i∈I∃F (fi)(F (Ai)); c.f. Proposition 3.3.3.

We will call a left exact and continuous functor F : C → R an R-model of C.

A geometric morphism E1 u // E2 is a pair of adjoint functors E1
u∗ //
u∗
oo E2 such that

u∗ is left exact and continuous in the sense that whenever for {Ai
fi //A : i ∈ I} in E1

we have A =
∨(E1)
i∈I ∃fi(Ai) then also F (A) =

∨(E2)
i∈I ∃Ffi(FAi) (for equivalent definitions,

consult Theorem 1.3.11 in Chapter 1). u∗ is determined by u∗ up to isomorphism; a
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functor u∗ : E1 → E2 with the said properties will be called an E2-model of E1. Hence,
geometric morphisms of E2 to E1 can essentially be identified with E2-models of E1.
C∼ has the following universal property, c.f. Corollary 1.3.14. For any Grothendieck

topos E and any E-model M of C, there is an E-model of C
∼
, M
∼

, such that

C C∼

E

ε //

M
%%
M
∼

��

is commutative; M
∼

is determined up to isomorphism. Hence to construct a geometric

morphism E → C
∼

it is enough to construct an E-model of C.
Next we describe a logical formulation of some of the above notions. We start with

the definition of a theory TC associated with a site C. TC is formulated in the language
LC associated with the underlying category of C as given in Chapters 2 and 3; TC will be
a set of sequents in a coherent fragment of (LC)

g
∞ω. TC is defined to contain (i) all the

‘axioms of category’ (groups 1 and 2 before 2.4.5) corresponding to identity morphisms
and commutative triangles in C (ii) all the axioms related to finite left limit diagrams in
C (c.f. 2.4.5), (iii) all axioms of the form

a ≈ a⇒
∨
i∈I∃a(fi(ai) ≈ a)

for a basic covering family {Ai
fi //A : i ∈ I} ∈ G0(C).

On the basis of our earlier work, the following proposition in immediate.

Proposition 6.1.1 M is an R-model of C if and only if M is an R-model of TC, for
any R.

This gives our basic logical reformulation of the notion of an E-model of C, hence,
ultimately, that of geometric morphism E → C

∼
.

In subsequent work, a certain subcategory of C
∼

will be of good use. Let R be a

full subcategory of C
∼

such that R contains all objects ε(A) for A ∈ Ob(C) and for each
subobject X �

� // ε(A), it contains an isomorphic copy of X, and conversely, every object
in R is isomorphic to a subobject of some ε(A), A ∈ Ob(C). R is determined up to
equivalence, and it can be taken to be a small category. Moreover, it is easy to see that
R is a complete logical category by which we mean that it has finite left limits, stable
images and stable sups of arbitrary families of subobjects. Also, the inclusion functor
R → C∼ is left exact and preserves images and arbitrary sups. R has a nice logical
meaning as we now proceed to show.

Next we restate Lemma 1.3.8, part (ii).

Lemma 6.1.2 If X
ξ // εA is a subobject of εA in C

∼
, ∈ Ob(C), then there is a covering

family {εAi
gi //X : i ∈ I} in C

∼
(i.e., X =

∨
i∈I∃gi(εAi)) such that the compositions ξgi

are of the form ξgi = ε(fi) for some Ai
fi //A in C, for every i ∈ I.

Now, ε : C → C
∼
, regarded as an interpretation of the language LC is a model of TC .

Also, we can regard ε as a functor from C into R, with R defined above. We claim

Lemma 6.1.3 Let A be an object of C, ‘a’ a variable of sort A in the language LC.
The subobjects X �

� // εA in C
∼

are, up to isomorphism in Ĉ, exactly the interpretations

εa(φ(a)) in C
∼

(or in R) of formulas φ(a) of the form
∨
i∈Iφi(a) where 〈φi(a) : i ∈ I〉 is
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an arbitrary family of coherent finitary formulas of the language LC with the single free
variable a. Also, εx(φ(~x)) for each φ(~x) in Lg∞ω(LC) is, up to isomorphism, in R.

Proof. Here and below we use the notation Ai∼ (a) for the formula ∃ai(fi(ai) = a), with

a morphism Ai
fi //A given by the context. Let X be an object in R, A ∈ Ob(C),

X �
� // εA. Using 6.1.2, we have Ai

fi //A as described there. We see that X, as

a subobject of ε(A), equals to
∨(C
∼

)

i∈I∃
(C)
ε(fi)

(εAi) =
∨(R)
i ∃

(R)
ε(fi)

(εAi). But the latter is

εa(
∨
i∈IAi∼ (a)), with ε understood as an interpretation of LC in either C

∼
or in R. The

rest of 6.1.3 is clear. �

Let X be an object of R, X �
� // ε(A). X is

∨
i∈I∃ε(fi)(εAi) as described in 6.1.3.

Let M be an E-model of C, i.e., an E-model of TC , and M
∼

: C
∼
→ E the corresponding

C∼-model. As an interpretation of the language L, M gives rise to the interpretation

M(
∨
i∈IAi∼ (a)) =

∨(E)
i∈IM(Ai∼ (a)) =

∨(E)
i∈I(M(Ai) → M(A)). But by the commutative

diagram defining M
∼

from M , this is exactly M
∼

(
∨
i∈I∃ε(fi)(εAi)) = M

∼
(X)→ M

∼
(εA) (=

M(A)). In other words, the action of M
∼

on objects of R is described by interpretations
of certain disjunctions by M .

An E-model of C
∼
, M
∼

: C
∼
→ E is said to be conservative if for subobjects X, Y of A

in C
∼
, M
∼

(X) ≤ M
∼

(Y ) in the subobject lattice of M
∼

(A) (if and) only if X ≤ Y in the
subobject lattice of A.

Lemma 6.1.4 For any E-model of C, M : C → E, the associated E-model of C
∼
, M
∼

: C
∼
→ E

is conservative iff for any family {Ai
fi //A : i ∈ I} of morphisms of C, if {MAi

Mfi // MA :

i ∈ I} is a covering family in E then {εAi
εfi // εA : i ∈ I} is a covering family in C

∼
. In

other words, if the restriction of M
∼

to R is conservative, then so is widetildeM .

The ‘only if’ part is clear. To prove the ‘if’ part, assume that X �
� // C, Y �

� // C are
subobjects of C in C

∼
. Recall (c.f. 1.3.7) that C topologically generates C

∼
in the sense that

each object of C
∼

is covered by some family of objects of the form εA. Hence we have

covering families {εAi
fi //X : i ∈ I}, {εBj , gj , Y : j ∈ J} in C

∼
.

Let Aij = εAi ×C εBj
εAi X C

Y

Aij εBj .
p.b.

// //
OOOO

//

OO

Now assume that M
∼

(X) ≤ M
∼

(Y ) in the tops E . Fix now an arbitrary i ∈ I. M
∼

(εAi)

is covered in E by the family {M∼(Aij)→ M
∼

(εAi) : j ∈ J}, by the assumption M
∼

(X) ≤
M
∼

(Y ). Using 6.1.2, let us cover in C
∼

each Aij by a family {εAjk → Aij : k ∈ Kj}

with some Ajk ∈ Ob(C) such that εAjk → Aij → εAi = ε(f jk) for some Ajk
fjk //Ai in C.

Now, {M∼(εAjk) → M
∼

(Aij) : k ∈ Kj} is a covering family by the continuity of M
∼

. By

composition, {M∼(εAjk)
M
∼

(εfjk)
// M
∼

(εAi) : j ∈ J, k ∈ Kj}, i.e. {M(Ajk)
M(fjk)// M(Ai) : j ∈

J, k ∈ Kj} is a covering family in E . Hence, by assumption {εAjk
εfjk // εAi : j ∈ J, k ∈ Kj}
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is a covering family in C
∼
. It follows that {Aij → εAi : j ∈ J} is a covering family. Since

this is true for each i ∈ I, it follows that X ≤ Y as required. �

Finally, we will discuss how infs of families of subobjects of an arbitrary object of
the topos C

∼
can be controlled by those in R, and similarly for ∀f (C). The main tool for

deriving our formulas will be the fact that C
∼

is topologically generated by C, i.e., for any

B ∈ Ob(C
∼

) there is a covering family

(1) {Ai
αi //B : i ∈ I} ∈ Cov(C

∼
)

such that Ai = ε(A0
i ) for some A0

i ∈ Ob(C) (c.f. 1.3.7).

Let (Xj
� � // B)j be a family of subobjects of the object B in C

∼
. Below,

∧(C)
and∨(C)

denote inf and sup, respectively, in the lattice of subobjects of C. Let (1) be a
covering family for B.

We will use the notation α−1 to denote pullback; e.g.

Xj B

α−1
i (Xj) Ai

p.b.

� � //

� � //

OO
αi

OO

Recall the following simple facts.

(i) α−1
∧(B)
j∈JXj =

∧(Ai)
j∈J α

−1
i (Xj) (this is trivial to check),

(ii) a covering family when pulled back results in another covering family, hence∧
j∈JXj =

∨(B)
i∈I∃αi(α

−1
i

∧
j∈JXj).

Using now (i) too, we obtain the formula

(2)
∧
j∈JXj =

∨(B)
i∈I∃αi

∧
j∈Jα

−1
i (Xj).

From this, it is easy to show the following

Lemma 6.1.5 (i) Suppose that E is a Grothendieck topos and that C
∼ M // E is an E-model

of C
∼

that preserves all infs on the level of R, i.e. if

Xj
� � // ε(A); j ∈ J

is a family of subobjects, then∧(M(ε(A)))
j∈J M(Xj) = M(

∧ε(A)
j∈J Xj).

Then M
∼

preserves all infs in C
∼
.

(ii) Suppose that M preserves all stably distriburive (c.f. Chapter 3, Section 2) infs

on the level of R. Then it preserves all stably distributive infs in C
∼
.

Proof. (AD (i)). Let Xj
� � // B, j ∈ J be any family of subobjects in C

∼
. Let (1) be a

covering family with Ai = ε(A0
i ). We have∧M(ε(A))

j∈J M(Xj) =
∨(M(B))
i∈I ∃Mαi

∧(M(Ai))
j∈J (Mαi)

−1MXj

by using the above formula (2) used in E ,

= M(
∨(B)
i∈I∃αi

∧(Ai)
j∈J α

−1
i Xj)
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by using that M is a model and it preserves the infs
∧(Ai)
j∈J α

−1
i (Xj), Ai = ε(A0

i );

= M(
∧B
j∈JXj)

by our formula (2), now used in C
∼
.

(AD (ii)). Let Xj , etc., be as in (i) and assume that the inf
∧(B)
j∈JXj is stably

distributive. It follows directly that the infs
∧(Ai)
j∈J α

−1
i (Xj) are also stably distributive.

Hence the argument in (i) applies. �

Next we turn to ∀. Let E be a Grothendieck topos, A
f //B a morphism in E , X → A

a subobject and let us consider ∀f (X) → B. First assume that {Ai
αi //A : i ∈ I} is a

covering family. We claim that

(6.1.6) ∀f (X) =
∧(B)
i∈I∀fαi(α

−1
i (X))

Ai A B

α−1
i (X) X ∀f (X)

αi // f //

?�

OO

?�

OO

// //

Recall that, by definition, we have f−1(∀f (X)) ≤ X and for any subobject Y �
� // B,

f−1(Y ) ≤ X implies Y ≤ ∀f (X).
Let Y = ∀f (X). We have

(fαi)
−1(Y ) = α−1

i (f−1(∀f (X))) ≤ α−1
i (X),

hence ∀f (X) = Y ≤ ∀fαi(α−1
i (X)), thus ∀fX ≤

∧
i∈I∀fαi(α

−1
i (X)). For the con-

verse, let Y =
df

∧
i∈I∀fαi(α

−1
i (X)) and X ′ =

df
f−1(Y ). Then α−1

i (X ′) ≤ (fαi)
−1(Y ) ≤

(fαi)
−1(∀fαi(α−1

i (X)) = α−1
i (X), hence X ′ =

∨
i∈I∃αi(α

−1
i (X ′)) ≤

∨
i∈I∃αi(α

−1
i (X))

= X; here we used the fact that {α−1
i (X ′) → X ′ : i ∈ I}, {α−1

i (X) → X : i ∈ I} are
covering families. From f−1(Y ) = X ′ ≤ X it follows that Y ≤ ∀f (X), as required.

Secondly, we need another formula related to covering now B in the situation

A B

X ∀f (X)

f //

//
?�

OO

?�

OO

i.e., we have a covering family {Bj
βj //B : j ∈ J}

Aj Bj

Xjh−1
j (X) = ∀fj (Xj)

A B

X ∀f (X)

∃βj (∀fj (Xj))

p.b.

p.b.

fj //

��

hj // βj

��

??

f
//

//
��

?? KK

%%
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With the notation of the diagram we claim

(6.1.7) ∀f (X) =
∨
j∈J∃βj (∀fj (Xj))

Using the pull-back diagram

Aj Bj

A B

fj //

hj
��

βi
��

f
//

we have f−1
j β−1

j (∀f (X)) = h−1
j f−1(∀f (X)) ≤ h−1

j (X) = Xj . Hence β−1
j (∀f (X)) ≤

∀fj (Xj). Thus

∀f (X) =
∨
j∈J∃βjβ

−1
j (∀f (X)) ≤

∨
j∈J∃βj (∀fj (Xj)),

showing one of the two required inequalities. For the other one, let Yj = ∀fj (Xj) and

start with the equality f−1(∃βj (Yj)) = ∃hj (f−1
j (Yj)) obtained from the pullback diagram

exhibited before. It follows that

f−1(∃βj (Yj)) = ∃hj (f−1
j (∀fj (Xj))) ≤ ∃hj (Xj) ≤ X

and hence ∃βj (Yj) ≤ ∀f (X). We obtain
∨
j∈J∃βj (∀fj (Xj)) ≤ ∀f (X) as required.

Now we are ready to prove

Lemma 6.1.8 (i) Suppose E is a Grothendieck topos, C
∼ M // E is an E-model of C

∼
such

that (1)(i) for any A ∈ Ob(C) and any family Xj
� � // ε(A), j ∈ J of subobjects, M

preserves
∧εA
j∈JXj, i.e., M(

∧εA
j∈JXj) =

∧(M(εA))
j∈J MXj and (2)(i) for any A ∈ Ob(C)

B ∈ Ob(C), A f //B in C and X �
� // εA in C

∼
, we have that M preserves ∀εf (X) i.e.

M(∀εf (X)) = ∀M(εf)M(Xj). Then M preserves ∀f (X) for arbitrary X
� � // A

f //B,

all in C
∼
.

(ii) Modify the hypothesis of (i) so that in (1)(i) and (2)(i) only the stably distributive∧
and ∀ are considered. Then the conclusion is that M preserves all stably distributive

∀ in C
∼
.

Proof. (AD (i)). First, consider the special case

X �
� // A

f // εB.

By 6.1.2, let {εA0
i
αi //A : i ∈ I} be a covering family (in C

∼
) such that for i ∈ I, fαi = εfi

for some A0
i

fi //B in C; let Ai = εA0
i . Now we have

∀Mf (MX) =
∧(MεB)
i∈I ∀M(fαi)((Mαi)

−1(X)) (by 6.1.6)

=
∧(MεB)
i∈I ∀M(εfi)(M(α−1

i (X))

=
∧(MεB)
i∈I M(∀εfi(α−1

i (X))) (by (2)(i))

= M
∧(εB)
i∈I ∀εfi(α

−1
i (X)) (by (1)(i))

= M(∀f (X)) (by 6.1.6 again).

Next, consider the general case

X
� � // A

f //B.
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There is a covering family {εB0
j

βj //B : j ∈ J}, with B0
j ∈ Ob(C); let Bj = εB0

j . Now

we use (6.1.7). The diagram exhibited before the formula (6.1.7) now takes place in C
∼
.

M transforms this into a diagram in E , the two pull-backs still remain pull-backs in E ,
and the covering of B will transform into a covering of MB. Therefore we can apply
(6.1.7) in E to obtain

∀Mf (MX) =
∨
j∈J∃Mβj (∀Mfj (MXj)).

This further equals
=
∨
j∈J∃Mβj (M(∀fj (Xj))

by the special case discussed above (since now Bj = εB0
j comes from C), and

· · · = M(
∨
j∈J∃βj∀fj (Xj))

because M is a model,
· · · = M(∀f (X))

by (6.1.7) again.

(AD (ii)). The argument is roughly the same except that we have to keep track of dis-
tributivity. With the notation of the first part of the proof for (i) and the hypothesis that
∀f (X) is stably distributive, first of all, we have to show that the inf

∧
i∈I∀fαi(α

−1
i X)

is stably distributive (recall that εfi = fαi). The proof is straightforward but some-

what messy. Let Ci = ∀fαi(α−1
i X). Let B′

f //B be an arbitrary morphism in C
∼

and

D �
� // B′ a subobject of B′ in C

∼
.

Ci B

g−1(Ci) B′

A X

Ai α−1
i (X)

A′ X ′

A′i (αi)
−1(X ′)

p.b.

! � 00

� � //

OO
g

OO
f}}

oo

αi
�� ��

oo

WW

f ′
qq

oo
α′i��

oo

��

Consider the pullback A′ as shown and the pullbacks A′i, etc., along A′ → A. What we
have to show is (

∧
ig
−1(Ci))∨D =

∧
i(g
−1(Ci)∨D). We have

∧
ig
−1(Ci) = g−1

∧
iCi =

g−1∀f (X) = ∀f ′(X ′). Now, ∀f ′(X ′) ∨ D = ∀f ′(X ′ ∨ (f ′)−1D) by the stable distribu-
tivity of ∀f (X). We can use the formula 6.1.6 to conclude that ∀f ′(X ′ ∨ (f ′)−1(D)) =∧
i∀f ′αi((α′i)−1(X ′∨(f ′)−1(D))) =

∧
i∀f ′αi((α′i)−1(X ′)∨(f ′α′i)

−1(D)) since {Ai
αi //Ai :

i ∈ I} is a covering family. Using the stable distributivity of ∀f (X) for the inside of the
last expression, we ten

· · · =
∧
i(∀f ′αi((α

′
i)
−1(X ′)) ∨D).

But g−1(Ci) = ∀f ′αi((αi)−1(X ′)) for trivial reasons, so we get

· · · =
∧
i(g
−1(Ci) ∨D)

as required.
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There are two ∀’s that have to be verified to be stably distributive to complete the
proof of (ii), but they are immediate. �

Finally, there is a straight forward variant of 6.1.8 for Heyting implications A → B
and actually, for the generalized ∀’s of the form ∀f (A1 → A2) c.f. Chapter 2, Section 2.
We will refer to this variant as 6.1.8′.

§2 Categorical completeness theorems

Our first result is an improved version of Barr’s theorem, Barr [1974]. Let E = C
∼

be a
Grothendieck topos.

Theorem 6.2.1 There is a complete Boolean algebra B and a conservative ShB-model
of E

M
∼

: E → ShB

that preserves, in addition, all stably distributive infs and ∀’s in E. (Here ShB is the
category of all sheaves over B, with the canonical topology.)

Remark The improvement over Barr [1974] is the part “in addition . . . ”.

Proof. Here by ∀’s we mean expressions of the form ∀f (A1 → A2) generalizing Heyting
‘→’ and ordinary ∀f (A2), c.f. Chapter 2, Section 2. We first set up a theory T that
reflects the logical properties of the category R = RC (c.f. previous section). T will be
formulated over the language LC .

Among the axioms of T , we include all the axioms of TC (c.f. previous section). Then,
along with passing to a larger fragment F of L∞ω, we consider the axioms for stably
distributive infs and for ∀’s in R, as follows. First of all, we include in F all disjunctions

X∼ (a) =
∨
i∈IXi∼ (a) for any family 〈X = Xi

ξi //A : i ∈ I〉 of A in C, for an arbitrary
A ∈ Ob(C). (Thus we have a notation for all objects in R.)

For a subobject X
� � ξ // εA, we will write X∼ (a) for one of the disjunctions

∨
i∈IXi∼ (a)

such that X
� � ξ // A = εa(

∨
i∈IXi∼ (a)); here we mean interpretations by the interpreta-

tion ε :LC → C
∼

as in 6.1.3. By 6.1.3, for any X
� � ξ // εA, there is at least one such

disjunction X∼ (a).

Let X = 〈X(j) : j ∈ J〉 by an arbitrary family of subobjects in C
∼

of εA, A ∈ Ob(C)
such that the inf

∧
j∈JX

(j) is stably distributive. For any such family X, we take Y =∧(C
∼

)

j∈JX∼
(j) � � ξ // A and put the following axioms into T :

Y∼ (a)⇒
∧
j∈JX∼

(j)(a)

∧
j∈JX∼

(j)(a)⇒ Y∼ (a)

(c.f. item 10 before 2.4.5; also recall that X∼
j =

∨
i∈IXi∼

(j)(a), withXi∼
(j) := ∃x(ξji (x) ≈

a), X
(j)
i
� � ξ

j
i // A in C.) we proceed similarly for certain ∀’s. Let A

f //B be a morphism

in C, X �
� // εA, Y �

� // εA arbitrary subobjects in C
∼
, X = εa(X∼ (a)) = εa(

∨
i∈IXi∼ (a)), and

similarly for Y . Let ∀f (X → Y ) be Z �
� // B, Z = εb(Z∼ (b)) and assume that ∀f (X → Y )

is stably distributive. We add to T the axioms Z∼ (b)⇔ ∀a((fa ≈ y ∧X∼ (a))→ Y∼ (a)) for
all such ∀f (X → Y ), c.f. item 11 before 2.4.5.
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Finally, although they can be shown to be superfluous, for simplicity we add the
axioms

X∼ (a) ≤ Y∼ (a)

for subobjects X, Y of εA such that X ≤ Y .
We take F to be the smallest fragment such that all sequents in T are sequents of F .
We claim the following properties of T .

(1) For arbitrary subobjects X �
� ξ // εA, Y �

� η // εA, in C
∼
, X ≤ Y in the ordering of

subobjects of εA if and only if T ` X∼ (a)⇒ Y∼ (a).

(2) Let M0 :LC → E be an interpretation of the language LC in some category E with
finite limoo such that M0 is a model of the full theory T . Then M0, regarded as a functor

M : C → E , will be a model of C, moreover, for the induced model M
∼

: C
∼
→ E , M

∼
will

preserve all the stably distributive infs and ∀’s of C
∼
.

Proof of (1). The ‘only if’ part is trivial. Assume T ` X∼ (a) ⇒ Y∼ (a). Notice

that in the canonical interpretation ε :LC → C
∼
, all axioms of T are true. For the part

TC ⊂ T , this is so because ε is a model of the site C. (c.f. preceding section). For the
axioms related to infs and ∀’s, this is so since the axioms truly express the qualities
concerned (c.f. First Main Fact 2.4.5). Now we will use the Soundness Theorem, 3.5.4.
Notice that all formulas of the fragment F are stable with respect to ε; for conjunctions
and universally quantified formulas this is true precisely because of the distributivity
assumptions. By soundness, taken together with ε being a model of T , this implies that
if T ` X∼ (a)⇒ Y∼ (a) then ε |= X∼ (a)⇒ Y∼ (a), i.e., X ≤ Y , as required.

Proof of (2). Since TC ⊂ T , by 6.1.1 we have that M : C → E is a model of C. All
the special stability distributive infs and ∀’s that are mentioned in the hypotheses of
Lemmas 6.1.5(ii) and 6.1.8(ii) and 6.1.8′ are taken care of directly by the axioms of T ,
i.e., they are preserved by 2.4.5. Then by the mentioned lemmas, the assertion follows.

Now we are ready to use the Completeness Theorem 5.1.2. Hence there is a complete
Boolean algebra B and a B-valued model M0 such that for any sequent σ of the fragment
F , M0 |= σ iff T ` σ. By Chapter 4, M0 can be regarded as a categorical interpretation
M0 :LC → ShB and M0 |= σ in the B-valued sense is equivalent to M0 |= σ in the cate-

gorical sense. By (2) above, M0 gives rise to a ShB-model M
∼

, M
∼

: C
∼
→ ShB, that preserves

all stably distributive fins and ∀’s in C
∼
. Finally, let us show that M

∼
is conservative. By

Lemma 6.1.4, it is enough to show that if X, Y are subobjects of εA in C
∼
, A ∈ Ob(C),

then M
∼

(X) ≤ M
∼

(Y ) implies X ≤ Y . But M
∼

(X) = M0(X∼ (a)), M
∼

(Y ) = M0(Y∼ (a)) and

M
∼

(X) ≤ M
∼

(Y ) means that M0 |= X∼ (a) ⇒ Y∼ (a). Hence T ` X∼ (a) ⇒ Y∼ (a). By (1)
above, this implies that X ≤ Y as required. �

Remark Barr’s original theorem is 6.2.1 without the condition on infs and ∀’s. It is
easy to see that if M

∼
: E → ShB is a conservative model preserving a specific inf, or ∀,

in E, then that in, or ∀, mud be stably distributive; hence in a sense 6.2.1 is optimal.

There is a simplified version of Barr’s theorem that talks about an arbitrary small
category R with finite limoo instead of a topos E , and about preserving those logical
operations that can be carried out in R. The proof of this result is just a simplification
of 6.1.2.

Theorem 6.2.1′ Let R be an arbitrary small category with finite limoo . There is a
complete Boolean algebra B and a functor F :R → ShB such that (i) F is conservative,
i.e. A ≤ B in R iff F (A) ≤ F (B) in ShB, and (ii) F preserves all finite left limits, all
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(finte or infinite) stable sups, all stable images, (finite or infinite) stably distributive infs
and stably distributive ∀f ’s that exist in R.

The next result we want to discuss is a theorem of Deligne, SGA4, Vol. 2, Exposé VI,
Proposition 9.0, p. 336. We will call the site C algebraic if C has finite limoo (as always for

us) and moreover, all the basic covering families {Ai
fi //A : i ∈ I} in G0(C) are finite,

i.e., I is finite. A coherent topos is a category equivalent to some C
∼
, with an algebraic

site C (c.f. loc. cit.).

Theorem 6.2.2 (Deligne loc. cit.) “Every coherent topos has enough points”. If E is a
coherent topos, then there is a conservative model M

∼
: E → SetI into a (Boolean) topos

of the form SetI , with I a set. Equivalently, there is a small family 〈M∼i : i ∈ I〉 of
Set-models of E, Mi : E → Set, such that for X �

� // A, Y �
� // A in E, X ≤ Y iff for all

i ∈ I, M
∼
i(X) ≤ M

∼
i(Y ).

Proof. Let {Ai
αi //A : i ∈ I} be a family of morphisms in C such that {εAi

εαi // εA :

i ∈ I} is not a covering family in C
∼
, i.e., the subobject

∨
i∈I∃εαiεAi of A is strictly less

that εA. Consider the formulas Ai∼ (a) = ∃ai(αi(a) ≈ a). Let TC be the theory associated

with the site C; not TC is a finitary theory (every formula in TC is finitary). Let the
fragment F be the finitary coherent logic over the language LC . Let I ′ be a finite subset
of I. We claim that TC 6` a ≈ a⇒

∨
i∈I′Ai∼ (a). Indeed, by the Soundness Theorem, the

interpretation ε :LC → C
∼

would otherwise satisfy the sequent a ≈ a⇒
∨
i∈I′Ai∼ (a) (since

it satisfies TC), hence we would have εA =
∨
i∈I′∃εαiAi and a fortiori εA =

∨
i∈I′∃εαiεAi,

that is not the case by our hypothesis; the claim is established.
Now, we can apply the two-valued Completeness Theorem 5.1.7(i). Hence, for any

finite I ′ ⊂ I, there is an ordinary set-model of TC that is not a model of a ≈ a ⇒∨
i∈I′Ai∼ (a). Let c be a new individual constant not in LC and consider the theory

T = TC ∪ {Ai∼ (c)⇒ ↓: i ∈ I}

in an enlarged but still finitary logic. For any finite subset I ′ of I, the subset TC ∪
{Ai∼ (c)⇒ ↓: i ∈ I ′} has a model N , since clearly, any model M of TC that is not a model

of a ≈ a ⇒
∨
i∈I′Ai∼ (a) can be made into such a model, by taking cN to be an element

of M(A) that fails to satisfy the sequent a ≈ a⇒
∨
i∈I′Ai∼ (a).

Using the compactness theorem for finitary logic (5.1.8), we conclude that the theory
T has a model M∗ = (M, cM

∗
). Clearly, M is a model of TC . By the basic property

of TC , 6.1.1, we have that M : C → Set is a model of C, hence it gives rise to a model
M
∼

: C
∼
→ Set of M . We have

M
∼

(εAi) = M(Ai) = {x ∈M(A) : M |= Ai∼ [x for a]} ⊂M(A)

and

M
∼

(
∨
i∈IεAi) =

⋃
i∈IM

∼
(εAi) ⊂M(A).

Since for x0 = cM
∗
, M |= ¬Ai∼ [x0 for a] for all i ∈ I, we have that x0 ∈ M(A) −

M
∼

(
⋃
i∈I εAi), hence

M
∼

(
∨
i∈IεAi) 6= M

∼
(εA) = M(A).

In conclusion, for any family j = {Ai
αi //A : i ∈ I} such that {εAi

εαi // εA : i ∈ I}

is not a covering family in C
∼
, there is a model M

∼
j : C
∼
→ Set such that {Mj(Ai)

Mj(αi)//
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Mj(A) : i ∈ I} is not a covering family in Set either. Let J be the set of all such j and

let us define M : C → SetJ by M = 〈Mj〉j∈J . It follows that M is a model of C
∼

and also,

that it satisfies the hypothesis of Lemma 6.1.4. Hence by 6.1.4, M
∼

is conservative. �

In the next result we conclude that certain other Grothendieck topoi also have enough
points. The proof will be quite similar to the above proof of Deligne’s theorem and in
fact, it will be a bit simpler. It will exploit that we have a completeness theorem with
set-valued models for countable fragments of L∞ω (c.f. 5.1.7(ii)). As far as we know,
this result is new.

We will call a site C separable if (i) the underlying category C is countable, i.e., it
has countably many objects and hom(A,B) is countable for each A,B in Ob(C), and
(ii) the system of basic coverings G0(C) is countable. Notice that if C is separable then
the theory TC is countable, in fact, it is a theory in a countable fragment F of Lg∞ω. We

will call a Grothendieck topos E separable if E is equivalent to C
∼

for some separable site
C with finite limoo . We note without proof the following

Proposition 6.2.3 For a Hausdorff topological space X, the category of sheaves Sh(X)
over X is a separable topos if and only if X is homeomorphic to a complete separable
metric space.

Theorem 6.2.4 A separable Grothendieck topos E has enough points, i.e., there is a
conservative model M

∼
: C
∼
→ SetI with I a set.

Proof. Let j = {Ai
αi //A : i ∈ I} be a family of morphisms in C such that

{εAi
εαi // εA : i ∈ I} is not a covering family in C

∼
. Let F ′ be a countable fragment of

(LC)
g
∞ω containing F and the formula

∨
i∈IAi∼ (a), Ai∼ (a) = ∃αi(αi(a) = a); notice that

I is countable. We claim that TC 6` σj where σj is a ≈ a⇒
∨
i∈IAi∼ (a). As before, this

is a consequence of the soundness theorem, the fact that ε :LC → E = C
∼

is an adequate
interpretation of the full coherent logic (LC)

g
∞ω, and our hypothesis on j. By 5.1.7(ii),

there is a set-valued model Mj of TC that is not a model of σj . Hence Mj : C → Set is

a model of C, M∼j : C
∼
→ Set is a model of C

∼
and {M(Ai)

M(αi)// M(A) : i ∈ I} is not a
covering family in Set. Hence for M = 〈Mj〉j∈J , with J the set of all j as considered

above, M : C
∼
→ SetJ is a model that is conservative by Lemma 6.1.4. �

§3 Intuitionistic models

We will be interested in models that preserve all infs and all ∀’s in a given topos. Since
the internal logic of topoi is intuitionistic, the results to be discussed are intimately
related to the semantics of intuitionistic logic, c.f. Rasiowa-Sikorski [1963], Kripke [1963],
Fitting [1969], [1973].

Theorem 6.3.1 For any Grothendieck topos E = C
∼
, there is a complete Heyting algebra

H and a conservative model M
∼

: C
∼
→ ShH into the category of all sheaves over H such

that M preserves, in addition, all infs and ∀’s in C
∼
.

Proof. We will use the Boolean completeness theorem similarly as in the proof of
6.2.1 and we will extract a Heyting valued model from the Boolean valued model. We
consider the theory TC , together wit the smallest fragment F containing all formulas in

TC and all infinite disjunctions
∨
i∈IAi∼ (a), for families {Ai

αi //A : i ∈ I} of morphisms

in C; here Ai∼ (a) = ∃ai αi(ai) = a. Let B be the Boolean algebra and M the B-valued

model constructed in the proof of 5.1.2 such that M |= σ iff T ` σ, for any sequent
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σ of F . We will use some properties of the model M constructed there beyond the
actual statement of the completeness theorem. First of all, the elements of the partial
domain |M |A corresponding to the sort A (= object A in C) are the terms of LC of sort
A. Secondly, the variables as elements of the various partial domains |M |A are generic
in the sense that if ‖~x‖ · ‖φ‖ ≤ ‖ψ‖, ~x is the sequence of all free variables in φ ⇒ ψ
(recall that ‖φ‖ means the value of φ in M with the free variables of φ interpreted by
themselves as elements of |M |), then in fact T ` φ⇒ ψ. In other words, a sequence ~x of
variables as elements of |M | have a property in M expressible in the form φ ⇒ ψ only
if this property is shared by any tuple ~a of elements in |M | with corresponding sorts.

To define the Heyting algebra H, let us call an element of the Boolean algebra B
basic if it is of the form ‖φ‖M , with φ a formula of the fragment F . Let H be the set
of elements of B which are obtained as the Boolean sup in B of any number of basic
elements. H inherits a partial ordering from B; we claim that H is a complete Heyting
algebra with respect to this ordering. It is easy to check that, in fact, for any elements
h1, h2, hi of H, ∨(H)

i∈I hi =
∨(B)
i∈Ihi,

h1 ∧(H) h2 = h1 ∧(B) h2,∧(H)
i∈I hi =

∨
{h : h ≤ hi for all i ∈ I},

h1 →(H) h2 =
∨
{h : h ∧ h1 ≤ h2}

and the laws of Heyting algebra are satisfied.

Next we define an H-valued model M ′. The domains of operations of the H-valued
structure M ′ are defined to be the same as those of M . By putting ‖θ‖M ′ = ‖θ‖ =
‖θ‖M for atomic formulas, we define equality on M ′ and also, the membership functions
‖a‖M ′ = ‖a = a‖M ′ = ‖a = a‖. It is obvious that the basic conditions on these data are
satisfied just because they are satisfied for M in the B-valued sense. Next, since finite
infs and arbitrary sups are computed in H just as in B, and since evaluating formulas
in Lg∞ω only these two operations are used, we clearly have that for every φ ∈ F ,
‖φ‖M ′ = ‖φ‖M . Hence, a sequent of F ⊂ L∞ω is satisfied in M ′ in the H-valued sense
just in case it is satisfied in M in the B-valued sense. It follows that M ′ satisfies the
theory TC , hence M : C → SetH = ShH is a model of C. Since M ′ satisfies the same
sequents in the fragment F as M and M is conservative, and a fortiori M satisfies the
hypothesis of Lemma 6.1.4 (the condition after “iff”), it follows that M ′ : C

∼
→ ShH is

conservative.

We are left with having to verify the claims regarding ∀’s and infs. We will use 6.1.5(i)
and 6.1.8(i) and thus, we have to verify the hypotheses of 6.1.5(i) and 6.1.8(i). Because
of the similarity of the arguments, we leave it to the reader to verify the hypothesis
of 6.1.5(i) which is identical to part (1)(i) of the hypothesis of 6.1.8(i) and we proceed

to verify (2)(i) in 6.1.8(i). Let A
f //B be a morphism in C and X �

� ξ // εA a subobject

of εA in C
∼
. We know that X �

� ξ // εA = ε(X∼ (a)) for some formula (infinite disjunction)

X∼ (a). Similarly, for Y = ∀εf (X
� � ξ // εA)

� � η // εB, let Y∼ (b) be a formula of F such that

Y �
� η // εB = ε(Y∼ (b)). By item 11, 2.4.5, it is sufficient to show that M ′ as an H-valued

model satisfies the sequents

Y∼ (b)⇒ ∀a(fa ≈ b→ X∼ (a)),

∀a(fa ≈ b→ X∼ (a))⇒ Y∼ (b).
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This is equivalent to saying that for any element b = t = t(~x) ∈ |M ′|B (recall that
elements of |M |B are terms!) we have

‖Y∼ (t)‖M ′ = ‖∀a(fa ≈ t⇒ X∼ (a))‖M ′

with ‘a’ a variable not among the ~x. By definition of H-valued evaluation, the right-hand
side equals to

(1)
∨(B){‖t‖ · β : ‖fs = t‖ · β ≤ ‖X∼ (s)‖ for all s ∈ |M |A}

where β ranges over basic elements of B (of H). To show that the right-hand-side of the
claimed equality is ≤ the left, assume that β = ‖φ‖ and that ‖fs = t‖ · ‖φ‖ ≤ ‖X∼ (s)‖
for any s ∈ |M |A. Then we can choose s to be a variable ‘a’ not occurring free either in
t or in φ, and have

‖fa = t‖ · ‖φ‖ ≤ ‖X∼ (a)‖.

By the genericity of variables discussed above,

TC ` fa = t, φ⇒ X∼ (a).

Since ∀εf (X) exists, the rule

fa = t, φ⇒ X∼ (a)

φ⇒ ∀a[fa = t→ X∼ (a)]

is sound in the interpretation ε :LC → C
∼
. Hence, since ε is a model of T , we have

ε~y(φ) ≤ ε~y(∀a(fa = t→ X∼ (a)));

here ~y is the sequence of variables occurring free in t or φ. Since εb(∀a(fa = b →
X∼ (a))) = ∀εf (X) = Y, and ∀εf (X) is stable, we have by the Substitution Lemma 3.2.3
that ε~y(∀a(fa = t→ X∼ (a))) = ε~y(Y∼ (t)). We have obtained that

ε~y(φ) ≤ ε~y(Y∼ (t)).

Since the functor M
∼

: C
∼
→ SetH preserves monomorphisms, we obtain that the subobject

M
∼

(ε~y(φ)) of M(A) = M
∼

(εA) is ≤ the subobject M
∼

(ε~yY∼ (t)) of M(A), all in SetH.
Translating this fact into the language talking about M ′ as an H-valued model, this
means that

‖~y‖ · ‖φ‖ ≤ ‖~y‖ · ‖Y∼ (t)‖

or equivalently,
‖t‖ · β = ‖t‖ · ‖φ‖ ≤ ‖Y∼ (t)‖.

This shows that each member of the sup in (1) is ≤ ‖Y∼ (t)‖. This means that the sup
itself is so too.

Conversely, taking β = ‖Y∼ (t)‖, we can show ‖fs = t‖ · ‖Y∼ (t)‖ ≤ ‖X∼ (s)‖ for all
s ∈ |M |A; this establishes the other inequality. This finishes the verification of (2)(i) in
6.1.8(i). Note that, strictly speaking, we need to verify the more complicated 6.1.8′ (c.f.
end of Section 1) to deal with generalized ∀. This completes what we had to say about
the proof of 6.3.1. �

In case there are enough point of E , then there is a topological space T so that ShH
can be replaced by Sh(T ), the category of sheaves over T , in 6.3.1. In fact, this space
T is “the space of all points” of E . Next we proceed to organize points into a space T .
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Here we essentially redefine the space esp(E) introduced in Hakim [1972], p. 24. We do

this in a differing terminology that is more suited to our prejudices. Let now E = C
∼

be
an arbitrary Grothendieck topos. Let κ be the cardinality of the smallest fragment FC
such that TC is a theory in FC . κ can be described as the maximum of κ1, κ2, κ3 and ℵ0

where κ1 is the cardinality of the set of objects of C, κ2 is the maximum of cardinalities
of the sets homC(A,B), A, B ∈ Ob(C), and κ3 is the cardinality of G0(C). For instance,
if C is a separable site, then κ = ℵ0. Now we extend the language LC by adding a
set of new individual constants. For each A ∈ Ob(C), we take a set CA of individual
constants of cardinality κ. For A 6= B, CA ∩ CB = ∅. we declare that each c ∈ CA is
of sort A. For the language L′ ⊃ LC thus obtained, we have the set TA, the set of all
closed (variable-free) terms of L′ of sort A. Next we define our crucial notion, that of
a C-structure. Roughly speaking, a C-structure is a structure of the similarity type LC
all of whose elements are denoted by some closed terms in L′. Precisely, a C-structure
is given by (i) a set-valued structure M of the similarity type LC (i.e. M :LC → Set),
(ii) a family of functions FA (A ∈ Ob(C)) such that domFA ⊂ TA, rn(FA) = M(A) and
if t = fs, t is of sort B, s is of sort A, and s ∈ domFA, then we have t ∈ domFB and
the compatibility relation FB(t) = fM (FA(s)) holds.

In order that we have to deal with a (small) set of C-structures only, we require
furthermore that the partial domains of the C-structures should be subsets of a fixed
large enough set; in this way every C-structure without this restriction will be isomorphic
to one with this restriction.

For a C-structure (M,FA)A∈Ob(C) = M , the partial domains might be empty, but
always, every element in them is denoted (via the FA) by a term and we have that the
set of terms that are actually used for denoting elements in M are closed under the
operation symbols of LC .

For a formula φ(~c) of the extended language L′∞ω, ~c = (c1, . . . , cn) being constants
in C =

⋃
A ∈ Ob(C)CA, sort(ci) = Ai, we can now define the set

〈φ(~c)〉

as the set of all C-structures M = (M,FA)A∈Ob(C) such that (i) ci ∈ domFA, and (ii)
M |= φ[FA1

(c1), . . . , FAn(cn)] (i.e., the constants ci are interpreted as FAi(ci) in the
formula).

E.g. for the formula c ≈ c, c of sort A, 〈c ≈ c〉 is the set of all C-structures
(M,FA)A∈Ob(C) such that c ∈ domFA. 〈c ≈ c〉 will be denoted by 〈c〉. For a sequence
~c = (c1, . . . , cn) of constants, 〈~c〉 stands for 〈c1〉 ∩ 〈c1〉 ∩ · · · ∩ 〈cn〉.

Let F ⊂ FC be the smallest fragment of (LC)
g
∞ω such that all formulas in TC are

formulas of F and also, each formula
∨
i∈IAi∼ (a) belongs to F , for any family {Ai

αi //A :

i ∈ I} of morphisms in C and Ai∼ (a) = ∃ai(αi(ai) = a). Let F ′ be the fragment

of (L′)γ∞ω obtained as the set of all substitution instances of formulas in F when we
substitute constants in C for variables. We will be interested in sentences of F ′ only.
Any sentence of F ′ has the form φ(~c), with some φ(~x) in F . It is easy to see that for
a sequent φ(~c) ⇒ ψ(~c) of F ′, TC ` φ(~c) ⇒ ψ(~c) iff TC ` φ(~x) ⇒ ψ(~x) provided that in
~c = (c1, . . . , cn), ci 6= cj for i 6= j. This is true basically because the axioms in TC do
not contain the new constant in C.

Finally, the topological space T is defined as having the underlying set the set of
all C-models and basic open sets all set of the form 〈φ(~c)〉 with sentences φ(~c) of the
fragment F ′.

For simplicity (though superfluously) we add all sequents φ(~x) ⇒ ψ(~x) of F to TC
that are true in the interpretation ε :LC → C

∼
; we denote the result by TC too.

The basic fact that we need below is the following
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Lemma 6.3.2 The topos E = C
∼

has enough points in the sense of Theorems 6.2.2 and
6.2.4 if and only if the following condition (∗) holds:

(∗) For any sequent φ(~c)⇒ ψ(~c) of F ′, TC ` φ(~c)⇒ ψ(~c) iff 〈~c〉 ∩ 〈φ(~c)〉 ⊆ 〈ψ(~c)〉.
(In case each constant in ~c actually occurs in both φ and ψ, the condition is
〈φ(~c)〉 ⊆ 〈ψ(~c)〉.)

Proof. The ‘if’ part will not be needed below and its proof is left to the reader.
Assume that C

∼
has enough points. Suppose first that T ` φ(~c)⇒ ψ(~c). But then, since

the rules of ` are sound for the set-theoretic interpretation, it obviously follows that
〈~c〉 ∩ 〈φ(~c)〉 ⊆ 〈ψ(~c)〉. Suppose that T 6` φ(~c) ⇒ ψ(~c). Substituting distinct variables
xi for the ci, we obtain that T ` φ(~x) ⇒ ψ(~x), hence ε does not satisfy φ(~x) ⇒ ψ(~x).
In other words ε~x(φ) 6≤ ε~x(ψ), as subobjects of ε(~x) = ε(Ai)× · · · × ε(An), Ai the sort

of xi. Hence, since there are enough models of C
∼
, it follows that there is M :LC → Set

such that M is a model of TC that is not a model of φ(~x)⇒ ψ(~x).
By the downward Lowenheim-Skolem theorem (c.f. [CK]) we can assume that each

partial domain |M |A (A ∈ Ob(C)) has cardinality at most κ. If ~x = 〈x1, . . . , xn〉, then
there are elements a1, . . . , an of |M |, ai ∈ |M |Ai , Ai the sort of xi, such that M |= φ[~a]
but M |=/ ψ[~a]. We turn M into a C-structure as follows.

We pick a subset C ′A ⊂ CA of cardinality at least that of |M |A and take an onto map
fA :C ′A → |M |A. (If |M |A is nonempty, we can take C ′A = CA, but if |M |A is empty, we
have to take C ′A = ∅.) We can always arrange the fA such that fAi(ci) = ai, with ci
and ai determined above. Then we can extend fA in a unique way to a function FA on
a subset of TA such that (M,FA)A∈Ob(C) will be a C-structure. By our arrangement, we
now have that for M as a C-structure, ci ∈ domFAi and M |= φ(~c) but M |= ¬ψ(~c), in
other words, M ∈ 〈~c〉 ∩ 〈φ(~c)〉 − 〈ψ(~c)〉, showing that 〈~c〉 ∩ 〈φ(~c)〉 6⊆ 〈ψ(~c)〉 as required.
This proves 6.3.2.

Continuing with an arbitrary topos E = C
∼
, we now set up a H-valued model N of E ,

where H is the complete Heyting algebra of all open subsets of the topological space T
determined above. Let |N |A be TA, the set of all closed terms of L′ of sort A and let
the operations corresponding to the symbols in LC be defined in the obvious way. By
putting

‖t1 ≈ t2‖N = 〈t1 ≈ t2〉

we define the equality predicates on each |N |A and it is easy to check that this way we
have defined a proper H-valued structure of the similarity type LC . Next we notice the
following easily verified facts:

〈φ1 ∧ φ2〉 = 〈φ1〉 ∧ 〈φ2〉

〈
∨
i∈Iφi〉 =

⋃
i∈I〈φi〉

〈∃xφ(x)〉 =
⋃
t∈TA〈φ(t for x)〉.

(A is the sort of the variable x.)
This shows that for any formula φ in F ′, for ‖φ‖N = the value of φ in N when each

ci in φ is evaluated as ci ∈ |N |Ai , we have

‖φ‖N = 〈φ〉 (2)

Now assume that the topos E = C
∼

has enough points. It follows easily from (2) and

6.3.2 that N
∼

: C
∼
→ ShH for N : C → ShH is a conservative model of C

∼
. Finally, we claim

that N also preserves infs and ∀’s of C
∼
. The proof of this is exactly the same as the

corresponding part in the proof of 6.3.1. In fact, now the constants play the same role
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as the free variables did in 6.3.1. Condition (∗) in 6.3.2 expresses the genericity of the
constants in C. Using the formula (2) and condition (∗) in 6.3.2, we can perform the
same computation as in 6.3.1 to verify the claims. Finally, we remark that ShH is the
same as what we call the category of sheaves over T , ShH = Sh(T ). We have established:

Theorem 6.3.3 Suppose that the topos E = C
∼

has enough points. Then there is a

topological space and a conservative model N
∼

: C
∼
→ Sh(T ) such that N

∼
preserves all infs

and ∀’s in C
∼
. (In fact, T is “the space of all points of E” in a precise sense determined

above.)

By Theorems 6.2.2 and 6.2.4 now we have

Corollary 6.3.4 The conclusion of 6.3.3 holds for any coherent topos and for any
separable topos.

Finally, we present a proof of an elegant theorem due to A. Joyal which is a variant
of Kripke’s completeness theorem, for intuitionistic logic (c.f. e.g. Fitting [1969]). For
Joyal’s theorem and applications of it, see also Joyal-Reyes [ ]. Before stating the
theorem, we discuss a few auxiliary concepts.

In every Grothendieck topos, the operation of taking ∀f (X) for a subobject X �
� // A

and a morphism A
f //B can always be performed, and ∀f (X) is stable. Similarly, for

Heyting implication, X → Y , for subobjects X, Y of a given object A. We consider a
special kind of Grothendieck topos, the functor category E = SetK with an arbitrary
category K, and we compute ∀f (X) (and X → Y ) in E .

Consider the diagram

F G

H

� � i //

ν

��

with i a monomorphism, in E = SetK; we are going to compute

∀ν(F
� � i // G).

F (M) �
�iM // G(M) (M ∈ Ob(K)) is a monomorphism in Set; without loss of generality

we can assume that iM is a set-theoretic inclusion, for every M ∈ Ob(K). For the

subobject I = ∀ν(F �
� i // G), again with set theoretic inclusions I(M) �

� // H(M), we
have the following formula: for any M ∈ Ob(K), for any b ∈ H(M):

(∗) b ∈ I(M) ⇔ for all morphisms M
g //N in K, and for all a ∈ G(N), if

νN (a) = (Hg)(b), then a ∈ F (N).

The effect of I on a morphism M
f //N is determined as the restriction of H(f)

to I(M) ⊂ H(M); we have to check, however, that this restriction maps every element
in its domain into I(N). The reader can easily verify that this is so; when doing so

he will realize why we have to consider ‘all M
g //N ’ in (∗), instead of just M (and

g = idM ). Furthermore, it is quite easy to check that the subobject I �
� // H thus

defined meets the requirements for being ∀ν(F → G); we omit the details. Computing
Heyting implications is left to the reader.

The second concept we need is that of the evaluation functor. Let E ,S be categories
and K a subcategory of the functor category SE . The evaluation functor ev : E → SK
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is defined as follows: (i) for an object X of E , ev(X) is the functor K → S such that
(a) for any M ∈ Ob(K), ev(X)(M) =

df
M(X) (note that M is a functor M : E → S)

and such that (b) for any g :M → N in K, ev(X)(g) =
df
gX :M(X) → N(X) (note

that g is a natural transformation M → N); moreover (ii) for a morphism X
f //Y

in E , ev(f) is the natural transformation ev(X) → ev(Y ) such that for M ∈ Ob(K)
(ev(f))M = M(f) :M(X)→M(Y ). It is easy to check that ev is indeed a functor.

We will apply the above in the situation when E is a coherent topos, S = Set, and
K is the full subcategory Mod(E) of the functor category SetE whose objects are the
Set-models of E , i.e., the continuous functors E → Set with respect to the canonical
topologies on E and Set. We will consider the functor ev : E → SetMod(E). Strictly
speaking, we should and could consider a suitable small subcategory K of Mod(E) to
make SetK locally small but this modification will be left to the reader to formulate.

Finally, in order to give a formulation which refers only to the coherent topos and not
to a generating site, we use the notion of a coherent object. We will return to coherent
objects in Chapter 9; here it suffices for us to know that for any coherent topos E , we can
present E as C

∼
with an algebraic site C such that the coherent objects of E are exactly

the objects isomorphic to some εA, A ∈ Ob(C), with ε : C → C
∼
' E the representable

sheaf functor and such that ε is full and faithful (c.f. Chapter 9).

Theorem 6.3.5 (A. Joyal) For a coherent topos E, the evaluation functor ev : E →
SetMod(E) has the following properties: (i) it is a model of E, (equivalently, it is ∞-
logical), (ii) it is conservative, (iii) it preserves ∀f (X �

� // A) and X → Y , whenever
X �
� // A, Y �

� // A are subobjects of a coherent object A, f is a morphism A → B
between coherent objects.

Proof. We will leave the proof of (i) and (ii) to the reader and concentrate on looking

at ∀f (X). Let C
∼

be a small algebraic site such that E = C
∼

and let ε : C → C
∼

be the
canonical functor.

Consider
X A′

Y∀f (X) = B′

� � //

� � //

f ′

��

with A′ = εA, B′ = εB, f ′ = εf , with A
f //B in C, with ε : C → C

∼
. We are going

to show that ev preserves ∀f (X). According to what was said above, this is enough to
verify the claim made in (iii) about ∀f (X).

To verify that ev(Y ) �
� // ev(B′) is ∀ev(f ′)(ev(X) �

� // ev(A′)), it is enough to verify

that for any M ∈ Ob(Mod(E)), (∗) above is true where F is ev(X), G is ev(A′), H is
ev(B′), ν is ev(f ′), with I(M) replaced by (ev(Y ))(M). Namely, as we said before, (∗)
determines the subobject I �

� // H. We are left with the task of verifying the following:

(∗∗) b ∈ M(Y ) ⇔ for all morphisms M
g //N in Mod(E) and for all a ∈

N(A′), if (N(f ′))(a) = gB′(b), then a ∈ N(X).

Next recall the following. Any model M : E → Set can be represented as M = M
∼

for
a model M : C → Set with the commutative diagram

C C∼

Set.

ε //

M ""
M̃
��
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Moreover, any model M : C → Set is a model of the theory TC and conversely. We
have M(A′) = M(A), etc, using A′ = εA, etc. Finally, the subobject X

� � // εA can be
represented as the ε-interpretation of a (possibly infinite) disjunction

∨
i∈IXi∼ (x) with

Xi∼ finitary formulas of (LC)
g
ωω. Hence M

∼
(X �
� // εA) will be Mx(

∨
i∈IXi∼ (x)) �

� // M(A).

Taking these facts into account, (∗∗) translates into the following: here M is an
arbitrary model M : C → Set.

(∗ ∗ ∗) b ∈ M
∼

(Y ) ⇔ for all natural transformations M
g //N , with N a

model N :TC → Set, and for all a ∈ N(A), if N(f)(A) = gB(b) then
a ∈ N(

∨
i∈IXi∼ ) =

⋃
i∈I N(Xi∼ ).

Thus, in the righthand side of the equivalence (∗ ∗ ∗), we have achieved a reduction
to a purely model theoretic condition concerning models of the theory TC . Of course,
in proving the equivalence we have to relate this condition to the fact that Y �

� // A′ is
∀f (X) in the topos E .

The left-to-right direction ‘⇒’ in (∗ ∗ ∗) is trivial and is left as an exercise. For the
other direction, we assume that b ∈M(B) but b 6∈ M∼(Y ) and we construct

(∗∗∗∗) a model N of T = TC together with a homomorphism (natural transfor-
mation) g :M → N and an element a ∈ N(A) such that N(f)(a) = gB(b)
and a 6∈

⋃
i∈I N∼ (Xi).

To this end, we employ the method of diagrams, one of the most commonly used
methods in model theory. (More applications of the same method will appear in Chapter
7.) The method consists, roughly speaking, in translating the task of constructing the
model N with additional items g :M → N and a ∈ N(A) into showing that a certain
set of axioms, in an extended language, can be simultaneously satisfied.

We introduce new individual constants denoting elements c of M : for each c ∈ |M |s,
let cs, or more briefly c, be a new constant; we must have cs = dt only if s = t and
c = d. Let L′ be language L = LC together with these constants c, c ∈ |M |. We define
Diag+(M) (the “positive diagram” of M) as the set of all atomic sentences θ(c1, . . . , cn)
of L′ which are true in M when ci is interpreted as ci. E.g., if (Mf)(c1) ≈ c2, with
f :A→ B, then and only then we have the sentence f(c1) ≈ c2 in Diag+(M). The role
of the positive diagram is contained in the following

Lemma 6.3.6 Given a model N ′ of Diag+(M), and its reduct N to L (obtained by
forgetting the interpretations of symbols outside L), the map gA :M(A)→ N(A) defined
by c 7→ (c)N

′
give rise to a natural transformation g = (gA)A∈Ob(C) : M → N .

The lemma will become obvious when one reflects that a natural transformation
M → N is nothing but a homomorphism preserving the operations of the multisorted
algebra M .

We write down the following set of axioms:

T ′ = T ∪Diag+(M) ∪ {f(a) = b} ∪ {¬Xi∼ (a) : i ∈ I}

(as in model theory in general, we do not use Gentzen sequents to write down axioms).
Here a is a new constant (not in L′) of sort A, b is the specific element in M(B)−M∼(Y )
we started with (hence b is in L′) and the sentences Xi∼ (a) with the new constant a

plugged in, come from the formulas Xi∼ referred to above. T ′ is formulated in finitary

logic. We notice that if N ′ is a model of T ′ then, with N the reduct of N ′ to L, first of
all, N |= T (= TC), and with g obtained as in Lemma 6.3.6, and with a (a)N

′
we will

have all we wanted under (∗∗∗∗). So, it is sufficient to show that T ′ has a model!
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At this point we refer to the Compactness Theorem, 5.1.8. Hence, it is enough
to show that any finite subset T ′′ of T ′ has a model. Take a finite subset T ′′ of T ′.
Besides elements of T , T ′′ contains finitely many elements of Diag+(M); without loss
of generality, it contains f(a) ≈ b, and it contains ¬Xi∼ (a) for a finite set I ′ of indices i.

Let the conjunction of the formulas in T ′′∩Diag+(M) be δ(b, c1, . . . , cn) and let φ(y) be
the formula ∃z1 · · · ∃znδ(y, z1, . . . , zn) with appropriate variables y, zi. Because δ comes
from the diagram of M , M satisfies φ at b, M |= φ[b].

We now assume that T ′′ has no model and derive a contradiction. The assumption
implies that T together with the sentence

δ(b, c1, . . . , cn) ∧ fa ≈ b ∧
∧
i∈I′¬Xi∼ (a)

cannot be satisfied by a model, i.e., that the sequent

δ(b, c1, . . . , cn) ∧ fa ≈ b⇒
∨
i∈I′Xi∼ (a)

is true in any model of T interpreting the constants a, b, ci. Replacing those constants
by variables, and quantifying the ci by ∃, we obtain

T |= φ(y) ∧ f(x) ≈ y ⇒
∨
i∈I′Xi∼ (x);

here x, y are variables of sort A and B, respectively and |= refers to logical consequence
in terms of Set-models. Now we use the two-valued completeness theorem, e.g. 5.1.7(i),
for Lgωω. Notice that all sequents concerned are in the finitary coherent fragment Lgωω.
It follows that T ` φ(y) ∧ f(x) ≈ y ⇒

∨
i∈I′Xi∼ (x) in either of the two complete

axiomatizations we gave for Lgωω in Chapter 5.

Now we apply that the interpretation ε :LC → E = C
∼

of the language is sound with
respect to the axiomatization. Since ε is a model of T = TC , it follows that it is a
model of φ(y) ∧ f(x) ≈ y ⇒

∨
i∈I′Xi∼ (x), or equivalently, of φ(f(x)) ⇒

∨
i∈I′Xi∼ (x).

Recall that ε interprets the sorts A and B as A′, B′, respectively and the operation f
as f ′ :A′ → B′. Denoting the ε-interpretation of φ(y) by Y ′ �

� // B′, we have that the
ε-interpretation of φ(f(x)) is the pullback (f ′)−1(Y ′). The truth of the last sequent in
E , via its interpretation ε, means that the subobject (f ′)−1(Y ′) is ≤ the ε-interpretation
of
∨
i∈I′Xi∼ (x). But the latter is obviously ≤ X

� � // A′. Hence (f ′)−1(Y ′) ≤ X. By

definition of the operation ∀f (·) and of ∀f (X) = Y , it follows that Y ′ ≤ Y , hence

M
∼

(Y ′) ⊂M(Y ). Now, as we noted above, M |= φ[b] for the particular element b. Since

M = M
∼ ◦ ε, and Y ′ is the ε-interpretation of φ, this means that b ∈ M∼(Y ′) ⊂ M

∼
(Y ) ⊂

M
∼

(B′). We arrived at the contradiction b ∈ M∼(Y )!
Recapitulating: this means that T ′′ does have a model as promised. Hence, so does

T ′ and as we explained, this establishes that we can construct the items in (∗∗∗∗). By
our previous reductions, this completes the proof of the theorem. �
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Chapter 7

Conceptual Completeness

§1 A completeness property of pretopoi

Recall that a logical category is one that has finite limoo , stable images and stable sups of
finite families of subobjects of any object (Definition 3.4.1). A logical functor between
logical categories is one that preserves the logical structure, i.e. that preserves finite limoo ,
images and finite sups (Definition 3.4.2). A model or set-model of a logical category R
is a logical functor M :R → Set. If we let LR be the standard language associated with
R (c.f. Chapter 2, Section 4), then any functor M :R → S, in particular M :R → Set,
is an S-interpretation of LR, or in particular in case S = Set, a many-sorted algebra
of type LR: M is the family 〈M(R),M(f)〉R∈Ob(R),f∈Mor(R) with M(R) being a set (a
partial domain of M) and

M(f) :M(R)→M(R′)

an operation for f :R→ R′ in R.
Let Mod(R) be the category of all models of R: its objects are the models M :R →

Set of R and Mod(R) is a full subcategory of the functor category SetR. On an ‘al-
gebraic’ level this means that the morphisms of Mod(R) are homomorphisms of (many-
sorted) algebras: if F :M → M ′ is a morphism (i.e., a natural transformation of func-
tors), then F is a family (FR)R∈Ob(R) such that

FR :M(R)→M ′(R)

and such that FR preserves the operations indexed by symbols f in LR:

R

R′

f
��

M(R) M ′(R)

M(R′) M ′(R′).

FR //

M(f)
��

M ′(f)
��

FR′
//

SS

Next, recall that a functor I :R → S with a small logical category R, is a logical
functor jus in case I, as an S-interpretation of the language LR is an S-model of the
theory TR; TR is formulated in the finitary coherent logic over LR, in other words, TR
is a finitary coherent theory (c.f. Theorem 3.5.3). In particular, M :R → Set is a model
of R iff M is an ordinary model of the theory TR.

Throughout this chapter, we will assume that R and S are small logical categories
and I :R → S is a logical functor. I∗ will denote the functor

I∗ : Mod(S)→ Mod(R)

135
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induced by I by composition: for M ∈ Ob Mod(S), I∗(M) = M ◦ I and for F :M →M ′

in Mod(S) I∗(F ) : I∗(M)→ I∗(M ′) is defined by

I∗(F )R = FI(R), for R ∈ Ob(R).

It is obvious that M ◦ I, as a composition of logical functors, is again logical, hence
a model of R. It is equally obvious that I∗(F ) is a natural transformation I∗(M) →
I∗(M ′) and that, in fact, I∗ is a functor Mod(S)→ Mod(R).

We are going to prove results of the form that certain properties of I∗ imply certain
other properties of I. We will point out that those statements are essentially equivalent
to model-theoretic ones, some of them well-known such as the Beth definability theorem.
Also, we may point out what happens if R and S are Boolean algebras (regarded as
categories in the in the usual way as partially ordered sets). Now, I is a Boolean
homomorphism, Mod(R) is the set (discrete category) of all ultrafilters on R and I∗ is
the underlying function of the induced continuous map of the Stone spaces of S and R.
It is well-known that I∗ is injective⇒ I is surjective and I∗ is surjective⇒ I is injective
(in fact, equivalences hold). The mentioned statements turn out to be special cases of
new results below.

Next, we recall a consequence of the soundness and completeness theorems (3.5.4,

5.1.7). Let R1
� � f // R be a subobject of R in the category R. For M :R → Set, a

model of R, we identify M(R1) (as a subobject of M(R)) with the subset {r ∈ M(R) :

there is r1 ∈ M(R1) such that M(f)(r1) = r} of M(R). Let R1
� � f1 // R, R2

� � f2 // R be
two subobjects of R. By the above identification, M(R1) ≤ M(R2) in the ordering of
subobjects of M(R) ∈ Ob(Set) iff M(R1) ⊂M(R2). We claim

Corollary 7.1.1 R1 ≤ R2 (in the ordering of subobjects of R) off M(R1) ≤M(R2) for
all models M of R.

For the proof, let R1∼ (r) be the formula ∃r1(f1r1 ≈ r) in the language LR, and simi-

larly, R2∼ (r). Then, R1 ≤ R2 is equivalent to saying that R (the identical interpretation

of LR) satisfies the sequent R1∼ (r) ⇒ R2∼ (r). By the soundness theorem (3.5.4), this is

equivalent to saying that TR ` R1∼ (r)⇒ R2∼ (r) and this (by completeness for set-models,

5.1.7) is equivalent to saying that M |= R1∼ (r)⇒ R2∼ (r) for each (Set-)model M |= TR,

hence to saying that M |= R1∼ (r) ⇒ R2∼ (r) for each model of R, i.e. to saying that

M(R1) ⊆M(R2) for all models M of R. �

7.1.1 has an immediate consequence for the situation I :R → S introduced above.

Theorem 7.1.2 With R, S, I as above, assume that I∗ : Mod(S)→ Mod(R) is surjec-
tive (on objects), i.e. for every M ∈ Ob(ModR) there is an N ∈ Ob(ModS) such that
I∗(N) 'M (isomorphisms in the category Mod(R)). Then I is conservative, i.e. if R1,
R2 are subobjects of R in R and I(R1) ≤ I(R2) (in the ordering of subobjects of I(R)),
then R1 ≤ R2. Hence, in particular, I is faithful.

Proof. Suppose R1 6≤ R2. By 7.1.1, there is M ∈ Ob(ModR) such that M(R1) 6⊂
M(R2). We have N ∈ Ob(ModS) such that I∗(N) ' M and we can assume that
I∗(N) = M . Then M(Ri) = N(I(Ri)) for i = 1, 2 and hence N(I(R1)) 6⊂ N(I(R2)).
By 7.1.1 again (now applied to S), I(R1) 6≤ I(R2). q.e.d.

Faithfulness follows by considering the graph G �
� // A×B of a morphism A

f //B. �

The next result is related to the Beth definability theorem (c.f. CK).

Theorem 7.1.3 Assume now in addition that R and S are Boolean, i.e. any subobject
A
� � // B of B has a (Boolean) complement C → B such that A ∧ C = 0 and A ∨ C =
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B. Assume I∗ if full with respect to isomorphisms, i.e., if I∗(N1) F // I∗(N2) is an

isomorphism in Mod(R), then there is a morphism N1
G //N2 such that F = I∗(G).

Then I is full with respect to subobjects, i.e., if S
� � // I(R) is a subobject of I(R) in S,

then there is R′
� � // R in R such that S ' I(R′) (isomorphism of subobjects).

Proof. Recall Beht’s theorem:

Beth’ Theorem Let T be a theory in full first order logic over a many sorted language
L′, let I :L → L′ be an interpretation of the language L in L′, and let φ be a formula
with free variables ~v of L′ each of which are of a sort I(r), r a sort of L. Assume that
whenever N1 and N2 are (ordinary set-)models of T such that I∗(N1) = I∗(N2), then
φN1 = φN2 . Then there is a formula ψ in the full first order logic over L such that
T ` ∀~v[φ↔ (I(ψ))(~v)]

Remarks (i) by an interpretation I :L → L′ of languages, we mean here a map I
that associates a sort I(s) with each sort s of L, and associates an operation symbol
I(f) : I(s1) → I(s2) with any operation symbol f : s1 → s2 in L. (Here we deal with
languages that do not have items other that sorts and unary operation symbols. In
the usual definition of interpretation, one associates formulas of L′ with the primitive
symbols of L; the above more special definition is sufficient for us.)

(ii) For a formula φ = φ(~v) with free variables ~v, ~v = v1, . . . , vn, vi of sort si and a
structure N , φN = {~a ∈×n

i=1|N |si : N |= φ[~a]}.

(iii) For an interpretation I :L → L′ as in (i), and a structure N for L′, I∗(N)
is defined in a natural way to be a structure for L (so that if I :R → S is a functor,
L = LR, L′ = LS and N :S → Set, then I∗(N) has the same meaning as before, namely
N ◦ I.

(iv) For I :L → L′ as before, and a formula ψ of L, by I(ψ) we mean the result of
replacing each variable x of sort s by a variable y of sort I(s) (keeping distinct variables
distinct) and each operation symbol f by I(f).

(v) The assumption of the theorem is equivalent to saying that whenever N1, N2 |= T

and F : I∗(N1) ∼ // I∗(N2), then F (φN1) = φN2 , or rather (Fs1 ×Fs2 × · · ·×Fsn)(φN1 =
φN2) where si is the sort of vi, ~v = 〈vi : i = 1, . . . , n〉 and Fs :N1(s)→ N2(s) the s-part
of the isomorphism F .

(vi) In the usual formulation of Beth’s theorem, L is a sublanguage of L′ and I is
the inclusion map. In this case, I∗(N) (for N a structure for L′) is the reduct N |L of
N , the result of forgetting interpretations of symbols in L′ − L. (Unlike in one-sorted
logic, the reduct N |L may have a smaller domain than N .) Also, usually φ of the above
formulation is replaced by a predicate symbol. It is easy to see that the above formulation
follows from the “usual” one.

Let us consider the language L = LR and L′ = LS ; I then gives an interpretation of L
in L′ : I :L→ L′. Let the theory T be TS , in the language L′. Let the formula φ be S∼ :=

S∼ (x) := ∃s fs ≈ x, for a subobject S �
� f // I(R), x a variable of sort I(R). Let F be an

isomorphism (in the ordinary sense, or in Mod(R), what is the same) I∗(N1) ∼ // I∗(N2).

Then we have N1
G //N2 such that F = I∗(G). Consider g = GI(R) = FR : (I∗(N1))(R) =

N1(I(R))→ (I∗(N2))(R) = N2(I(R)) and g′ = GS :N1(S)→ N2(S). Identifying N1(S)
and N2(S) with subsets of N1(I(R)) and N2(I(R)), respectively, as usual, it follows
from the fact that G is a natural transformation for functors from the category S that
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g′ is the restriction of g to the set N1(S),hence that FR preserves the formula S∼ , i.e.

FR(S∼
N1 ⊂ S∼

N2 (S∼
Ni being Ni(S), i = 1 and 2; FR(S∼

N1) is the image of SN1 under FR.)
Notice (this remark has an obvious general significance) that a model N of S will

preserve Boolean complements: if A �
� // B and C �

� // B are in S and C is a Boolean
complement of A, then N(C) will be the usual set-theoretic complement of N(A) with
respect to N(B). This is immediate from the fact that N preserves ∧ and ∨. Taking S′

to be a Boolean complement of S with respect to I(R), we obtain (similarly as for S)

that FR(S∼
′N1) ⊂ S∼

′N2 , hence that FR(S∼
N1) = S∼

N2 .
Hence we see that the hypothesis of Beth’s theorem is satisfied. Thus we have a

formula φ(r) of full first order logic over L (r a variable of sort R) such that T `
∀x[S∼ (x) ↔ (Iφ)(x)]. It follows that S = (S∼ )S ' (I(φ))S . (Here and below we write

(S∼ )S for the interpretation of the formula in S∼ in the canonical language of S by the
identical interpretation S of that language. In Chapter 2 and 3, we wrote this as [S∼ ]
but here we have to refer to more categories simultaneously.) The above mentioned fact
about preserving Boolean complements extends obviously to any logical functor, hence
to I. But then we have that (Iφ)S = I(φR) = I(R′) for R′ = φR, hence S ' I(R′) as
required.

The next result is similar to 7.1.3. Its source is a preservation theorem; we will
give a proof for it in detail. The chief feature of the result is that it does not need the
hypothesis of Booleanness but otherwise its hypothesis is stronger that that of 7.1.3.

Theorem 7.1.4 If I∗ is full, then I is full with respect to subobjects (for this phrase,
c.f. 7.1.3). If in addition I∗ is surjective on objects, then I is full.

Theorem 7.1.4′ Let I be an interpretation of languages: I :L→ L′, T a theory in first
order logic over L′. Let φ(~x) be a formula of L′ωω such that the sort of each free variable
xi is of the form I(ri), ri a sort in L. Assume that whenever F : I∗(N1) → I∗(N2)
is a homomorphism, then Fr(φ

N1) = φN2 . (Fr is Fr1 × Fr2 × · · · × Frn :N1(I(r)) =
N1(I(r1))× · · · ×Nn(I(rn))→ N2(I(r)) = N2(I(r1))× · · · ×N2(I(rn)); φN1 is a subset
of N1(I(r)) and φN2 is a subset of N2(I(r)).) We briefly say that any L-homomorphism
between models of T preserves φ.

Under these hypotheses, there is a finitary coherent formula ψ (built up by finitary∧
and

∨
, and ∃) of L such that T |= ∀x[φ(~x) ⇔ (I(ψ))(~x)].

Proof. This theorem is very closely related to the Los-Tarski theorem on sentences
preserved by substructures, and in fact, the proof of 7.1.4′ can be given along the same
lines, notably by using the “method of diagrams”.

To simplify notation, we’ll assume that I is an inclusion, i.e. L ⊂ L′; now I∗(N) is
the reduct N |L. The general case in fact follows from this special one.

Let us introduce new individual constants ~d of sorts matching those of ~x (the free

variables of φ).Expand the language L to L(~d) and L′ to L(~d) to include the ~d. Let

φ0 =
df

φ(~d). Then the hypothesis is equivalent to saying that whenever N1, N2 are

L′(~d)-models of T , F is an L(~d)-homomorphism of N1|L(~d) into N2|L(~d), then N1 |= φ0

implies N2 |= φ0. In other words, we have reduced the hypothesis to preservation of

sentences. Notice that any coherent (= positive existential) L(~d) sentence is preserved

by L(~d)-homomorphisms; what we wan to show is essentially the converse of this fact.

We are going to work in the full finitary (Boolean) logic over L′(~d). Now we can
dispense with Gentzen sequents and take theories as sets of sentences, by replacing
Φ⇒ Ψ by ∀~x(

∧
Φ→

∨
Ψ).

Define Σ to be the set of negated positive existential sentences ¬ε of the language
L1 = L(~d) which are consequences of T ∪ {¬φ0} : T ∪ {¬φ0} |= ε.
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Lemma Let us assign a new individual constant as to each element a ∈ |M |s such that
as = bs implies a = b and s = s′. The diagram ∆ of M is the set of atomic sentences
in the language: L′1 plus the new individual constants as, which are true in M when as
is interpreted as a. The main fact about the diagram which can be seen immediately is
that whenever N is a model of ∆, then the maps Fs : a 7→ (as)

N form a homomorphism
F = (Fs)s of M into N . Hence, once we know that T ∪ {¬φ0} ∪∆ has a model, we are
done.

By the compactness theorem, it is enough to see that for any finite subset ∆′ of ∆,

T ∪ {¬φ0} ∪∆′

has a model.
∧

∆′ can be written as γ(a1
s1 , . . . , a

n
sn) where γ(x1, . . . , xn) is the conjunc-

tion of atomic formulas of the language L1. Assuming that the assertion is false amounts
to saying that

T ∪ {¬φ0} |= ¬∃x1, . . . , xnγ(x1, . . . , xn)

since the constants aisi do not occur in T ∪ {¬φ0}. Denoting the formula on the right-
hand-side by ¬ε, we obtain that ¬ε ∈ Σ since ε is positive existential obviously. By
assumption, this implies that M |= ¬ε. On the other hand, clearly M |= ε since
M |= γ[a1/x1, . . . , a

n/xn]. This contradiction proves the Lemma.

Turning to the proof of 7.1.4′, assume now that φ0 is preserved by L1-homomor-
phisms. We claim that for Σ of the Lemma

T ∪ Σ |= ¬φ0.

Indeed, let M be any L′1-structure which is a model of T ∪ Σ; we want to show that
M |= ¬φ0. By the Lemma, there is N |= T ∪ {¬φ0} and F :M |L → N |L. By the
preservation property, M |= T ∪ {φ0} and N |= T imply N |= φ0; since we know
N |= ¬φ0 and N |= T , and also M |= T , it follows that M |= ¬φ0, as was to be shown.

Finally, apply the compactness theorem to T ∪ Σ |= ¬φ0 to obtain finitely many
¬ε1, . . . ,¬εn ∈ Σ (possibly n = 0) such that T |= ¬ψ0 → ¬φ0 where ψ0 =

∨
{εk : k =

1, . . . , n} (=
∨
∅ = ↑ if n = 0). Clearly, T |= ¬φ0 → ¬ψ0 since every formula ¬ε in Σ

was consequence of T ∪ {¬φ0}. We conclude that T |= φ0 ⇔ ψ0; obviously, ψ0 is a
coherent L1-formula.

Now, ψ0 = ψ(~d) for a coherent L-formula ψ(~x) and we have T |= ∀x[φ ⇔ ψ], as
required. �

Proof of 7.4.1 This in entirely similar to the derivation of 7.1.3 form Beth’s theorem.
We put L = LR L′ = LS , T = TS and, for a subobject S → I(R), S∼ (x) (with x of

sort I(R)) the usual formula such that (S∼ )S = S. Similarly as in the proof of 7.1.3, the
hypothesis of I∗ being full implies that any ModR-morphism

F : I∗(N1)→ I∗(N2)

preserve the formula S∼ :

FR((S∼ )N1) = (S∼ )N2 .

So the hypothesis of 7.1.4′ is satisfied. Hence there is a coherent LR formula ψ such
that TS ` ∀x[S∼ (x) ⇔ (Iψ)(x)], hence S ' (Iψ)S = I(ψR) = I(R′) for R′ = ψR; here

we used that ψ is coherent and hence I respects ψ: (Iψ)S = I(ψR).
To show the second assertion in 7.1.4, let g : I(R1) → I(R2) and let us consider the

graph of g :G
� � // I(R1)× I(R2) = I(R1×R2). By the main part of 7.1.4, we have some

subobject F
� � // R1×R2 such that I(F ) = G. Now, by 7.1.2, I is conservative. Since G
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is functional, it follows easily from conservativeness that F is functional. By Theorem
2.4.4, there is f :R1 → R2 such that F is the graph of f . It follows from I(F ) = G that
I(f) = g. �

Definition 7.1.5 An object S of S is finitely covered by R via I if there are finitely
many objects R1, . . . , Rn in R, there are subobjects Si

� � // I(Ri) in S, and there are

morphisms Si
fi //S in S such that S =

∨n
i=1∃fi(Si).

Theorem 7.1.6 Assume that I∗ is faithful. Then every S in Ob(S) is finitely covered
by R via I.

Theorem 7.1.6′ Let I :L → L′ and T be as before, S a sort of L′. Suppose whenever
F and G are L′-homomorphisms M → N of models M,N of T , then I∗(F ) = I∗(G)
implies F = G. Then there are finitely many (finitary) coherent formulas φi(~r

i, s) of

the language L′ where the variables ~r i have sorts I(Ri), ~Ri sorts of L, such that

(i) “φi(~r
i, s) defines a partial function ~r i 7→ s in T” i.e.,

T |= ∀~r i∀s∀s′[φi(~r i, s) ∧ φi(~r i, s′)→ s = s′] and

(ii) “these functions cover S”, i.e.

T |= ∀s
∨
i∃~r

iφi(~r
i, s).

Proof. Assume that the conclusion does not hold. Consider the set Φ of all (finitary)
coherent formulas φ(~r, s) of L′, with ~r “coming from L” as above, for which condition (i)
above holds. Let d be a new individual constant of sort S. Consider the set of sentences

T ′ = T ∪ {¬∃~rφ(~r, d) : φ ∈ Φ}.

T ′ is finitely consistent; otherwise we would have, after all, a system of formulas satisfying
both (i) and (ii) above. By the compactness theorem, we have a model of T ′, say (M, c)
where c interprets d We have that c ∈ |M |S is not in the set (“range of φ”)

{b ∈ |M |S : M |= ∃~rφ(~r, y)[b/y]}

for any coherent φ that satisfies (i) above.
Next, we will construct N , F and G such that F,G :M → N , and F 6= G, in fact

FS(c) 6= GS(c), but I∗(F ) = I∗(G). Let us introduce new individual constants a (more
precisely, aI(R)) for each a ∈ |M |I(R) and for each sort I(R), R in L; moreover, two
individual constants b and b for each b ∈ |M |S′ and for each other sort S′ in L′ (again,
b is bS′ and b is b

S′
in fact). In particular, c will get two names, c and c.

Let Diag–(M) denote the set of atomic sentences τ(~a,~b, c), with ~a and~b new constants
as explained, which are true in M when a, b, c denote a, b, c, respectively. Similarly, let
Diag=(M) be the set of atomic τ(~a,~b,~c) with similar condition on truth.

Finally, let us consider the set of sentences

T ′′ = T ∪Diag–(M) ∪Diag=(M) ∪ ¬c ≈ c.

The point of T ′′ is, of course, that if N is a model of T ′′ then the maps

F : a 7→ (a)N

b 7→ (b)N (including c 7→ (c)N )
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and
G : a 7→ (a)N

b 7→ (b)N (including c 7→ (c)N )

will be L′-homomorphisms; moreover, we will have I∗(F ) = I∗(G) (since F (a) = G(a)
and F (c) 6= G(c). Hence, it is sufficient to show that T ′′ is finitely consistent. A finite
subset of T ′′ is a subset of a set of the form

T ∪ {¬c ≈ c} ∪ {τi(~ai,~bi, c) : i = 1, . . . , n} ∪ {τ ′i(~a′i, ~b′i, c) : i = 1, . . . , n}.

By further enlarging the set we can assume that our set is

T ∪ {¬c ≈ c} ∪ {τi(~ai,~bi, c) : i = 1, . . . , n} ∪ {τi(~a′i, ~b′i, c) : i = 1, . . . , n}.

with the same formulas τi(~x, ~y, z) and elements ~ai, ~bi appearing in both set-formations.
Taking conjunction γ =

∧
{τi : i = 1, . . . , n}, we are reduced to consider the consistency

of T ∪ {γ(~a,~b, c)} ∪ {γ(~a,~b, c)}.
Suppose this last set is inconsistent. Then also T ∪{∃~y γ(~a, ~y, c)∧∃~y γ(~a, ~y, c)∧¬c ≈

c} is inconsistent. Put φ(~r, z) := ∃~y γ(~r, ~y, z) with ~r and z being variables. The last
mentioned inconsistency amounts to saying that φ(~r, z) defines a partial function ~r 7→ z
in T (c.f. (i) above) and clearly, φ is coherent. But, since by the definition of Diag–(M),

we also have M |= γ(~a,~b, c), hence M |= (∃~r φ(~r, z))[c/z], contradicting the property of
c that it does not lie in the range of such a partial function.

We have shown that T ′′ is consistent, and hence as explained above, also that
F,G :M → N exist such that N |= T , F 6= G and I∗(F ) = I∗(G). Since this is
the negation of the assumption of 7.1.6′, this completes the proof of 7.1.6′. �

The proof of 7.1.6 is immediate on the basis of 7.1.6′. We put (as before) L = LR,
L′ = LS , T = TS , we have I :L→ L′. The hypotheses of 7.1.6′ are satisfied, so we have
a system of formulas φi(~r

i, s) with properties (i) and (ii). We put Ri = Ri1 × · · · ×Riki
where ~r i = 〈ri1, . . . , riki〉, r

i
j is of sort I(Rij). Then (∃s φi(~r i, s))S is a subobject Si of

I(Ri). (φi(~r
i, s))S is a subobject of I(Ri) × S and can be regarded as a subobject of

Si×S. Condition (i) tells us that (φi(~r
i, s))S as a subobject of Si×S is functional, hence

there is a (unique) morphism Si
fi //S whose graph is (φi(~r

i, s))S . Finally, condition
(ii) clearly says that

∨
∃fi(Si) = S. �

Lemma 7.1.7 Let R = P be a pretopos (c.f. Definition 3.4.3), P I //S logical as before.
Assume that I is full with respect to subobjects (c.f. 7.1.3) and conservative (c.f. 7.1.2).
Then every S ∈ Ob(S) finitely covered by R via I is in the essential image of R: there
is R such that S ' I(R).

Remark This lemma is a simplified version of 1.4.11.

Proof. We have finitely many Ri ∈ Ob(R), (i = 1, . . . , n), Si → I(Ri) and Si
fi //S

such that S =
∨
i∃fi(Si). Since I is full with respect to subobjects, we may assume that

Si = I(Ri). Let us form the disjoint sum R =
df

∐
iRi.

Then I(R) =
∐
i I(Ri) (c.f. the remark preceding 3.4.6) and the family of maps fi

induces a map I(R)
f //S such that ∃fI(R) =

∨
i∃fiI(Ri) = S, in other words, f is an

effective epimorphism. Let

S′
p1 //
p2

// I(R)
f //S
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be the kernel-pair of f , i.e., the diagram

S′ I(R)

I(R) S

p1 //

ps
��

f
��

f
//

is a pullback diagram. We have that S′ �
� 〈p1,p2〉 // I(R) × I(R) = I(R × R) is a mono,

hence S′ (as a subobject of I(R ×R)) is isomorphic to I(R′) for some R′, subobject of

R × R : R′
ρ1 //
ρ2

//R. We can assume that S′ = I(R), pi = I(ρi) for i = 1, 2. S′
p1 //
p2

// I(R),

being a kernel pair, is an equivalence relation on I(R). By the conservativeness of I,
the axioms defining the equivalence relation I(R) are ‘reflected’ by I, hence ti follows

that R′
ρ1 //
ρ2

//R. is an equivalence relation on R. Now, let us form the quotient R/R′:

R′
ρ1 //
ρ2

//R
ρ //R/R′ in the pretopos R. I preserves images, hence

I(R)
I(ρ) // I(R/R′)

is an effective epimorphism. Since (ρ1, ρ2) is the kernel pair of ρ and I preserves finite
limoo , (p1, p2) is the kernel pair of I(ρ). But an effective epimorphism is the coequalizer

of its kernel pair. Hence I(R)
I(ρ) // I(R/R′) is a coequalizer of p1 and p2. For the same

reason, so is I(R)
f //S. Hence S ' I(R). �

Theorem 7.1.8 (Main result). Suppose P is a pretopos and I :P → S is a logical
functor. If I∗ : Mod(S)→ Mod(R) is an equivalence of categories, then so is I.

Proof. By 7.1.2, I is conservative and in particular, I is faithful. By 7.1.4, I is full
with respect to sub objects and also, I is full. By 7.1.6 and 7.1.7, every object S in S is
in the essential image or I. Thus, I is an equivalence. �

§2 Infinitary generalizations; preliminaries

There are generalizations of Section 1 that concern models preserving infinite sups. As
we have seen, from the logical point of view, these are models of infinitary sentences. As
is well konwn, Beth’s definability theorem and many other results (notably preservation
theorems) have suitable generalizations to L∞ω and to certain fragments of L∞ω (c.f.
Keisler [1971], Makkai [1969]). Actually, in this context mainly countable fragments of
L∞ω (of Lω1ω) have been considered in the literature by by using techniques of Mansfield
[1972], we can easily get full generalizations for Boolean valued models so that the results
on ordinary models and Lω1ω are immediate consequences. Below we will illustrate this
by giving infinitary generalizations of 7.1.4 and 7.1.6, and thus, of 7.1.8 as well. These
will be generalizations in the proper sense, i.e., the original results will follow from them.
However, the proofs of the infinitary versions are considerably less transparent so it has
seemed worthwhile to give the proofs of Section 1 as well.

In Makkai [1969], consistency properties are the main tool for proving preservation
theorems. It is an interesting technical point that, unlike in the previous section, model-
theoretical results as such don not seem to be quite sufficient for the present purposes



143

and thus certain modifications of the original notion of consistency property, etc., are
necessary. It is easy to point out the reasons already at this stage. We have seen above
that the model-theoretical content of 7.1.4 is the preservation theorem saying (forgetting
the role of T for simplicity) that a sentence is preserved by (into) homomorphisms iff it
is logically equivalent to a positive existential sentence. There is a natural generalization
of this theorem for Lω1ω: in this, the positive existential sentences are those that are
built up using (countable)

∨
and

∧
, and ∃. The reason why this cannot be directly

applied is that models do not preserve the infinitary
∧

(and if they are required to, they
won’t exist). The required generalization of 7.1.4 does follow from the model-theoretical
case if the categories are Boolean: in this case

∧
can be expressed in terms of

∨
and

¬: “
∧

= ¬
∨
¬”, and as we have pointed out, models of categories preserve (Boolean) ¬.

It is interesting that infinite infs (and other things) play a role in the following results
although the models will not be assumed to preserve them. We have not been able to
see exactly what is necessary of our assumptions concerning infs, etc., although there is
a certain naturalness of the proofs suggesting that naturalness of the assumptions.

Definition 7.2.1 (c.f. 3.4.3). Let κ be a regular cardinal. A κ-logical category R is a
logical category in which the sup of any family F of subobjects of a given object such that
card(F ) < κ exists, and is stable under pullbacks.

Let us denote by Lgκω the coherent fragment of L∞ω consisting of those coherent
formulas of L∞ω in which for each subformula of the form

∨
Σ, Σ has cardinality < κ.

Proposition 7.2.2 For a category R with finite limoo , R is κ-logical if and only if the
fragment Lgκω is stable with respect to any interpretation I :L→ R (c.f. 3.5.4).

Proof. Obvious.

The right context in which infinitary logic, more precisely, the syntax of infinitary
logic should be considered is that of admissible sets. Admissible sets are “partial set-
theoretical universes”: transitive sets satisfying certain weak axioms that amount to clo-
sure conditions for being able to perform certain set-theoretical operations of a recursive-
constructive nature.

Below, we will establish our results in the context of admissible sets. However, the
reader may choose to systematically ignore this level of generality and read our proofs
as referring directly to Lgκω, with κ a regular cardinal. In doing so, for “A-logical” or
“weakly A-logical” read “κ-logical” (7.2.1 above), for “A-finite” read “having power
< κ”. Moreover, in this case ignore references to “A-recursive”, “A-rec. en.” and ignore
any distinction between A and A, I and A, etc. There is only one place where the proof
becomes actually simpler for the κ-logical case; we will indicate this below.

Nevertheless, there is a loss when one restricts attention to the κ-logical case. To wit,
the only κ for which non-trivial κ-logical categories can be countable is κ = ℵ0. On the
other hand, there are many countable admissible sets that give rise to countableA-logical
categories with genuine infinitary sups. For these, the Rasiowa-Sikorski lemma provides
ordinary Set-models as opposed to the general case when we only have Boolean-valued
ones.

A point to emphasize here is that our results below depend strongly on the fact that
our categories have “sufficiently many” sups among others. One way to make this hold
is to require the existence of all sups of sets of cardinality less than a given κ. But this
is a crude way that immediately excludes from the scope of the validity of the results
all but a few trivial countable categories. There is a way to formulate the results in
such a way that there are many countable cases where they hold but this requires a
fine formulation of the requirement of “sufficiently many” sups, namely, the formulation
with admissible sets.
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For admissible sets, we refer to Barwise [1975] and Keisler [1971]. Notably, we have
in mind admissible sets with urelements. Also, speaking about an admissible set A, we
actually mean a structure with some arbitrary relations R1, . . . , R` (besides ∈ and the
set of urelements) and accordingly, e.g. A-recursively enumerable means definable by a
Σ-formula using also the relations Ri besides ∈.

Let A be an admissible set.

Definition 7.2.3 Let R be a category. An A-recursive representation of R consists
of A-recursive sets |R|ob, |R|morph; A-recursive functions Dom : |R|morph → |R|ob,
Codom : |R|morph → |R|ob, Id : |R|ob → |R|morph and Comp : (|R|morph)2 → |R|morph
(or defined at least for the right pairs for “morphisms” ∈ |R|morph) and surjective maps

(·) : |R|ob → Ob(R), (·) : |R|morph → morph(R) which carry the above functions Dom,
Codom, Id and Comp into the domain, codomain, etc. functions in the category: e.g.
Id(r) = Idr if r ∈ |R|ob, etc. We furthermore require that the relation

{〈r1, r1〈∈ (|R|morph)2 : r1 = r2 in R}

is A-r.e.
An A-recursively presented category is a category together with an A-recursive pre-

sentation of it.

For an A-recursively presented category, when we speak of A-finite or A-recursive,
etc. families of objects or morphisms, we mean a family of names ⊂ |R|ob ∪ |R|morph
which is A-finite, or A-recursive, etc. This involves a certain measure of abuse of lan-
guage since at the same time, we will talk about, say, the sum etc. of the family consid-
ered; here of course the objects denoted by the names are understood.

For an A-recursively presented category R, the language LR will be redefined such
that the sorts of LR are the elements of |R|ob, and the operation symbols of LR are
the elements of |R|morph, the Dom and Codom functions giving the sorting of operation
symbols. Of course, the map r 7→ r takes the place of the identical interpretation. Notice
that LR is an A-recursive language.

Definition 7.2.4 An A-logical category is an A-recursively presented category R such
that

(i) R has finite left limits which can be computed A-recursively: there is an A-
recursive function F that, applied to a finite diagram consisting of names in |R|ob ∪
|R|morph of objects and morphisms in R, gives the names of a left limit diagram of the
given diagram. E.g., if R1, R2 ∈ |R|ob, then F (〈R1, R2〉) is a 5-tuple 〈R1, R2, R, π1, π2〉
such that the diagram

R1 R2

R

π1

\\

π2

BB

is a product of the two objects R1 and R2; similarly for other finite left limits.

(ii) R has A-finite sups that can be computed A-recursively: there is an A-recursive

function G such that if a =
df
〈Ri

fi //R : i ∈ I〉 is an A-finite family (Ri, R ∈
|R|ob,Dom(fi) = Ri,Codom(fi) = R), fi is a monomorphism for i ∈ I, then G(a) =

〈R′, f〉 such that R′ �
� f // R is the sup of the family Ri

� � fi // R of subobjects of R. More-
over, the A-finite sups are stable under pullbacks.

(iii) R has stable images that can be computed A-recursively (this can be made precise
similarly to (ii)).
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Let LgA be the coherent A-fragment of L∞ω; the formulas of LgA are those of Lg∞ω that
are elements of LA. Equivalently, LgA is the smallest set of formulas of L∞ω belonging
to A closed under finite ∧, ∃x and A-finite disjunction: if Σ ⊂ LgA is an A-finite set of
formulas having only finitely many free variables altogether, then

∨
Σ ∈ LgA.

Proposition 7.2.5 Let I :L→ R be an interpretation of the language L in R, let L be
an A-recursive language, R A-recursively presented and let I be induced by an interpre-
tation I ′ :L→ LR of languages (I(σ) = I ′(r)) where I ′ is A-recursive.

If R is A-logical, then

(a) every formula of LgA is “adequately interpreted by I” i.e., LgA is stable with respect
to I, c.f. terminology before 3.5.4. In fact there is an A-recursive function H such that,
if φ is a formula in LgA with free variables among x1, . . . , xn of sorts R1, . . . , Rn, respec-

tively, then H(〈φ; 〈x1, . . . , xn〉〉) is 〈R′, f〉 where R′
f //R1×· · ·×Rn is a monomorphism

and in fact, I~x(φ) ' R′ �
� // R1 × · · · ×Rn, and

(b) the predicate I |= (·) for sequents σ of LgA is A-r.e.

The proof of (a) is an easy application of some general principles on admissible sets
(definition by recursion); we will not give details.

For the proof of (b), observe that for subobjects A �
� f // B, C �

� g // B, A ≤ C is equiv-
alent to the existence of h ∈ |R|morph such that gh = f . Given a sequent σ, I |= σ is

equivalent to A ≤ C for some recursively computed A,B,C, f and g (such that f and g
are monomorphisms), hence I |= σ ⇔ ∃h[h ∈ |R|morph and gh = f ] which is A-r.e. by
our assumptions.

Example 7.2.6 This is how to subsume κ-logical categories under the notion of 7.2.4.
Let R be a κ-logical category. Consider |R| = Ob(R)∪morph(R) as a set of urelements
and let A = H|R|(κ) be the set of sets with support ⊂ |R| with are hereditarily of
power less than κ. 〈A,∈〉 together with any predicates on A will be an admissible set.
Add finitely many predicates so that for the resulting A, the conditions of 7.2.4 will
be trivially satisfied. For the presentation, take the identical one: |R|ob = Ob(R),
|R|morph = morph(R), r = r. By the axiom of choice, there is a function F assigning
left limits to finite diagrams. Adjoin F ⊂ A × A to 〈A,∈〉; then F will be trivially
A-recursive in the resulting A. Similarly, adjoin a function to 〈A,∈〉 to make (ii) and
(iii) of 7.4.2 true. – Observe that the A-finite subsets of |R| are exactly those of power
< κ; hence we will have that R is A-logical.

Summarized, the admissible set to be considered with κ-logic is the set of sets hered-
itarily of power < κ. With suitably adding (arbitrary) predicates, we can arrange that
any prescribed predicate becomes A-recursive.

It turns out that for the purposes of our results below, the conditions of 7.2.4 can,
at least apparently, be considerably relaxed. We have not investigated yet how much
weaker the notion to be considered next actually is.

Definition 7.2.7 A category R is called weakly A-logical (w-A-logical) if it is A-
recursively presented, and satisfies the following two conditions (i) and (ii).

(i) R is logical in the usual sense and for the finitary fragment (LR)gωω, the truth of
sequents σ of this fragment in the “identical” interpretation r 7→ r, called R, is A-r.e.:
{σ sequent of (LR)gωω : R |= σ} is A-r.e.

(ii) For any A-finite family 〈Ai
fi //A : i ∈ I〉 ∈ A of subobjects the sup B

f //A ex-
ists and is stable under pullbacks.

Remark So, the main difference is that recursive computability of sups is not required.
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Definition 7.2.8 An A-logical functor I :R → S between w-A-logical categories R and
S is given by an A-recursive map I :LR = |R|ob ∪ |R|morph → LS = |S|ob ∪ |S|morph

such that I induces the map I : r → I(r) and I is an A-logical functor R → S i.e., I is
left exact and preserves A-finite sups.

Definition 7.2.9 (c.f. 3.4.5). A κ logical functor I :R → S between κ-logical categories
R and S is a logical functor that preserves sups of powers less than κ.

Example 7.2.6 (continued). Let R, S and IR → S be κ-logical. We consider A =
H|R|∪|S|(κ) and adjoin some predicates including I ⊂ A×A itself, and we obtain that
for the resulting A, I :R → S is an A-logical functor.

§3 Infintary generalizations

In what follows we assume that R and S are weakly A-logical categories, with A a fixed
admissible set. We assume that I :R → S is an A-logical functor.

Remark For I :R → S A-logical, the actual functor is what was denoted by I above.
Usually, we will not make a notational distinction between I and I; we will denote I by
I as well.

Let B be any complete Boolean algebra. The B-valued A-models of R are the left
exact and A-continuous functors

M :R → ShB;

A-continuous means that M preserves A-finite sups.
Notice that a B-valued A-model is just like an A-logical functor except that there is

no recursiveness condition on M . In particular, a B-valued κ-model is just a κ-logical
functor

M :R → ShB .

The category ModBA(R) of B-valued A-models of R is the full subcategory of the
functor category (ShB)R whose objects are the B-valued A-models of R. Given A-
logical I :R → S, we have

I∗ = I∗B : ModBA(S)→ ModBA(R)

defined by composition: for N ∈ Ob(ModBA(S)), I∗(N) is defined by

I∗(N)(R) = N(I(R))

and

I∗(N)(R
f //R′) = N(I(R))

N(I(f)) // N(I(R′)).

It is easy to see that, since I is A-logical (so, in particular, is induced by an A-recursive
map) and N is an A-model, I∗(N) also will be an A-model.

With B = 2 the two-valued algebra, we obtain the category of A-models, M :R →
Set, ModA(R).

Let R be a w-A-logical category. Consider the language LR associated with R and
consider TR, the theory in (LR)gA representing the A-logical structure of R:

TR = T
(ex)
R ∪ T

where T
(ex)
R is the internal theory of R as a finitary logical category, i.e. the theory in

the coherent finitary logic over LR consisting of the axioms corresponding to the left
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limit diagrams and images in R, (note however that the symbols to be used are the
names in |R|ob ∪ |R|morph instead of objects and morphisms themselves) and T is the
set of all “axioms of sups” (c.f. item 8 in 2.4.5) corresponding to sup diagrams:

Ai A

B
∨
iAi =

...

� � fi //

?�

fi

OO

with 〈Ai
fi //A : i ∈ I〉 A-finite.

We let FR (or F gR, with g signifying ‘coherent’) be the smallest fragment such that
TR is a theory in FR: the formulas of FR are the formulas in sequents in TR, all
the subformulas of those, and all substitution instances of the previous ones. The main
property of formulas in FR is that infinite disjunction is applied only to finitary formulas:
if Σ ∈ FR, then every element of Σ is a finitary formula. This property, together with
the fact that R is weakly-A-logical, is sufficient to ensure that the formula is adequately
interpreted by the “identical” interpretation R : r → r, i.e., that the fragment FR is
stable in R (c.f. Chapter 3, Section 2).

Recall that by 3.2.8 we have

(∗) for any sequent σ of F gR,

T ` σ ⇔ R |= σ.

Hence, by the completeness theorem (5.1.1, 5.1.2) saying that

T ` σ ⇔ T |=b σ.

we have, similarly to 7.1.1,

Corollary 7.3.1 For subobjects R1 and R2 of R, R1 ≤ R2 iff M(R1) ≤ M(R2) for all
complete Boolean algebras B and all B-valued A-models M of R.

In case A is countable (hence FR is countable), we have R1 ≤ R2 iff M(R1) ≤
M(R2) for all M ∈ Ob(ModA(R)).

Proof. Similar to that of 7.1.1.

Theorem 7.3.2 With I :R → S A-logical, R, S w-A-logical, assume that I∗B : ModBA(S)

→ ModBA(R) is surjective on objects, for any complete Boolean algebra B (c.f. 7.1.2).
Then I is conservative (c.f. 7.1.2 again). In particular, I is faithful.

In case A is countable, it is enough to assume the hypothesis for the 2-element
Boolean algebra, i.e., that I∗ : ModA(S)→ ModA(R) is surjective on objects.

Proof. Similar to that of 7.1.2.

Theorem 7.3.3 Assume that, in addition, R and S are Boolean (c.f. 7.1.3) and I∗ is
full with respect to isomorphisms, for any complete Boolean algebra B. Then I is full
with respect to subobjects. If A is countable, it is enough to assume that I∗ : ModA(S)→
ModA(R) is full with respect to isomorphisms.

Proof. In case R and S are in fact A-logical, the proof is similar to that of 7.1.3,
on the basis of Beth’s theorem for logics on admissible sets. The application of the
theorem to logic depends on the fact that every formula of the full admissible logic LA
is interpretable; this we know by 7.2.5.
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In case R and S are only assumed to be w-A-logical, the proof would be similar to
the two proofs we present below; since we are mainly interested in the A-logical case,
we will not give this proof here.

Remark For 7.3.2, the admissibility of A does not play any essential role; in 7.3.3
however, it is an essential assumption.

For our proof of the result that corresponds to 7.1.4, we need an additional assump-
tion. We don’t know if 7.3.5 is true without this assumption though we suspect it isn’t
in general.

Assumption 7.3.4 (i) R has A-finite infs: for any A-finite family 〈Ri �
� fi // R : i ∈ I〉

of subobjects, the inf
∧

(Ri
� � fi // R) exists in R.

(ii) I preserves A-finite infs: I(
∧
iRi)

� �I(f) // I(R) is the inf of the family

〈I(Ri)
� � I(fi) // I(R) : i ∈ I〉,

for 〈Ri �
� fi // R : i ∈ I〉 A-finite, and for

∧
iRi
� � f // R the inf of 〈Ri �

� fi // R〉.

Remark The corresponding (via 7.2.6) conditions for the κ-logical case have to do with
info’s of families of subobjects of power < κ. Hence, for κ = ω, the condition is part
of the left-exactness condition and hence automatically satisfied. This is the reason why
the finitary 7.1.4 will follow from 7.3.5.

Also, let us note that in case R is Boolean and A-logical, moreover I is an A-logical

functor, then R and I satisfy 7.3.4. Namely, if 〈Ri �
� fi // R : i ∈ I〉 is an A-finite family

of subobjects in R, then
∧
iRi exists and it is ¬

∨
¬Ri where ¬ is Boolean complement

(and, as it is easy to see, ¬(·) can be recursively computed) and I will preserve ¬ and∨
.

Theorem 7.3.5 Assume R, S and I are as before and assume 7.3.4. Assume that (i)
I∗B is full for any non-trivial complete Boolean algebra B, or (ii) that A is countable and
I∗ : ModA(S) → ModA(R) is full, or (iii) that each set in A is finite (i.e., the logic
LA is finitary) and I∗ as in (ii) is full. Then I is full with respect to subobjects. If in
addition, I∗ is surjective on objects, then I is full.

Proof of 7.3.5 We will work with the fragments FR and FS defined above, and apply

consistency properties as defined in Chapter 5, Section 2. Assume that S �
� f // I(R) is a

subobject of I(R); if S∼ (a) is ∃s(fs = a) (a is a variable of sort I(R)), then S �
� f // I(R) =

(S∼ (a))S . Assume, by reductio ad absurdum, that S is not in the essential image of I. We
will construct a non-trivial complete Boolean algebra B, B-valued models N1 :S → ShB
and N2 :S → ShB and a natural transformation (homomorphism) F : I∗(N1)→ I∗(N2)
such that FR does not preserve S∼ : it is not the case that

‖y = FI(R)(x)‖ · ‖S∼ (x)‖N1 ≤B ‖S∼ (y)‖N2

for all x ∈ N1(I(R)). This will suffice, since, as it is easy to see similarly to the final
part of the proof of 7.1.4, the assumption on fullness implies that S∼ (a) is preserved by
all F : I∗(N1)→ I∗(N2).
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We fix the free variables a0 and a0 of sort I(R). Let us define the partial ordering
(P,≤) as follows. We put P to be the set of triples

p = 〈∆N1
,∆N2

,∆F 〉

such that: (i)-(iii) below hold: (i) ∆N1
,∆N2

are finite sets of formulas of the fragment
FS ,

(ii) ∆F is a finite sequence
〈〈ai, ai〉 : i < n〉

of pairs 〈a, a〉 of terms. For any i < n, the sort of ai equals the sort of ai and equals
I(Ri) for some Ri ∈ |R|ob. a0 and a0 are the variables fixed above. Moreover, every
free variable occurring in some ai (i < n) occurs in ∆N1

∪ {S∼ (a0)}.

(iii) There does not exist a formula θ such that

(∗) θ is in the finitary logic (LR)gωω, having n distinct free variables x0, . . . , xn−1;
and

TS ` ∆N1
, S∼ (a0)⇒ I(θ)(~a),

TS ` ∆N1 , I(θ)(~a)⇒ S∼ (a0),

where I(θ)(~a) is obtained from I(θ) by substituting I(xi) by ai for i < n; similarly for
I(θ)(~a).

(We will say that θ blocks p (from being an element of P if all the conditions after
(∗) are satisfied. Hence (iii) says that there is no θ blocking p).

Remark Intuitively, thinking of two-valued models, ∆N1
is an approximation of the ‘full

description’ of N1 (set of all sentences with names for elements in N1 which are true
in N1), and similarly for ∆N2 . ∆F is an approximation of the homomorphism, with ai
being mapped onto ai by the homomorphism.

Notice that p = 〈∅,∅, 〈a0, a0〉〉 belongs to P ; if, on the contrary, there existed a θ
such that

TS ` S∼ (a0)⇒ (I(θ))(a0)

TS ` I(θ)(a0)⇒ S∼ (a0)

then we would clearly have

S = (S∼ (a0))S = (I(θ))S = I(θR);

contrary to the indirect hypothesis of the proof.
We define the partial ordering ≤ of P by component wise inclusion:

p ≤ q ⇔ ∆
(p)
N1
⊃ ∆

(q)
N1

and ∆
(p)
N2
⊃ ∆

(q)
N2

and ∆
(p)
F ⊃ ∆

(q)
F ;

here we use the notation p = 〈∆(p)
N1
,∆

(p)
N1
,∆

(p)
F 〉.

We will derive two consistency properties from (P,≤) for the construction of the two

models N1 and N2. Put f1(p) = ∆
(p)
N1

, Var1(p) = Var(∆
(p)
N1

) ∪ {a0} (Var(∆) is the set of

free variables in ∆); and f2(p) = ∆
(p)
N2

and Var2(p) = Var(∆
(p)
N2

) ∪
⋃
i<n Var(ai) (here ai

come from ∆F as above). The two consistency properties are

Γ1 = (P,≤, f1,Var1)

and Γ2 = (P,≤, f2,Var2).
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Lemma 7.3.6 Γ1 and Γ2 are TS-consistency properties.

1. Γ1 is a consistency property.

Property (iv) (in the definition of consistency properties) is obvious. Each of the rest
of the properties (v)-(xiv) calls for finding a suitable q ≤ p, for a given p ∈ P . In each

case q will be found so that ∆
(q)
N2

= ∆
(p)
N2

and ∆
(q)
F = ∆

(p)
F , in other words, only ∆

(q)
N1

changes. Except for the case (viii), ∆′ = ∆
(q)
N1

(and thus q) will be defined outright (we

put ∆ = ∆
(q)
N1

: for

(v): ∆′ = ∆ ∪ {φ},
(vi): ∆′ = ∆ ∪ {

∧
Σ},

(vii): ∆′ = ∆ ∪ {
∨

Σ},
(ix): ∆′ = ∆ ∪ {∃xφ(x/v)},
(x): ∆′ = ∆ ∪ {φ(u/v)} where u is a free variable of the sort of

v such that u does not occur in ∆,

(xi): ∆′ = ∆ ∪ {ψ′(t1, . . . , tn)},
(xii): ∆′ = ∆ ∪ {t ≈ t},
(xiii): ∆′ = ∆ ∪ {t1 ≈ t2},
(xiv): ∆′ = ∆ ∪ {φ(t2)}.

(We will handle (viii) separately below.)
We have to show that q thus defined is in fact in P ; then the fact that q ≤ p will be

clear by the definition of ≤. (i) and (ii) in the definition of being an element of P are
obviously satisfied for q. Now we assume that (iii) in that definition is not satisfied, i.e.
that some θ blocks q from being an element of P . The way we set up things now ensures
that in each of the above cases (with (viii) excluded of course so far), this will imply that
the same θ will block p, contrary to the assumption p ∈ P . This fact, for each of the above
cases, will be the consequence of the presence of the corresponding rule of inference of the
one-sided system defining the notion TS ` (·). For example, for condition (vii) we have
the assumption in (vii) that the free variables in

∨
Σ belong to Var1(p) = Var(∆)∪{a0}.

So, from the fact that θ blocks q, i.e. TS ` ∆,
∨

Σ, S∼ (a0)⇒ I(φ)(~a) it follows that

TS ` ∆, S∼ (a0)⇒ I(φ)(~a)

by the rule R
∨

1; note that φ ∈ Σ and φ ∈ ∆!
There is nothing to check for the other condition in (∗) (involving ∆N2) since there

is no change in this respect in q as compared to p. We conclude that θ blocks p, as
promised.

It remains to handle the verification of condition (viii). We assume that the claim

of (viii) for Γ1 does not hold. Let φ ∈ Σ and define qφ to agree with p except in ∆
(·)
N1

and we put ∆
(qφ)
N1

= ∆∪{φ}. We have that for every φ ∈ σ there is some θφ blocking qφ
from being a member of P (otherwise qφ ≤ p would verify (viii)). This fact means that
(putting T = TS)

T ` ∆, φ, S∼ (a0)⇒ I(θφ)(~a)

and

T ` ∆N2 , I(θφ)(~a)⇒ S∼ (a0)

for any φ ∈ Σ; here ~a and ~a refer to ∆F as before. Notice that T ` σ for any sequent of
the fragment FS is equivalent to S |= σ.
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The next thing to show would naturally be that the θφ can be chosen so that the
family 〈θφ : φ ∈ Σ〉 is A-finite; this would make sure that

∨
φ∈Σθφ will be interpretable

in R. In the κ-logical case (κ regular infinite cardinal), there is no problem: since
card(σ) < κ, it follows that card{θφ;φ ∈ Σ} < κ, hence

∨
φ∈Σθφ is interpretable (and

{θφ : φ ∈ Σ} is A-finite). In the general case, we have to use the admissibility of
A and we have to do something a bit more complicated. Of course, the argument is
essentially as in similar proofs in Makkai [1969] and Keisler [1971]. Nevertheless, we will
give the details of the proof; this is the only place where understanding admissible sets
is essential.

Consider the predicate P (·, ·) of two variables on the set A: P (φ, θ) ⇔
df

φ belongs
to Σ, θ is a formula of the finitary language (LS)gωω with free variables in the fixed set

Var(∆
(p)
F ), and

S |= ∆, S∼ (a0), φ⇒ I(θ)(~a)

and

S |= ∆N2
, I(θ)(~a)⇒ S∼ (a0).

Notice that each element of Σ is finitary (see above the discussion of the fragment
FS). The sequents displayed may contain some infinitary formulas but they are fixed
and can be replaced by some finitary ones which are equivalent to them in S. (If,
e.g.

∨
i∈Iψi occurs in ∆, with free variables exactly u1, . . . , uk then we look at S =

(
∨
i∈Iψi)

S � � f // U1 × · · · × Uk = U and projections πi :U → Ui and take the formula
ψ(u1, . . . , uk)

∃s∃u [
∧k
i=1πi(u) = ui ∧ f(s) = u];

then (
∨
ψi)
S = (ψ)S , ψ has the same free variables as ψi, and we can thus replace φi

by ψ in the sequent without changing truth in S.) The variable formulas φ and I(θ)
are finitary. By the definition of “weak-A-logical” and the fact that I is A-recursive, it
follows that the predicate P is A-r.e. (Σ∼ on A).

Now we have that

A |= ∀φ ∈ Σ ∃θ P (φ, θ).

By Σ-collection, there is a transitive w ∈ A such that

(1) A |= ∀φ ∈ Σ ∃θ ∈ w P (w)(φ, θ);

here we have used P to denote a Σ1-formula of the language A defining the predicate P
on A and P (w) to denote its relativization to w.

Put Θφ = {θ ∈ w : A |= P (w)(φ, θ)}; by ∆-comprehension, Θφ ∈ A, and in fact the
family 〈Θφ : φ ∈ Σ〉 ∈ A.

Moreover

(i) every element θ ∈ Θφ satisfies P (φ, θ): since P is a Σ1-formula and w is a transitive
set, we have A |= P (w)(φ, θ)⇒ A |= P (φ, θ).

(ii) by (1), Θφ is non-empty for each φ ∈ Σ.

Put Θ =
⋃
φ∈Σ Θφ; Θ ∈ A. Let θ′ =

∨
Θ =

∨
φ∈Σ,θ∈Θφ

θ and let θ0 be a finitary

formula with the same free variables as θ′ that is R-equivalent to θ0, i.e. (θ0)R = (θ′)R.

Since I is A-logical,

(iii) (I(θ0))S =
∨(S)
φ∈Σ,θ∈Θφ

(I(θ))S .
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For showing that θ0 is actually a block for p as required, consider first the following
inference:

{∆N1
,
∨

Σ, φ, S∼ (a0)⇒ I(θ)(~a) : φ ∈ Σ, θ ∈ Θφ}
∆N1

,
∨

Σ, S∼ (a0)⇒ (
∨
φ∈Σ,θ∈Θφ

I(θ))(~a)

︷ ︸︸ ︷∆N1

︸ ︷︷ ︸
∆N1

Notice that since Θφ are non-empty ((ii) above),∨
Σ =

∨
φ∈Σ,θ∈Θφ

φ

so the displayed inference is sound, as easily seen by the definition and stability of the
sups involved.

Since (by (i) above) θ is a block for qφ if φ ∈ Σ and θ ∈ Θφ, the premises are true
in S. Hence, so is the conclusion, which shows, together with (iii), that θ0 satisfies the
first condition for being a block for p.

Secondly, the sound inference

{∆N2
, I(θ)(~a)⇒ S∼ (a0) : φ ∈ Σ, θ ∈ Θφ}

∆N2
, (
∨
φ∈Σ,θ∈Θφ

I(θ))(~a)⇒ S∼ (a0)

shows that θ0 also satisfies the second condition for being a block for p.
This contradicts the fact that there is no block for p since p ∈ P . This contradiction

shows that our assumption that Γ1 does not satisfy (viii) cannot hold.
This completes showing that Γ1 is a consistency property.

2. Γ2 is a consistency property.

The only difference as compared to Γ1 is in the case of condition (viii) in the definition
of a consistency property.

Now, we have
∨

Σ ∈ ∆2 =
df

∆
(p)
N2

. We put qφ (for φ ∈ Σ) to agree with p on ∆1 = ∆N1

and ∆F and we put

∆
(q)
N2

= ∆2 ∪ {φ}.

Assume there is θφ blocking qφ for each φ ∈ Σ.
Using the admissibility of A, next we show as in the proof for Γ1 that there is an

A-finite family
〈Θφ : φ ∈ Σ〉

of non-empty sets Θφ such that for every φ ∈ Σ, each θ ∈ Θφ blocks qφ. We view this
family as indexed by pairs 〈θ, φ〉, i.e., we consider the function

〈θ, φ〉 7→ θ (φ ∈ Σ, θ ∈ Θφ).

Consider θ′ =
∧
φ∈Σ,θ∈Θφ

θ =
∧⋃

φ∈Σ Θφ; by assumption 7.3.4 the inf exists. Let θ0 be
a finitary formula R-equivalent to the conjunction, with the same free variables. Then,
of course, the I images are S-equivalent. By 7.3.4(ii) it then follows that

(I(θ0))S =
∧(S)
φ∈Σ,θ∈Θφ

(I(θ))S .

The claim is that θ0 is a block for p. We know that

S |= ∆N1 , S∼ (a0)⇒ I(θ)(~a) for φ ∈ Σ, θ ∈ Θφ.
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By the definition of infs, we have that

S |= ∆N1 , S∼ (a0)⇒ (
∧
φ∈Σ,θ∈Θφ

I(θ))(~a)

(more precisely, the automatic stability of infs is involved here too), hence

S |= ∆N1 , S∼ (a0)⇒ I(θ0)(~a). (1)

On the other hand, we have

S |= ∆N2
, φ, I(θ)(~a)⇒ S∼ (a0) for φ ∈ Σ, θ ∈ Θφ. (2)

Since each Θφ is non-empty, we have that for every φ ∈ Σ there is θ ∈ Θφ such that (2)
holds and (I(θ))S ≤ (I(θ0))S (since θ occurs as a member of the conjunction). So we
have that for every φ ∈ Σ

S |= ∆N2
, φ, I(θ0)(~a)⇒ S∼ (a0).

Hence, by the definition and stability of the sup (
∨

Σ)S , we have

S |= ∆N2 ,
∨

Σ, I(θ0)(~a)⇒ S∼ (a0).

i.e. S |= ∆N2
, I(θ0)(~a)⇒ S∼ (a0) (2)

(since
∨

Σ ∈ ∆N2
)

(1) and (2) together show that θ0 in fact is a block for p.
This completes the proof of 7.3.6.

7.3.6 enables us to construct the models N1, N2 as the canonical molders derived
from the consistency properties Γ1, Γ2 by the “model existence theorem” 5.2.2. In
particular, we have the Boolean value-algebra B = P∗ = (P,≤)∗ of regular open subsets
of P, common to Γ1 and Γ2, hence to N1 and N2. The domain of N1 and N2 consist of
he set of terms of the language LS . We have that N1 and N2 are models of TS , hence
N1 :S → ShB, N2 :S → ShB are B-valued A-models of S. Also, we have that

‖φ‖N1
= (U1)∗φ where

(U1)φ = {p ∈ P : φ ∈ ∆
(p)
N1
},

and ‖φ‖N2 = (U2)∗φ

where (U2)φ = {p ∈ P : φ ∈ ∆
(p)
N2
}.

Now we turn to the homomorphism F which of course also has been “built in” into
P . F is to be construed as a natural transformation F : I∗(N1) → I∗(N2) of functors
∈ (ShB)R. We define FR :N1(I(R)) → N2(I(R)) (R ∈ Ob(R)), a morphism of ShB as
follows. Recall that |N1(I(R))| = |N2(I(R))| = X = XR is the set of terms of sort I(R).

For a, a ∈ X , we put U〈a,a〉 = {p ∈ P : 〈a, a〉 ∈ ∆
(p)
F } and FR(a, a) = (also denoted

as ‖a = FR(a)‖) =
df ∨

a′∈X
∨
a′∈X ‖a = a′‖ · ‖a = a′‖ · U∗〈a′,a′〉.

Lemma 7.3.7 Given p ∈ P , p = (∆N1
,∆N2

,∆F ), and 〈~s,~t〉 = 〈〈s0, t0〉, . . . , 〈sk, tk〉〉 a
subsequence of ∆F , suppose that φ(~x) = φ(x0, . . . , xk) is an atomic formula of LR such
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that (I(φ))(~s) ∈ ∆N1
. Then for q = (∆N1

,∆N2
∪ {(Iφ)(~t)},∆F ) we have q ∈ P and

hence q ≤ p.

Proof. Assume, on the contrary, that q 6∈ P . Then there is θ blocking q, i.e., we have

T ` ∆N1
, S∼ (a0)⇒ θ(~s ′)

T ` ∆N2
, (Iθ)(~t ), θ(~t ′)⇒ S∼ (a0)

where ∆F (~s ′,~t ′). Of course, we can write (Iφ)(~t ′) for (Iφ)(~t ) and (Iφ)(~s ′) for (Iφ)(~s) ∈
∆N1

. Now we have
T ` ∆N1

, S∼ (a0)⇒ (Iφ)(~s ′) ∧ (Iθ)(~s ′)

and
T ` ∆N2 , (Iφ)(~t ′) ∧ (Iθ)(~t ′)⇒ S∼ (a0)

showing that φ(~x)∧θ is a block for p, contradicting p ∈ P . Notice that since φ is atomic,
φ(~x) ∧ θ is in fact a legitimate finitary formula of LgR.

Lemma 7.3.8 For sequences ~s and ~t of terms, let us write ‖~t = F (~s)‖ for ‖t0 = FR0(s0)‖
· · · ‖tk = FRk(sk)‖ where the sort of si and ti is I(Ri). Let φ(~x) be an atomic formula
of LR. Then we have that

‖(Iφ)(~s)‖N1
· ‖~t = F (~s)‖ ≤ ‖(Iφ)(~t )‖N2

.

Proof. Easy on the basis of 7.3.7 and follows a pattern established before.

Lemma 7.3.9 We have the following as required for F being a natural transformation
I∗(N1)→ I∗(N2).

(i) ‖t = t′‖N2 · ‖t = F (s)‖ ≤ ‖t′ = F (s)‖

(ii) ‖s = s′‖N1
· ‖t = F (s)‖ ≤ ‖t = F (s′)‖

(iii) ‖t = F (s)‖ · ‖t′ = F (s)‖ ≤ ‖t = t′‖N2
.

Proof. (i) and (ii) are easy consequences of the definitions of ‖t = F (s)‖ (the subscript
R to F has been suppressed). (iii) is a consequence of 7.3.8 applied to an atomic formula
x = x′.

Lemma 7.3.10 For given p = (∆N1 ,∆N2 ,∆F ) ∈ P , ∆F = (~s,~t ), and any term s of
the sort I(R) for some R ∈ |R|ob, such that each free variable of s is in Var1(p) =
Var(∆N1

) ∪ {a0}, let b be a variable of sort I(R) that does not occur in Var(∆N2
) ∪

{a0}∪Var(~t ) (b exists since the latter set if finite). Then q =
df

(∆N1
,∆N2

,∆F ∪{〈s, b〉})
belongs to P and hence q ≤ p.

Proof. Suppose θ = θ(~x, x) blocks q, i.e.

T ` ∆N1
, S∼ (a0)⇒ (Iθ)(~s, s)

and
T ` ∆N2

, (Iθ)(~t, b)⇒ S∼ (a0).

Then firstly,
T ` ∆N1 , S∼ (a0)⇒ ∃x((Iθ)(~s, x)).
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This is because T ` σ ⇔ S |= σ and the following inference:

Γ⇒ ψ

Γ⇒ ∃x ψ(x)

is a valid rule in S provided each free variable occurring in s occurs in Γ. This is left and
an easy exercise; the restriction con be easily seen to be essential (this rule is a variant
of the rule (⇒ ∃) in Chapter 5). Now, the restriction on the free variables is assumed
in the hypothesis of the lemma. Secondly, since b is a “new” variable, we also can infer

T ` ∆N2 ,∃x((Iθ)(~t, x))⇒ S∼ (a0)

This shows that ∃xθ blocks p, contrary to p ∈ P . Notice that θ is a formula of
(LgR)ωω, so is ∃xθ, as required for blocking.

Lemma 7.3.11 ‖s = s‖N1 =
∨
t∈X ‖t = FR(s)‖ for any R ∈ |R|ob and X the set of

terms of sort I(R), as required for F being a natural transformation.

Proof. Easy on the basis of 7.3.10.

Lemma 7.3.12 The following diagram

R1

R2

I∗(N1)(R1) = N1(I(R1)) N2(I(R1))

N1(I(R2)) N2(I(R2))

FR1 //

N1(I(f))
��

N2(I(f))
��

FR2

//

f
��

commutes (as required for F being a natural transformation I(N1)→ I(N2)).

Proof. The assertion is equivalent (by the definition of composition in ShB to the
identity ∨

s′ of sort I(R2)
‖s′ = (If)(s)‖N1

· ‖t = FR2
(s′)‖

=
∨

s′′ of sort I(R1)
‖s′′ = FR1

(s)‖ · ‖t = (If)(s′′)‖N2

to show this, first we deduce

‖s′ = (If)(s)‖N1
· ‖t = FR2

(s′)‖ ≤
∨
s′′(‖s

′′ = FR1
(s)‖ · ‖s′ = (If)s‖N1

· ‖t = FR2
(s′)‖)

from 7.3.11. By 7.3.8, the contents of the parentheses is ≤ ‖t = (If)s′′‖N2
(apply 7.3.8,

to the atomic formula y = (If)x and φ). So, since ‖s′′ = FR1
(s)‖ is itself a factor in the

product in the parentheses, we conclude

‖s′ = (If)(s)‖N1 · ‖t = FR2(s′)‖ ≤

the right hand side of the claimed identity, hence the ‘≤ part’ of the equality is shown.
The other part is similar.

Lemma 7.3.13 (i) ‖a0 = FR(a0)‖ = 1B

(ii) ‖S∼ (a0)‖N1
= 1B

(iii) ‖S∼ (a0)‖N2
= 0B

(iv) Assuming that I is not full with respect to subobjects, 0B 6= 1B,
i.e., B is nontrivial.
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Proof. (i) is left as an exercise. (iv) is a consequence of the remark we made after
the definition of P that under the assumption we have (∅,∅, 〈〈a0, a0〉〉) ∈ P , thus P is
non-empty.

Let us show (iii). This will be a consequence of the fact that S∼ (a0) 6∈ ∆
(p)
N2

for any

p ∈ P . In fact, if S∼ (a0) ∈ ∆
(p)
N2

, then obviously, the trivial formula ↑=
∧
∅ would block

p from being a member of P .
The proof of (ii) is similar.

Summary of the proof of 7.3.5 Assume, contrary to the assertion of the theorem,
that I is not full with respect to subobjects. We construct the complete Boolean algebra
B = P∗ as above and conclude that B is nontrivial by 7.3.13(iv). We construct, by 7.3.6
and 4.2.2, the canonical B-valued models N1 and N2 of T on the basis of the consistency
properties Γ1 and Γ2. We also construct the morphism F in the category of B-valued R
models F : I∗(N1)→ I∗(N2). 7.3.9, 7.3.11 and 7.3.12 tell us that F is indeed a natural
transformation. Finally, 7.3.13 (i), (ii) and (iii) say that S∼ (a0) is not preserved by F
that clearly contradicts the assumption of the theorem that F can be lifted to a natural
transformation N1 → N2. This proves the theorem under the first assumption (i). With
the other assumptions (ii) and (iii) of 7.3.5, now the result is an easy corollary. Consider
first (ii). Under the indirect hypothesis, we have the nontrivial complete B, N1 and N2

and F as above; notice that the language LS is countable, the logic (LS)A is countable
as well as the set of all elements in the domains of N1 and N2, the latter being terms of
LS . Apply the Rasiowa-Sikorski theorem (4.3.1) to obtain a 2-valued homomorphism h
of B that preserves all sups ∨B

s∈|Nj |s‖φ(s)‖ = ‖∃xφ(x)‖Nj∨B
i ‖φi‖Nj = ‖(

∨
iφi)‖Nj

for
∨
φi ∈ (LS)A, for j = 1 and 2 (the sups that come up in evaluating (LS)A-formulas

in N1 and N2). Define

M1 = N1/h

M2 = N2/h

(c.f. Chapter 4)

and G :M1 →M2

by GR = {(s, t) : h(‖t = FR(s)‖) = 1}.

It is easy to see that we have obtained a counterexample to assumption (ii) of the
theorem.

Part (iii) of 7.3.5 is identical to 7.1.4. To obtain it from part (i) of 7.3.5, one first
has to replace N1, N2 and F : I∗(N1) → I∗(N2) by N ′1, N

′
2 and F ′ : I∗(N ′1) → I∗(N ′2)

where N ′1, N
′
2 are full int he sense of 4.3.3; the precise statement and the proof of what

we need should be obvious for those familiar with the proof of 4.3.4. Having done this
replacement, we can use any 2-valued homomorphism h :B → 2 to define the appropriate
two-valued models and homomorphisms.

This completes the proof of 7.3.5.

§4 Infinitary generalizations; continued

Next we turn to the infinitary generalization of Theorem 7.1.6. Besides Assumption
7.3.4, we have to make further assumptions. Let R and S be weakly A-logical categories
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and let I :R → S be an A-logical functor as it was assumed at the outset of the last
section.

Assumption 7.4.1 (i) A-finite disjoint sums exist in R, i.e. if 〈Ri : i ∈ J〉 is an A-finite
family of objects in |R|ob then there exists an object R ∈ |R|ob and an A-finite family

〈Ri
ji //R : i ∈ J〉 of morphisms such that (a) each ji is a monomorphism, (b) R is

the sup of the Ri as subobjects, and finally (c) for distinct i1, i2 ∈ J , the subobjects

Ri1
� �ji1 // R,Ri2

� �ji2 // R of R are disjoint.

(ii) The following form of the axiom of choice holds. For any A-finite family 〈Ri : i ∈
J〉 of objects in |R|ob there are an object R in |R|ob and an A-finte family of morphisms

〈R π′i //Ri : i ∈ J〉 satisfying the following condition (∗) (we call R together with the π′i
a pseudo-A-product of Ri, for reasons explained below).

(∗) For any object S of S and any A-finite system Si
� � σi // I(Ri)×S, if we denote by

I(Ri)×S
ρi //S and I(R)×S ρ //S the canonical projections and by I(R)×S πi // I(Ri)×

S the morphism induced by I(R)
I(π′i)// I(Ri), then the following equality holds:∧

i∈J∃ρi(Si) = ∃ρ
∧
i∈Jπ

−1
i (Si)

I(Ri) I(R)

Si I(Ri)× S I(R)× S

∃ρi(Si) S

∧
i∈J∃ρi(Si) '

requirement

∃ρ
∧
i∈Jπ

−1
i (Si)

∧
i∈Jπ

−1
i (Si) π−1

i (Si)

I(π′i)oo

� � σi //

��
� � //

OO

OO

ρi

��
ρ

tt

πioo

OO

5�

HH

S3

ee
Q1
p.b.

bb

0�

BB

��

//

Remark 1. It is easy to see that a disjoint sum as described in 7.4.1(i) is always a
coproduct.

2. The condition (ii) takes place entirely in the category S except that we do not need
more than the existence of such a pseudo-A-products for objects I(Ri) coming from R.

3. Condition (ii) is a form of the axiom of choice. Consider the category of sets as S.
Let Ai (= I(Ri)) be given sets. Now A (= I(R)) can be taken to be the usual Cartesian
product

∏
Ai, with canonical projections pi (= I(π′i)) :A→ Ai. Now (∗) will hold. Si is

a subset of Ai × S and we write Si(a, s) for 〈a, s〉 ∈ Si. The condition now becomes, in
usual logical notation,∧

i∈I∃ai ∈ Ai Si(ai, s) ⇔ ∃〈ai : i ∈ J〉
∧
i∈JSi(ai, s).

The left-to-right implication says that if each of the sets {ai ∈ Ai : Si(ai, s)} = X
(i)
s is

non-empty, so is their cartesian product
∏
i∈J X

(i)
s .

More generally, assume that S is at least weakly-A-logical, it has A-products of A-
finite families (meaning that A-finite families have a product with the universal property
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of product required only for A-finite families of maps) and finally, that it satisfies the
axiom of choice in the form that every epimorphism has a section. Then, as it is easy
to see, condition (ii) is satisfied.

4. For finite index-sets J , the condition of (ii) is automatically satisfied in any or-
dinary logical category. So we see that for the finitary logical case, when the admissible
set A is taken to consist of hereditarily finite sets over certain urelements, Assumption
7.4.1 is automatically true once R is a pretopos (this is needed for the first condition
(i)). Thus, Theorem 7.1.6 will be a special case of our next result, at least when R is a
pretopos.

Theorem 7.4.2 Assume that R, S and I :R → S are as before and the satisfy both
Assumptions 7.3.4 and 7.4.1. Then, if I∗B : ModBA(S) → ModBA(R) is faithful for every
non-trivial complete Boolean algebra B, then every object S in S is covered by R via
I, i.e. there is an object R in R, a subobject S1 → I(R) of I(R) in S and a morphism

S1
f //S such that S = ∃f (Si). Also, if A is countable or each set in A is finite (i.e.,

the logic LA is finitary), then it is sufficient to require faithfulness for the two-element
Boolean algebra B.

Remark In the presence of disjoint sums, the notion of being covered as given now is
equivalent to being finitely covered as used in the statement of 7.1.6. This point will
become clear below in or use of disjoint sums.

Proof of 7.4.2 Many of the computations in this proof are similar to those of 7.3.5 as
well as previous uses of Boolean-valued models with regular open sets as Boolean values.
Most of these computations will now be omitted. Although the general framework will
be quite similar to the of the last section, the “mathematical content” is sufficiently
distinct to deserve attention.

We start by describing a partially ordered set P = (P,≤) that will be the “consistency
machine” doing the work for us, just as in the last section.

Let P be the set of all triples

〈∆N1
,∆N2

,∆F,G〉

such that the following conditions (i), (ii) and (iii) are satisfied.

(i) ∆N1 , ∆N2 are finite sets of formulas of the fragment FS (defined at the beginning
of §3).

(ii) ∆F,G consists of two sequences, 〈〈ai, ai〉 : i < k〉 and 〈〈bj , bj , bj〉 : j < `〉 such

that, for each i, ai and ai are terms of the same sort that is of the form I(R) for some
R ∈ |R|ob; for each j, bj , bj , bj are terms of the same sort that is not of the form I(R)

for some R ∈ |R|ob. Also, each of the two sequences should be a function, i.e. ai is
uniquely determined by ai, and bj , bj by bj . ∆F denotes the sequence (extracted from

∆F,G)
〈〈ai, ai〉〈bj , bj〉 : i < k, j < `〉

and ∆G:
〈〈ai, ai〉〈bj , bj〉 : i < k, j < `〉.

We will write a = F (a), or (a, a) ∈ ∆F,G, to denote that the pair 〈a, a〉 is among the
〈ai, ai〉. Similarly for 〈bj , bj , bj〉 ∈ ∆F,G we write b = F (b) and b = G(b). We will make

a systematic distinction between terms of sorts I(R) “coming form R” and other terms
by the use of letters a (with possible indices) for the former and b for the latter.
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We reserve the distinct variables c, c and c of a fixed sort S0 (whose being cover by
R we are proving) and we put the requirement on ∆F,G that always 〈c, c〉, 〈c, c〉 ∈ ∆F,G.
(e.g. by b0 = c, b0 = c, b

0
= c).

We finally make the requirement that each (free) variable in terms a (or b) such that
〈a, a〉 ∈ ∆F (or 〈b, b〉 ∈ ∆F ) for some a (or b) should be either c or else it should occur
free in ∆N1

.

(iii) There does not exist a formula θ = θ(x, c, ~u,~v) such that

(∗) θ is in the finitary logic (LS)gωω, x is a variable of some sort of the form I(R),

TS ` ∆N1
⇒ ∃xθ(x, c,~a,~b )

and
TS ` ∆N2

,∃x[θ(x, c,~a,~b ) ∧ θ(x, c,~a,~b)]⇒ c ≈ c

where ~a, ~a, ~b, etc. refer to the sequences 〈ai : i < k〉, 〈ai : i < k〉, 〈bj : j < `〉 etc. coming
from ∆F,G, and, of course, the terms in ~a are substituted for the variables ~u (and thus
the variables ~u are assumed to have sorts matching those of ~a).

(We will say, as before, that θ blocks p if all the conditions after (∗) are satisfied.
Hence, (iii) says that there is no θ blocking p.)

This completes the definition of the set P . The partial ordering ≤ is defined, as
before, as component-wise inclusion.

Remark Some words about the rationale behind the consistency machine. We make the
indirect assumption that the fixed object S0 in S is not covered by R via I, and proceed
to show the existence of Boolean valued models N1 and N2 of S (i.e., of TS) together
with homomorphisms F and G

N1

F //
G

//N2

such that the restrictions I∗(F ) and I∗(G) are the same but F and G themselves are
not, in direct contradiction to the faithfulness assumption. The universes of the models
will consist of terms as before. Very roughly speaking, ∆N1 and ∆N2 are approximations
of the full theories of the models N1 and N2. ∆F and ∆G are approximations of the
homomorphisms F and G respectively, which fact is expressed in the notations a = F (a),
etc., introduced above.

Some light is thrown on the crucial definition of blocking by checking the following.
Assume that S0 is not covered by R. Then p0 = 〈∅,∅, 〈〈c, c〉〉〉 belongs to P . This
means the following. If there is a θ blocking p0, then S0 is covered by R. And in fact,
with θ(x, c) blocking p0, we obtain that S = (∃cθ(x, c))S is a subobject of I(R) where
x is of the sort I(R), P ′ = (θ(x, c))S is a subobject of I(R)× S0 and also, S × S0, and
(here we use the second part of the block property) that P ′ is a functional subset of

S × S0, hence by 2.4.4 it defines a morphism S
f //S0; and finally, by the first part of

the block property, “f is surjective”, i.e. S0 = ∃f (S), showing that S0 is covered by R
(through S → I(R)).

The two consistency properties derived from (P,≤) = P, denoted by Γ1 and Γ2,

are defined almost identically to the case in the preceding section. Put f1(p) = ∆
(p)
N1

,

Var1(p) = Var(∆
(p)
N1

) ∪ {c}, f2(p) = ∆
(p)
N2

and Var2(p) = Var(∆
(p)
N2

) ∪ Var(Range ∆
(p)
F,G)

where by Var(Range ∆
(p)
F,G) we mean⋃

{Var(a) : 〈a, a〉 ∈ ∆F,G} ∪
⋃
{Var(b) : 〈b, b〉 ∈ ∆F,G} ∪

⋃
{Var(b) : 〈b, b〉 ∈ ∆F,G}.
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Then we define
Γ1 = (Γ,≤, f1,Var1)

and
Γ2 = (Γ,≤, f2,Var2).

Lemma 7.4.3 Γ1 and Γ2 are consistency properties.

The proof is similar to that of the corresponding statement in §3 and the only two
points of interest are the proofs of property (viii) (“for disjunctions”) in the definition
of consistency property for Γ1 and Γ2.

(i) ((viii) for Γ1) Let p = (∆N1
,∆N2

,∆F,G) and
∨

Σ ∈ ∆N1
. Define pφ for φ ∈ Σ

by
pφ = (∆N1 ∪ {φ},∆N2 ,∆F,G.

Assume (for reductio ad absurdum) that

pφ 6∈ P for all φ ∈ Σ.

Hence for every φ ∈ Σ there is θφ blocking pφ, i.e.

(1)

{
TS ` ∆N1

, φ⇒ ∃x(φ) θφ(x(φ), c,~a,~b)

TS ` ∆N2
,∃x(φ)(θφ(x(φ), c,~a,~b) ∧ θφ(x(φ), c,~a,~b))⇒ c ≈ c.

By the assumption that S is weakly A-logical, the predicate P (φ, θ),

P (φ, θ) ⇔ θ is a finitary formula and (1) holds with θ = θφ;

is Σ on A.
By the admissibility of A, we conclude in a manner similar to the proof of 7.3.5 that

there is an A-finite family
{Θφ : φ ∈ Σ}

of A-finite sets Θφ of formulas such that each Θφ is non-empty (φ ∈ Σ) and for every
θ ∈ Θφ, we have P (φ, θ).

Consider the A-finite set
J = {〈φ, θ〉 : θ ∈ Θφ}

and the J-indexed family
〈θ : 〈φ, θ〉 ∈ J〉

(i.e., the function 〈φ, θ〉 7→ θ, defined on J). Let us denote by x(φ,θ) the variable θ
playing the role of x(φ) in (1). x(φ,θ) is of sort I(R(φ,θ)) and the function (φ, θ) 7→ R(φ,θ),
defined on J , is A-finite. (Strictly speaking, this is not a consequence and should be
made sure by a slightly more careful choice of Θφ as a certain set of pairs 〈θ, x〉.)

Let us consider the disjoint sum, say R, (Assumption 7.4.1) of the objects R(φ,θ), for
〈φ, θ〉 ∈ J . Because I is A-logical, it is easy to see that I(R) is the disjoint sum of the
I(R(φ,θ)) in S. Let `(φ,θ) = I(j(φ,θ)) be the canonical injection

I(R(φ,θ))→ I(R).

Now, define

θ′(φ,θ)(x, c,~a,
~b) := ∃x(φ,θ)[x ≈ `(φ,θ)(x(φ,θ)) ∧ θ(x(φ,θ), c,~a,~b)].
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Finally, put

θ(x, c,~a,~b) :=
∨

(φ,θ)∈J θ
′
(φ,θ),

more precisely, a finitary formula S-equivalent to this. It is immediate that

(
∨

(φ,θ)∈J∃x
(φ,θ) θ(x(φ,θ), c,~a,~b))S ≤ (∃x θ(x, c,~a,~b))S

and hence, by
∨

Σ ∈ ∆N1
, by the fact that P (φ, θ) for (φ, θ) ∈ J and by the fact that

for each φ ∈ Σ there is θ such that (φ, θ) ∈ J , we conclude

TS ` ∆N1
⇒ ∃x θ(x, c,~a,~b).

By parts (a) and (c) of the definition of disjoint sum (c.f. 7.4.1), we can easily see that

(∃x(θ(x, c,~a,~b) ∧ θ(x, c,~a,~b)))S ≤ (
∨

(φ,θ)∈J∃x
(φ,θ)(θ(x(φ,θ), c,~a,~b) ∧ θ(x(φ,θ), c,~a,~b)))S

(the reader should ponder the standard meaning of the formulas involved and argue
by the completeness theorem). This leads to the other half of the required condition,
namely

TS ` ∆N2
,∃x(θ(x, c,~a,~b) ∧ θ(x, c,~a,~b))⇒ c ≈ c.

We have exhibited in θ a block for p, contrary to p ∈ P ; hence for some φ ∈ Σ, we have
pφ ∈ P , showing “(viii)”.

Remark We did not use part (b) of the disjoint sum. And in fact, (b) is inessential
in the sense that if we had a “sum” with only (a) and (c), then taking the sup of the
canonical images of the Ri, we obtain one satisfying (b) in addition.

(i) ((viii) for Γ2) Let p = (∆N1
,∆N2

,∆F,G),
∨

Σ ∈ ∆N2
; define pφ for φ ∈ Σ by

pφ = (∆N1
,∆N2

∪ {φ},∆F,G).

Assume, for reductio ad absurdum, that

pφ 6∈ P for φ ∈ Σ.

Hence for every φ ∈ Σ there is θφ blocking pφ, i.e.

(2)
TS ` ∆N1

⇒ ∃x(φ) θφ(x(φ), c,~a,~b)

TS ` ∆N2
, φ,∃x(φ)(θφ(x(φ), c,~a,~b) ∧ θφ(x(φ), c,~a,~b))⇒ c ≈ c.

Let, as before, Θφ (for φ ∈ Σ) be a non-empty A-finite set, such that 〈Θφ : φ ∈ Σ〉 is A-
finite, and for θ ∈ Θφ, (2) holds with θ ∈ Θφ. Consider the family 〈θ : 〈φ, θ〉 ∈

∐
φ∈Σ Θφ〉,

and the corresponding family

〈x(φ,θ) : (φ, θ) ∈ J〉

with x(φ,θ) the variable of sort I(R(φ,θ)) playing the role of x(φ) in (2). We can easily
arrange that 〈R(φ,θ):(φ,θ)∈J〉 is A-finite. We write i for a typical element (φ, θ) of J . Now

we use 7.4.1(ii). Let 〈R π′i //Ri : j ∈ J〉 be a pseudo-A-product of the Ri, and let S be

the product-object of the sorts c, ~a and ~b so that

Si
� � // I(Ri)× S
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for Si = (θ)S , with i = (φ, θ). Let I(Ri) × S
ρi //S, I(R) × S

ρ //S and I(R) ×
S

πi // I(Ri) × S be the morphisms as in 7.4.1(ii). Let x be a variable of sort I(R).
We now have, as a matter of course,∧

i∈J∃ρi(Si) = (
∧
φ∈Σ,θ∈Θφ

∃x(φ,θ) θ(x(φ,θ), c,~a,~b))S

and
∃ρ
∧
i∈Jπ

−1
i (Si) = (∃x

∧
φ∈Σ,θ∈Θφ

θ(π(φ,θ)(x), c,~a,~b))S .

We define θ0 to be (a finitary formula R-equivalent to)
∧
φ∈Σ,θ∈Θφ

θ(π(φ,θ)(x), ·, ·, ·).
Now, by 7.4.1(ii), the left-hand sides of the last two equalities are equal, hence so are
the two right-hand sides. This implies, but the first fact listed in (2) for θ = θφ, that

TS ` ∆N1
⇒ ∃x θ(x, c,~a,~b).

By another application of the pseudo-A-product property of R, we obtain this:

(
∧
φ∈Σ,θ∈Θφ

∃x(φ,θ)(θ(x(φ,θ), c,~a,~b) ∧ θ(x(φ,θ), c,~a,~b)))S

= (∃x(θ0(x, c,~a,~b) ∧ θ0(x, c,~a,~b)))S

(the S and Si of the condition are changed now, in an easily identifiable way). This gets
us, from the second part of (2) for θ = θφ, θ ∈ Θφ, φ ∈ Σ and by using that

∨
Σ ∈ ∆N2

and ∧
φ∈Σ,θ∈Θφ

φ =
∧
φ∈Σφ =

∧
Σ by Θφ 6= ∅,

the the conclusion

TS ` ∆N2 ,∃x(θ0(x, c,~a,~b) ∧ θ0(x, c,~a,~b))⇒ c ≈ c.

By now we know that this finishes the proof of 7.4.3.
The rest is entirely straightforward and is just like the proof of 7.3.5. We have the

non-trivial Boolean algebra B = P∗, the canonical B-valued models of TS , N1, N2,
derived from Γ1 and Γ2, respectively, by 4.2.2. (B is non-trivial because of the indirect
assumption of the proof.) Next we define the natural transformations F andG :N1 → N2

(each Ni being considered as a functor R → ShB). We define

‖d = FS(d)‖ =
∨
d∈XS

∨
d′∈XS‖d = d′‖ · ‖d = d′‖ · U (F )

〈d′,d′〉

where XS is the set of terms of sort S, d, d are terms of sort S. There is an identical
formula for G. In a manner entirely similar to the last section, we establish that

(i) F,G are natural transformations

(ii) I∗(F ) = I∗(G)

(iii) ‖c = F (c)‖ = ‖c = G(c)‖ = 1 but ‖c = c‖ = 0, hence
F 6= G.

This completes the proof of the theorem.

The final result of this section and in fact, the main result of this chapter is

Theorem 7.4.4 Let R, S be weakly A-logical categories, and I an A-logical functor
I :R → S, with an admissible set A. Assume that both 7.3.4 and 7.4.1 are satisfied and
that R is a pretopos. Then if

I∗B : ModBA(S)→ ModBA(R)
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is an equivalence of categories for all non-trivial complete Boolean algebras B, then

I :R → S

is an equivalence. If A is countable, or each set in A is finite, it is sufficient to require
that I∗ : ModA(S) → ModA(R) is an equivalence (the above for B = the two-element
algebra).

The proof is immediate by 7.1.7, 7.3.2, 7.3.5 and 7.4.2.
As remarked above, for the finitary case, the Assumptions 7.3.4 and 7.4.1 made in

the theorem are automatically satisfied. So 7.1.8 is a special case of 7.4.4.
We can regard 7.4.4 as an analysis of what exactly of the assumption of finitariness

is used in 7.1.8. The answer is that we use that (i) the hereditarily finite sets form an
admissible set (with arbitrary added predicates) and (ii) that the statements of 7.3.4
and 7.4.1 are true.
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Chapter 8

Theories as categories

§1 Categories and algebraic logic

In the preceding, we correlated a theory TR with a given category R such that TR could
replace R for many purposes. Here we are going to perform the opposite step to show
that categories and theories are practically indistinguishable. First we present a certain
general perspective in which we can place our discussion.

The basic notion is that of an interpretation of a theory in category, the one we have
been working with extensively so far. To have a precise codification, a theory for us is
a pair T = (F, T ) where F is a fragment of L∞ω and T is a set of axioms, i.e. sequents,
of F . An interpretation (or model) of T , M , in a category R is an interpretation of the
language of F in R such that (i) M is “adequate” for F in a sense such as: F is stable
with respect to M or: F is distributive with respect to M (c.f. Chapter 3); and such
that (ii) M makes every axiom in T hold in R. We employ the arrow notation (and we
justify this below)

M : T → R (1)

to signify the fact that M is a model of T in R.
There are two related kinds of arrows that offer themselves for comparison. One is a

functor

I :R → S (2)

between categories. Under certain conditions, we can compose the two arrow (1) and
(2), to obtain a composite

I ◦M : T → S

in the obvious way: first of all, I ◦M will always make sense as an S-interpretation of
the language L of F , in T (F, T ). In order to have that I ◦M is actually a model of S,
we need a certain degree of “logicalness” on the part of I. For example, if F is a finitary
coherent fragment and I is logical in the technical sense introduced above, then clearly,
I ◦M is a model too.

The other kind of arrow
I ′ : T ′ → T

is between theories, and is what is ordinarily called a (relative) interpretation of the
theory T ′ in T . The ordinary definition is clearly not broad enough; e.g. it does not
incorporate the possibility of interpreting individuals of sort s as pairs of individuals

165
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〈a1, a2〉 of sorts s1, s2 in T . Nevertheless, it is clear that, under any reasonable definition
of this notion, we’ll have a composite

M ◦ I ′ : T ′ → S

and this will be a model of T ′. We note that our actual aim in this Chapter is to subsume
the first and third kinds of arrows under the notion of functors.

In the following discussion, we fix F to be the full finitary coherent fragment over a
given language L and we call a theory of the form (F, T ) (finitary) coherent. We assume
all categories to be logical. In fact, all functors will be assumed logical.

First we claim that for a given logical category R, the theory TR = (FR, TR) with TR
introduced above and with the obvious FR, has, and in fact, is essentially characterized
by, a universal property, as follows.

Proposition 8.1.1 For an arbitrary R-model M : T → R where T = (F, T ) is a coherent
theory (F is not necessarily FR) there is an essentially unique interpretation I : T → TR
such that

T R

TR

M //

I
�� canonical

<<

commutes.

Even with an “unsatisfactory” definition of interpretation (see above), this is a com-
pletely obvious statement.

Another fact (which has been used extensively above) is

Proposition 8.1.2 (Universal property of R with respect to TR.) For any model

M : TR → S

there is a unique logical functor I :R → S such that

TR S

R

M //

I

<<
canonical

��

commutes.

This suggest the question if the theories TR are any special with having a “universal”
model R; the answer is that any coherent theory has this property.

Theorem 8.1.3 For any finitary coherent theory T there is a logical category R = RT
together with an R model M0 : T → R such that: for any M : T → S, an S model for
an arbitrary logical category S there is a logical functor I :R → S such that

T RT

S

M0 //

M ""
I
��

commutes; I is determined uniquely up to a unique isomorphism.



167

RT has an even stronger property that is related to categories of models. For models
M1,M1 : T → S, a morphism F :M1 →M2 is what is ordinarily called a homomorphism.
I.e., F is a family

〈Fs : s is a sort of L〉

of morphisms Fs :M1(s)→M2(s) in S such that for any operation symbol

f : s1 × · · · × sn → s

we have the commutative diagram

M1(s1)× · · · ×M1(sn) M1(s)

M2(s1)× · · · ×M2(sn) M2(s)

M1(f) //

Fs1×···×Fsn ��
Fs
��

M2(f)
//

There is a related diagram concerning relation symbols of the language. This is of course
closely related to the notion of natural transformation; in case of T = TR, the theory
associated with a logical category R, a homomorphism between models of T is exactly
a natural transformation between them as functors R → S.

The above notion of (homo-)morphism, with an obvious notion of composition, de-
fines the category of S-models of T , ModS(T ). Now, it is easy to see that if

T M //R

and S are given, then
M∗S : ModS(R)→ ModS(T ),

defined by composition, is actually a functor (extends in a natural way to a morphism).
Now we can state

Theorem 8.1.4 With RT and M0 essentially uniquely determined by 8.1.3, we have
that for any logical S

(M0)∗ : ModS(RT )→ ModS(T ),

is an equivalence of categories.

The proofs of 8.1.3 and 8.1.4 are discussed in the next section. Here we make a few
remarks.

First of all, RT is the result of a usual sort of ‘universal construction’ that is quite
straightforward, and in fact, essentially determined by the property of RT itself. How-
ever, we will see that, by considering pretopoi as categories RT with a theory T arising
in a natural way, we will be able to give a new, formal or syntactic, view of the category
of coherent objects in a coherent topos. In short, it turns out to be quite useful to keep
in mind the actual construction of RT as described in the next section.

Secondly, let us point out that there is a close analogy between the construction of
RT and the construction of the Lindenbaum-Tarski algebra BT of a theory. In fact, in
the case T has a negation (i.e., for any formula φ(~x) there is another one, ψ(~x), such that
T ` φ(~x), ψ(~x)⇒ and T ` ⇒ φ(~x), ψ(~x), BT will be a more or less well identifiable part
of RT . This is a point where we can observe how categories provide an algebraization
of logic. Just as cylindric and polyadic algebras are richer than Boolean algebras, the
category RT is a richer structure than the Lindenbaum-Tarski algebra, and this makes
it able to fully reflect the content of the theory T .
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The content of 8.1.3 and 8.1.4 can be expressed by saying that for all practical
purposes, T and RT are the same. If one draws the conclusion from this that thereby
logic as conceived traditionally has been eliminated in favor of categorical notions, then
one should be reminded that 8.1.2 and 8.1.3 together will equally show that categories
(in the “logical” situation at least) can be eliminated in favor of logic. We think that
the main point is that the present natural identification of logic with a categorical
formulation is, at least potentially, useful since it makes possible relating two vast but so
far rather unrelated resources, namely logical-model theoretical experience and category
theoretical experience.

§2 The categorization of a coherent theory

The construction of RT given here is described in great detail in Dionne [1973]. Our
exposition will be somewhat sketchy, but will contain all the essential details.

We will freely use the completeness theorem (Theorem 5.1.7) to conclude instances
of formal consequence relationships T ` σ form the fact that in all ordinary set-models
of T , σ holds in the usual sense. This could be avoided at the expense of tedious formal
reasonings.

Let T = (F, T ) be a (finitary) coherent theory over a language L where F is the full
finitary coherent fragment over L. The objects of RT are defined to be all the formulas
in F . We note that we can economize on objects and still have an equivalent category
by taking any subset O of formulas of T to be the set of objects of the category such
that for any φ in F there is a ψ in O with exactly the same free variables such that
T ` φ⇒ ψ and T ` ψ ⇒ φ (for which we will write T ` φ⇔ ψ). One such choice for O
is the following. Let O consist of all formulas of the form∨n

i=1∃xi1 · · · ∃xiki
∧mi
j=1θij

where each θij is an atomic formula, in fact, a simple atomic formula: a simple atomic
formula is one of the form

Ry1 · · · y`
for any (`-ary) predicate symbol L, or

fy1 · · · y` ≈ y`+1

for any (`-ary) operation symbol in L (here the yi are variables). The natural numbers
n, ki,mi can each be equal to zero; so ↑ =

∧
∅ and ↓ =

∨
∅ are represented in O.

We also note that we consider a countable infinity of variables for each sort fixed
once a for all and use only them in forming the objects of RT .

For reasons of easier orientation, we will write sometimes [φ(~x)] when we mean φ(~x)
as an object of RT .

The morphisms of RT will be given by “definable mappings” between the object-
formulas; here, however, the theory will be taken into account and provably equal maps
will be identified. Let φ(~x) and ψ(~y) be two objects ofRT , with the distinct free variables
indicated. A premorphism φ→ ψ is any formula

µ(~x ′, ~y ′)

such that (i) the variables in the sequences ~x ′, ~y ′ have, term for term, the same sorts as
the corresponding variables ~x, ~y, respectively;

(ii) the sequences ~x ′, ~y ′ have disjoint ranges, and each consists of distinct variables;
and finally
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(iii) T ` “µ is functional”
where “µ is functional” are the three sequents

µ(~x ′, ~y ′) ⇒ φ(~x ′) ∧ ψ(~y ′)

µ(~x ′, ~y ′) ∧ µ(~x ′, ~y ′′) ⇒ ~y ′ ≈ ~y ′′

φ(~x ′) ⇒ ∃~y ′µ(~x ′, ~y ′)

with the obvious conditions and abbreviations regarding the handling of variables. Two
premorphisms µ1(~x ′, ~y ′) and µ2(~x ′′, ~y ′′) :φ → ψ are equivalent if T ` µ1(~x ′, ~y ′) ⇔
µ2(~x ′, ~y ′) (note the change of ~x ′′, ~y ′′ to ~x ′, ~y ′). It is clear (strictly speaking, by the
completeness theorem, since one argues with T |= instead of T ` ) that this defines
an equivalence relation ∼=∼(φ,ψ) between premorphisms φ → ψ. Finally, a morphism
φ→ ψ is a triple

(µ/ ∼, φ, ψ)

with mu/ ∼ being the equivalence class of a premorphism µ :φ → ψ. We will write [µ]
for the morphism exhibited. Sometimes we use a suffix such as in [µ(~x, ~y ′)](~x→~y ′) to
point out the roles of the variables.

The composition is of no surprise either. First, we verify that given premorphisms

µ(~x ′, ~y ′) :φ(~x)→ ψ(~y)

ν(~y ′′, ~z ′′) :ψ(~y)→ θ(~z),

the formula λ(~x ′, ~z ′), with ~z ′ chosen so that ~x ′ ∩ ~z ′ = ∅ and ~y ′ ∩ ~z ′ = ∅, defined as

∃~y ′(µ(~x ′, ~y ′) ∧ ν(~y ′, ~z ′))

is a premorphism φ→ θ. One does this, of course, by checking that λ is again functional
with can be easily seen on the lever of (set-)models, and then inferred on the “formal
level” (T ` ) by the completeness theorem. Next one verifies that changing µ and ν to
equivalent premorphisms, the composition premorphism λ changes to an equivalent one
too. This defines, finally, the composition

[ν] ◦ [µ] = [ν ◦ µ] = [λ].

Next we verify that the composition is associative. The identity morphism φ(~x) →
φ(~x) is represented by the premorphism µ(~x, ~y) := ~x ≈ ~y. (~x ≈ ~y denotes x1 ≈
y1, . . . , xn ≈ yn, ~x = 〈xi〉i=1,...,n, ~y = 〈yi〉i=1,...,n.)

Having defined the category RT , we next name M0 the obvious interpretation of the
language L in RT . M0 will correlate the object Rx1 · · ·x` with the (`-ary) predicate
symbol R and the morphism represented by the premorphism

fx1 · · ·x` ≈ x`+1

with the (`-ary) operation symbol f (with the xi having matching sorts).

Proposition 8.2.1 RT is a logical category and M0 : T → RT is an RT -model of T .

Lemma 8.2.2 (i) The category RT has finite left limits.

(ii) Every formula of F is interpretable by M0, and in fact, the interpretation function
M0(·) is essentially the identity. More precisely, if φ(~x) is a formula of F , X = X1 ×
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· · · × Xn is the product of the objects [xi ≈ xi] (~x = 〈x1, . . . , xn〉, X = [
∧n
i=1xi ≈ xi],

then M0(φ(~x)) = (M0)~x(φ(~x)) exists and it is the subobject

[φ(~x)]
� � // X

with the injection represented by the premorphism µ(~x, ~x ′) = φ(~x) ∧
∧n
i=1xi ≈ x′i. (If

we have chosen a proper subset of the set of formulas for objects, we will have to take a
formula equivalent to φ for forming the subobject required.)

For the more general case
(M0)~y(φ(~x))

with ~x included in ~y, there is a corresponding natural formula. Now we will have that
(M0)~y(φ(~x)) is

[φ(~x) ∧
∧n
i=1yi ≈ yi]

� � [φ(~x)∧
∧n

i=1
yi≈y′i] // ∧n

i=1yi ≈ yi.

(iii) An arbitrary sequent σ is true in M0, M0 |= σ iff T ` σ. In particular, M0 is
a model of T .

Proof (AD (i)) Given two objects A = [φ(~x)] and B = [ψ(~y)], the product of A and
B will be C = [φ(~x) ∧ ψ(~y ′)] where the ~y ′ are chosen so that ~x and ~y ′ are disjoint

and ~y ′ is termwise of the same sort as ~y. The projection C
πA //A is represented by the

premorphism µ(~x, ~y ′; ~x ′) := φ(~x)∧ψ(~y ′)∧ ~x ≈ ~x ′. There is a similar expression for the

projection C
πB //B.

Next we directly verify that C
A

B

πA 33

πB
++ has the required universal property. Given

any D
A

B

fA 33

fB
++ , D = [φD(~z)] and fA, fB are represented by premorphisms, say µ′A(~z, ~x ′′),

µ′B(~z, ~y ′′). Then the obvious candidate for the required morphism D
g //C will be

represented by
µD,C(~z, ~x ′′, ~y ′′) := µ′A(~z, ~x ′′) ∧ µ′B(~z, ~y ′′).

The necessary facts fA = πA ◦ g, fB = πB ◦ g are then seen to be equivalent to the
fact that certain sequents constructed form the above formulas are consequences of T
which fact in turn will then be seen by inspection.

The uniqueness of g requires a similar argument.
Similarly, we can define and verify equalizers.
This completes our sketch of showing (i).

(AD (ii)) By induction on the complexity of the formula φ. We will say a few words
on the induction step concerning the passage from φ(~x, y) to ∃y φ(~x, y) and leave the
rest to the reader.

We verify that

[φ(~x, y)]
[φ(~x,y)∧~x≈~x ′] // [∃y φ(~x, y)]

is an image-diagram in RT . This, together with the induction hypothesis

M0(φ(~x, y)) = [φ(~x, y)]

will show the analogous claim for ∃y φ. (Strictly speaking one should consider
(M0)~y(∃y φ(~x, y)), etc.)
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The required verification is done in a direct fashion, similarly to that in the case of the
proposed product diagram handled above. The minimality of B = [∃y φ(~x, y)] among all
subobjects C of B is proved by exhibiting a formula that defines, as a premorphism, an
isomorphism between C and B under the assumption that A = [φ]→ B factors through
C → B and then by proving that the exhibited formula indeed works.

(AD (iii)) Assume that T ` φ(~x) ⇒ ψ(~y) and let ~z be the union of ~x and ~y. The
subobject A �

� // Z:

[φ(~x) ∧ ~z ≈ ~z] �
� [φ(~x)∧~z≈~z ′](~z→~z′) // [~z ≈ ~z]

is smaller than the corresponding subobject B �
� // Z served from ψ, by the morphism

[φ(~x) ∧ ~z ≈ ~z ∧ ~z ≈ ~z ′](~z→~z′) :A→ B.

This is a direct consequence of the definition of composition and the fact T ` φ⇒ ψ.
By 8.2.2(ii), (M0)~z(φ) is A and (M0)~z(ψ) is B, hence we have

(M0)~z(φ) ≤ (M0)~z(ψ), i.e.

M0 |= φ⇒ ψ.

The argument is completely reversible, showing the other direction.

Proof of 8.2.1 We make the general remark that the task of doing the remaining
verifications is made somewhat easier by the use of 8.2.2 and the earlier Theorem 2.4.5. In
particular, if we want to verify that a given diagram composed of objects and morphisms
in RT has a certain property, e.g. it is an image diagram, by 2.4.5 and 8.2.1(i), it suffices
to show that certain sequents (namely, in the example, the single image-axiom (item 9 in
2.4.5)) are valid in RT . By 8.2.2(iii), this follows from (and in fact, is equivalent to) the
fact that these sequents are consequences of T . So, e.g. in the case of a proposed image-
diagram the image property will be verified once a sequent is shown to be a consequence
of T .

Now, to show that RT has images, let us take a diagram

A = [φA(~x)]
f=[µ(~x,~y)](~x→~y) // B = [ψB(~y)].

Define A
g //C h //B by

C = [∃~x µ(~x, ~y)]

g = [µ(~x, ~y ′)]

h = [∃~x µ(~x, ~y) ∧ ~y ≈ ~y ′].

Then by the method indicated above we can verify that the subobject C �
� // B is in fact

the image ∃f (A).
When we want to verify that a given image B = ∃f (A) is stable under pullbacks, we

proceed similarly. Let us start with the pullback diagram

A B

A′ B′
p.b.

f //

g′

��
g

��

f ′
//

and assume B = ∃f (A). We want to show that B′ = ∃f ′(A′).
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We take formulas representing each of the objects and morphisms involved. By 2.4.5
(and 3.5.2), the hypotheses (of the pullback character and B = ∃f (A)) are expressed
equivalently by saying that certain sequents, built up from the given formulas, are true
in M0. By 8.2.2(iii), these sequents are consequences of T . Now, the required conclusion
also is equivalent to a sequent being a consequence of T . We now use plain common
sense to conclude that the latter sequent is a consequence of the earlier ones, interpreted
in ordinary set-models. By the completeness theorem, the required conclusion follows.

Existence and satiability of finite sups are shown similarly.
This completes our sketch of the proof of 8.2.1.

Remark It would be more satisfactory to have a set of inference rules for defining T ` (·)
so that each particular fact needed to verify 8.2.1 would be a direct consequence of a rule
present, rather than having to appeal to a deep completeness theorem concerning the
system T ` (·). Of course, such a system could be st up automatically by examining
the needs of the proof of 8.2.1. Probably, it would be hard to make this proof-system
attractive. – There is a similar discrepancy between a natural (Gentzen-type) proof-
system (with non-logical axioms and cut rule) for ordinary one-sorted logic on the one
hand and the Hilbert-type system that is “inherent” in the notion of Lindenbaum-Tarski
algebra.

Proposition 8.2.3 (The universal property of RT ). Given a model of a theory T

M : T → S

in a logical category S, there is a logical functor I :RT → S such that the diagram

T S

RT

M //

M0 ""
I

OO

is commutative. I is uniquely determined up to a unique isomorphism, i.e., if I1, I2 both
satisfy the requirements, then there is a unique natural transformation ν : I1 → I2 that
is an isomorphism in the category of all functors RT → S.

Proof. We first exhibit a suitable I. Given a formula φ(~x), the interpretation M~x(φ(~x))
is determined only up to isomorphism among diagrams of the following sort

M(~x)

M~x(φ)

M(xi)
...

...

?�

OO
πi //

(1)

where (i) M(~x) M(xi)
...

...
πi // is a product of the given M(xi) (but otherwise is unde-

termined) and (ii) M~x(φ)→M(~x) is a monomorphism, (iii) some additional properties
(related to the meaning of φ) are satisfied.

To define the functor I, we have to use the axiom of choice. Given an object A =
[φ(~x)] of RT , let I ′(φ) be any one of the diagrams (1). Let I(A) be the object M~x(φ) in
the diagram I ′(φ). To define the action of I on morphisms, let

A = [φ(~x)]
f=[µ(~x,~y ′)](~x→~y ′) // B = [ψ(~y)]
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be a morphism in RT . The subobject

M~x,~y ′(µ) �
� // M(~x)×M(~y) = X

is smaller than the subobject I(A) × I(B) → X derived from the diagrams I ′(φ) and
I ′(ψ) and in fact, M~x,~y ′(µ) will be a functional subobject of I(A)× I(B); all these facts
are consequences of µ being a premorphism. By 2.4.4, there is a unique morphism

I(A)
f ′ // I(B)

whose graph is M~x,~y ′(µ). We put I(f) = f ′.
Having defined I, we have to verify that I is logical. Let D be a diagram in RT with

a given property to be shown to be preserved by I. We will apply 2.4.5 and 3.5.2 again.
By these results and 8.2.2(iii), the fact that D has the given property is translated to

saying that certain sequents are consequences of T . Using the definition of I, we realize
that the fact that the I-image of D in S also has the given property, is equivalent that
the same sequents are true in M . Since M was supposed to be a model of T , by the
soundness theorem 3.5.4, we conclude that these sequents are indeed true in M .

The uniqueness part will be proved as a consequence of

Proposition 8.2.4 For any logical category S, the natural functor

(M0)∗S : Mod(RT )→ ModS(T )

is an equivalence of categories.

First, let us remark that the fullness of (M0)∗S implies that if I1 ◦M0 = I2 ◦M0 = M
in the notation of 8.2.3, then I1 ' I2 in ModS(RT ), hence the uniqueness statement in
8.2.3.

Secondly, let us note that 8.2.4 generalizes 8.2.3 and in fact, the (essential) surjec-
tivity of (M0)∗ is equivalent to the existence statement of 8.2.3. Hence what is left to
show is the fullness and faithfulness of (M0)∗S . Let I1, I2 be logical functors RT → S
and let F be a homomorphism M1 = I1 ◦M0 → M2 = I2 ◦M0. We want to define a
natural transformation G : I1 → I2 such that (M0)∗SG = F . Let [φ(~x)] be any object of
RT . Consider the following diagram in RT :

[φ(~x)] X

[x1 ≈ x1]

[xn ≈ xn]

...
� � i //

π1 44

πn **

with the obvious i, π1, . . . , πn (~x = 〈x1, . . . , xn〉). This diagram is carried over to S both
by I1 and I2; the resulting two diagrams are related by F . All this is depicted in the
following.

I1(X)

M1(x1) M2(x1)

I2(X)

M1(xn) M2(xn)

(M1)~x(φ(~x)) I1([φ(~x)]) I2([φ(~x)]) (M2)~x(φ(~x))

...
...

I1(π1) 55

I1(πn) ))

(Fx1 ,··· ,Fxn ) ++

I2(πn)uu

Fx1 //
I2(π1)ii

Fxn

//
I1(i)

OO

G[φ(~x)]

//

I2(i)

OO
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Notice that with si the sort of xi, M1(xi) =
df
M1(si) = I1[xi ≈ xi] and Fxi =

df
Fsi :M1(xi)

→M2(xi). We claim that there is a unique morphism in S, G[φ(~x)], making the diagram
commutative. The uniqueness is clear since I2(i) is a monomorphism. The existence of
such a morphism can be proved by an induction on the complexity of the formula φ,
by parallelling the proof that existential positive formulas are preserve under homomor-
phisms. This latter fact is the special case of the above statement for the case when S
is the category of sets.

This completes the definition of the proposed natural transformation G : I1 → I2. It
is easy to see that (M0)∗(G) = F , i.e., that G “extends” F . Next, this is how we can
verify that G is in fact a natural transformation. Recall the following elementary fact:
a diagram

A A′

B B′

ν //

f

��
f ′

��
µ

//

is commutative in any category with finite limoo iff there is a morphism h making the
following commute:

graph(f) A×B

graph(f ′) A′ ×B′

� � //

h
��

ν×µ
��

� � //

Let the morphism f : [φ(~x)] → [ψ(~y)] in RT be defined by the premorphism µ(~x, ~y ′).
We have that

graph(f) �
� // [φ]× [ψ] �

� // X × Y
is defined as the subobject M0(µ(~x, ~y ′)). So, by taking the images by I1 and I2, we
obtain the commutative diagram

graph(I1(f)) M1(µ) I1([φ]× [ψ]) I1(X × Y )

graph(I2(f)) M2(µ) I2([φ]× [ψ]) I2(X × Y ).

� � // � � //

� � // � � //
��

G[µ]

��
G[φ]×[ψ]=Gφ×Gψ
��

(Fx1 ,...,Fxn )
��

By the above fact, this establishes that

I1([φ]) I1([ψ])

I2([φ]) I2([ψ])

I1(f) //

G[φ]

��
G[ψ]

��

I2(f)
//

is commutative, showing that G is indeed a natural transformation.
We have shown that (M0)∗S is full. In fact, we have seen that in the above proof G

was uniquely determined that shows the faithfulness of (M0)∗S .
We have completed the proof of 8.2.4.
To finish this section, notice that in 8.2.1, 8.2.3 and 8.2.4 we established 8.1.3 and

8.1.4.

§3 Infinitary generalizations

Let κ be a regular cardinal number. We denote by Lκω the fragment of L∞ω consisting of
the formulas that only use conjunction and disjunction of sets Σ such that card(Σ) < κ.
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Let Lgκω denote the coherent part of Lκω, Lgκω = Lg∞ω ∩ Lκω, and let T be a theory
in Lgκω. With such theories, we can associate a κ-logical category Rκ(T ), in much the
same way we associated R(T ) with T in the previous section.

The category R is called κ-logical if it is logical and in addition, it has stable sups
of families 〈Xi → A : i ∈ I〉 of subobjects of cardinality < κ, (i.e., card I < κ) (c.f.
Chapter 3, Section 4).

A functor I :R → S between κ-logical categories is κ-logical if it is logical and
preserves all κ-sups. Such an I will also be called an S, κ-model of R.

If κ = ℵ0, we obtain the ordinary “logical” notions we discussed in the last two
sections. On the other hand, we can altogether drop the restriction on the size of the
disjunctions and the sups of subobjects. In this way we obtain ∞-logical categories and
functors. In the sequel, we allow κ to be either an infinite regular cardinal or ∞. For
either kind of κ, form Chapter 3, Section 5, we know that for every κ-logical R, there
is a theory T = TR in Lgκω, for L = LR the standard language associated with R, such
that the S-models of T are exactly the κ-logical functors R → S, for any κ-logical S.

We have the following theorem with is a converse to the last fact.

Theorem 8.3.1 (i) Let κ be an infinite regular cardinal, or κ = ∞. For any theory T
in Lκω, there is a κ-logical category R = Rκ(T ) together with an R-model M0 : T → R
of T such that: for any M : T → S, an S-model for an arbitrary κ-logical category S
there is a κ-logical functor I :R → S such that

T Rκ(T )

S

M0 //

M %%
I

��

commutes; I is determined uniquely up to a unique isomorphism. Also, R can be taken
to be a small category, even for κ = ∞, whenever T is a set (as opposed to being a
proper class).

(ii) In fact, we have that for any κ-logical S

(M0)∗S : ModS,κ(R)→ ModS(T )

is an equivalence of categories.

Remark Here, of course, ModS,κ(R) is the full subcategory of the functor category
SR whose objects are the S, κ-models of R. ModS(T ) is the full subcategory of all S-
interpretations of the language of T whose objects are models of T . (M0)∗S is defined
from M0 : T → R by composition in a natural way.

The proof is a natural extension of the proofs outlined in the last section (which
establish 8.3.1 for κ = ℵ0). We only indicate a few important points.

First, let us define the class Oκ of simple κ-formulas of L∞ω as consisting of disjunc-
tions ∨

i∈Iγi =
∨
{γi : i ∈ I}

such that card(I) < κ and such that each γi is a primitive formula, i.e. it is of the form
∃x1 · · ·xk

∧m
j=1θj with finite k,m < ω and with each θj a simple atomic formula of L

(c.f. §2). (For κ = ∞, there is no restriction on card(I).) Since the cardinality of all
primitive formulas based on the language L is λ = max(ℵ0, card(L)), the set of all simple
∞-formulas of L∞ω is 2λ. Also, for κ > λ, “κ-simple” is the same as “∞-simple”.

The point of simple κ-formulas is that every formula in Lγκω is logically equivalent
to a simple κ-formula.
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Proposition 8.3.2 For every φ in Lgκω there is ψ ∈ Oκ with the same free variables as
φ such that

` φ⇒ ψ and ` ψ ⇒ φ

` indicates here derivability pin one of the systems of Chapter 5, with T there taken to
be the empty set of axioms. (We write φ `a ψ, and we say that φ and ψ are logically
equivalent.)

Proof. The proof is by induction on the complexity of φ. To handle atomic formulas
other that simple ones, we note that e.g.

f(g(x)) ≈ y `a ∃z[g(x) ≈ z ∧ f(z) ≈ y].

This logical equivalence is inferred most easily by the completeness theorem for ` (c.f.
5.1.7). Clearly, for any ordinary set-structure, the meanings of the formulas at hand
are the same. With a natural extension of the above example, every atomic φ can be
“turned into” a simple formula.

It remains to handle the three inductive cases φ = ∃xφ1, φ = φ1∧φ2 and φ =
∧
i∈Iφi.

If φ1 `a ψ1

then ∃xφ1 `a ∃xψ1

as is easily seen; on the other hand, if

ψ1 =
∨
j∈Jγj then

∃xψ1 `a
∨
j∈J∃xγj .

This last fact can be inferred from the Boolean completeness theorem 5.1.2 (and from
the two-valued one, 5.1.7, in case κ ≤ ℵ1). This calls for showing that in case

‖φ1[a,~a]‖M = ‖
∨
j∈Jγj [a,~a]‖M

for any B-valued M , and any a, ~a in |M |, then ‖∃x φ1[~a]‖M = ‖(
∨
j∈J∃x γj)[~a]‖M ;

this last fact is an easy consequence of the definition of ‖ · · · ‖M . The required logical
equivalences below can be seen similarly. The equivalence (1) takes care of the inductive
case φ = ∃xφ1, since the formula on the right is simple.

For φ = φ1 ∧ φ2

φ1 `a ψ1 =
∨
j∈J1

γ1
j

φ2 `a ψ2 =
∨
j∈J2

γ2
j

by induction hypothesis. It follows that

φ1 ∧ φ2 `a ψ1 ∧ ψ2 `a
∨

(j1,j2)∈J1×J2
(γ1
j1 ∧ γ

2
j2) (2)

and if
γ1 = ∃~x

∧n
i=1θi γ2 = ∃~y

∧m
j=1θ

′
j

then γ2 `a ∃~z
∧m
j=1θ

′′
j for some ~z such that ~x and ~z are disjoint and then

γ1 ∧ γ2 `a ∃~x ∃~z
∧
{θ1, . . . θn, θ

′′
1 , . . . , θ

′′
m}.

Using this fact, in (2) we can replace the conjunctions γ1
j1
∧ γ2

j2
by primitive formulas,

showing that φ1 ∧ φ2 is logically equivalent to a simple κ-formula.
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Finally, for φ =
∨

Σ, card Σ < κ, by induction hypothesis σ `a
∨

Σσ for every σ ∈ Σ
and thus φ `a

∨
(
⋃
σ∈Σ Σσ). Since

⋃
σ∈Σ Σσ is the union of < κ many sets of cardinality

< κ, it has cardinality < κ since κ is regular.
Observe that the proof of 8.3.2 actually gives the construction of a well-determined

simple formula ψ such that φ `a ψ. Let us denote this ψ by [φ]. �

Next we turn to the definition of R = Rκ(T ). The objects of R are defined to
be the simple κ-formulas of Lκω, T being a theory in Lγκω. The rest of the definition
is an exact replica of the in the last section. Again, we have premorphisms µ(~x ′, ~y ′)
with µ being a simple κ-formula satisfying the conditions stated before, and we identify
premorphisms if the “define the same morphism”, provably in T (we use either of the
provability relations T ` (·) introduced in Chapter 5). Let us denote by [φ(~x)] �

� // X

the subobject A
� � i // X where

X =
∧n
i=1xi ≈ xi

A = [φ(~x)] = ψ(~x)

for the simple κ-formula ψ(~x) constructed in 8.3.2 such that φ `a ψ, i is defined by the
premorphism [φ(~x)] ∧

∧n
i=1xi ≈ xi. Then we can prove the assertions of 8.2.2 just as

before, also using the fact that φ `a [φ].
This completes our remarks on the proof of 8.3.1. �

We make two obvious observations on the construction of Rκ(T ) that will be use-
ful later. Let ~x = 〈x1, . . . , xn〉. With M0 : T → R = Rκ(T ) as in 8.3.1, let us

write [φ]~x
� � // X (X = M0(~x)) for (M0)~x(φ)

� � i // X with i defined by the premorphism∧n
i=1xi ≈ x′i.

Proposition 8.3.3 (i) Every subobject of X in R is (isomorphic to one) of the form
[φ]~x
� � // X.

(ii) Every object in R is a subobject [φ]~x (with an appropriate monomorphism, actu-
ally, with the one in (i)) of an object of the form X = M0(~x), i.e., a finite product of
sorts of the language of T .

§4 The κ-pretopos correlated to a theory

Recall the definition of a κ pretopos (c.f. Chapter 3, Section 4) for κ an infinite regular
cardinal, or κ =∞.

Theorem 8.4.1 For any small κ-logical category R there is a κ-pretopos P = Pκ(R) and
a κ-logical functor I0 :R → P such that for any κ-logical I :R → P ′ with an arbitrary
κ-pretopos P ′ there is κ-logical functor J :P → P ′ such that the following commutes

R P

P ′

I0 //

I %%
J

��

If κ < ∞, and R is small, then Pκ(R) is a small category. In case κ = ∞, and R
is small, Pκ(R) is a Grothendieck topos, denoted by E(R).

Theorem 8.4.1′ For any coherent theory T in Lgκω there is a κ-pretopos P = Pκ(T )
and a model M0 : T → P such that for any model M : T → P ′ in a κ-pretopos P ′ there
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is a logical functor J :P → P ′ such that the following commutes

T P

P ′

M0 //

M %%
J

��

J is determined up to isomorphism.
If κ < ∞, and T is a set, then Pκ(T ) is a small category. In case κ = ∞, and

T is a set, P∞(T ) is a Grothendieck topos, denoted by E(T ), and also it is called the
classifying topos of T .

Proofs. By the preceding sections, the two versions are equivalent. Our proof will
relate to both versions at the same time. We will prove the first version directly but
we will make use of the theory TR. Here TR is the theory in Lgκω whose S-models are
exactly the κ-logical functors R → S, for any κ-logical S. This offers a slight notational
simplification over treating an arbitrary theory T .

We will define an extension of the theory TR, TR → T ′, and we will put Pκ(R) =
Pκ(TR) = Rκ(T ′).

The construction of T ′ takes place in two steps. In the first, we extend T = TR to T1

by formally adjoining sums and in the second, we extend T1 to T2 by formally adjoining
quotients of equivalence relations.

(A) The coproduct completion of a category

Theorem 8.4.2 Let R be a κ-logical category. There is a κ-logical category R1 = R]
together with a κ-logical functor I1 :R → R1 such that

(i) R1 has disjoint κ-sums, i.e., for any family {Ri : i ∈ J} of < κ many objects in
R1, their disjoint sum

∐
i∈J Ri exists in R1.

(ii) R1 is the solution to the universal problem of finding a κ-logical extension of R
with disjoint κ-sums, i.e., if

R I′ //R′

is a κ-logical functor with R′ having disjoint κ-sums then there is κ-logical F :R] → R′
such that

R R′

R]

I′ //

I1 %%
F

OO

commutes; F is determined up to a unique isomorphism.

(iii) I1 is conservative, i.e. if I1(R1) ≤ I1(R2) for subobjects R1, R2 of R in R, then
R1 ≤ R2.

(iv) I1 is full with respect to subobjects, i.e., for any subobject S of I1(R) in R1,
there is a subobject R′

� � // R such that I(R′)
� � // I(R) is isomorphic to S

� � // R. Hence,
by (iii) too, I1 is full.

(v) Every object in R1 is isomorphic to a disjoint sum
∐
i∈J I1(Si), for objects Si in

R, and with card(I) < κ.

Proof. We extend both the language of the theory T = TR and its set of axioms. Let
Si (i ∈ J , and J < κ) be arbitrary < κ many objects in R. Let us introduce a new sort
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S, also denoted by
∐
i∈J Si, and new operation symbols ji :Si → S together with the

following axioms

ji(xi) ≈ ji(x′i) ⇒ xi ≈ x′i
ji(xi) ≈ ji′(x′i′) ⇒ for i, i′ ∈ J such that i 6= i′;

and
⇒
∨
i∈J∃xi (x ≈ ji(xi));

here xi is of sort Si, x of sort S. These axioms express that S is the disjoint sum of the
Si, with canonical injections ji. Performing these additions to T simultaneously for all
sets {Si : i ∈ J} of cardinality < κ of objects in R, we obtain a larger language L1 ⊃ L
(= language of T ) and a larger set of axioms T1 ⊃ T (= set of axioms of T ). Consider
R1 = R(T1) as constructed in the previous sections. We have the canonical κ-model

T1
M1 //R1.

Let us denote by [S] the interpretation of the sort S by M1, [S] = M1(S) (recall: this
in nothing but the formula S(x)), and similarly [j] = M1(j) for any operation symbol j
in L1. We have the inclusion as an interpretation:

TR incl. // T1

hence we have the composite

TR // T1
M1=canonical //R1

denoted by

TR
M ′1 //R1.

Hence we also have the κ-logical functor I1 such that the following commutes:

R R1

TR T1

I1 //

can.

OO

M ′1

77

incl.
//

can.

OO
(1)

Keeping in mind the Lindenbaum-Tarski type construction of R1, we see that R1 is
obtained by formally adjoining to R disjoint sums of < κ objects of R.

Since T1 contains the axioms expressing that S =
∐
i∈I Si is the disjoint sum of the

Si with canonical injections ji, it follows that in R1, [S] is the disjoint sum
∐
i∈I [Si] =∐

i∈I I1(Si) with canonical injections [ji]. In particular, any family of cardinality < κ of
objects “coming form R”, i.e., of the form I1(Si), Si ∈ ObR, has a disjoint sum in R1.

Proof of (iii) We will apply 7.3.2. The assertion will follow from this theorem once
we know that (I1)∗B : ModBκ R1 → ModBκ R is surjective on objects, for any complete
Boolean algebra B. Now, a ShB, κ-model of R1 is essentially the same as a ShB-model
of T1 and a model of R is the same as one of TR = T . Moreover, for N : T1 → ShB
of T1, (I1)∗B(N) is nothing but the reduct of N to the language LR (i.e., the result of
forgetting all but the structure denoted by symbols in LR. Hence, the required fact can
be expressed by saying that every model M of T has an expansion N (whose reduct
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is M) which is a model of T1. This latter fact is seen easily as follows. Let M be a
ShB-model of T , M : TR → ShB. To define the expansion N of M , let S =

∐
i∈I Si be a

new sort and let ji be the corresponding new operation symbols ji :Si → S. We have to
specify N(S) and the N(ji); of course, we are given that N(Si) = M(Si). Since ShB has
disjoint sums, we can define N(S) to be a disjoint sum of the M(Si) in ShB, with the
N(ji) the canonical injections N(ji) :M(ji) → N(S) =

∐
i∈IM(Si). By these choices,

we have made sure that N will satisfy the additional axioms expressing the disjoint-sum
property of S. This completes the description of the expansion N of M that is a model
of T1.

Proof of (iv) For the purposes of san induction, we have to formulate a more elaborate
statement to prove. To save on notation for this proof we will regard I1 as an inclusion,
i.e., we write S for I1(S) (S ∈ Ob(R)) and f for I1(f) (f :S1 → S2 in R). Similarly,
we identify symbols in the language L1 (giving rise to R1) with their canonical inter-
pretations in R1. Any sort of the language L1 is of the form

∐
i∈I Si for Si ∈ Ob(R);

namely, those coming from L, the objects of R, can be regarded as one elements sums.
Let X = S1×· · ·×Sn be a finite product of sorts, and Sk =

∐
i∈Jk S

k
i , Ski ∈ Ob(R). We

have the following familiar identity (which is a consequence of the definition of disjoint
sums and that of products)

X = S1 × · · · × Sn =
∐
ε∈×nk=1Jk

×n
k=1S

k
ε(k). (2)

More precisely, we have the canonical maps

Xε =×n
k=1S

k
ε(k)df

df

×n
k=1S

k

jε =×n

k=1j
k
ε(k)

// (3)

where jki :Ski → Sk is the canonical injection; (2) is understood to mean that X is
a disjoint sum of the Xε, ε ∈ J =

df
×n

k=1Jk, with canonical injections in (3). Now,

let [φ]~x
� � // X be a typical subobject of X, using the notation of 8.3.3; hence φ is a

formula of (L1)gκω with free variables at most ~x; ~x = 〈x1, . . . , xk〉 have the respective
sorts S1, . . . , S

k. Using the above notations, consider the meet of the two subobjects

Xε
� � jε // X and [φ]~x

� � // X

and denote it by Xε ∩ [φ]~x
� � // X. Of course, this factors through Xε

� � // X and we
obtain the subobject Xε ∩ [φ]~x

� � // Xε. We are going to prove by an induction on the
complexity of φ that this last subobject is in R, for every ε ∈ J , i.e., it is isomorphic to
a monomorphism A �

� // Xε (notice that Xε ∈ Ob(R)).
We establish the claim by first showing if for a simple atomic formula of L1, and

then by performing three inductive steps corresponding to ∧,
∨

and ∃. This will suffice
since every formula is logically equivalent to one built up from simple atomic formulas
using ∧,

∨
and ∃; (namely, to a simple κ-formula).

Every simple atomic formula of L1 is of the form f(x) ≈ y. Either f is a morphism
in R, or f = j for a canonical injection j :S →

∐
i∈J Si = S′ introduced into L1 such

that S = Si0 for some i0 ∈ J .
We leave the case when f is in R to the reader. If f = j, x is of sort S, y is of sort

S′, φ = f(x) ≈ y and ~x = 〈x, y〉, then X = S ×
∐
i∈J Si where S is treated as a one

element sum, S =
∐
j∈{i0} Sj . If ε ∈ {i0}×J is such that ε(1) = i0 and ε2 = i 6= i0, then

(as it is easy to see) Xε ∩ [φ]~x
� � // Xε is the empty (zero) subobject, and if ε(2) = i0,

then Xε ∩ [φ]~x
� � // Xε = Si0 ×Si0 is isomorphic to the diagonal ∆Si0

� � // Si0 ×Si0 . The
slightly more general case when ~x includes, but is more than, 〈x, y〉 is left to the reader.
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Next we turn to the inductive cases. If φ = φ1 ∧ φ2 then (as it is easy to see) the
subobject Xε ∩ [φ]~x

� � // Xε is the meet of the corresponding ones made of φ1 and φ2, so
the required induction inference can be made. If φ =

∨
i∈Kφi, then as one can verify,

we have

Xε ∩ [φ]~x
� � // Xε =

∨
i∈K(Xε ∩ [φi]~x

� � // Xε).

Since R has κ-sups, and I1 (= inclusion) preserves κ-sups, we are again done. Finally,
for φ = ∃xφ′(x, ~x), we have the following situation. The induction hypothesis refers to

[φ′]x,~x
� � // S0 ×X

where S0 is the sort of x, S0 =
∐
i∈J0

S0
i . For a given εinJ = ×n

k=1Jk (referring to

[φ]~x
� � // X as before) and for an index i ∈ J0, let i∩ε denote the function δ ∈×n

k=0Jk =
J0× J such that δ(0) = i and δ(k) = ε(k) for k = 1, . . . , n. So, the induction hypothesis
says that the subobject

(S0
i ×Xε) ∩ [φ′]x,~x

� � // S0
i ×Xε

is always in R, using the above notations. Let πi be the canonical projection S0
i ×Xε →

Xε. Now, we can check the following identity:

Xε ∩ [φ]~x
� � // Xε =

∨
i∈J0
∃πi((S0

i ×Xε) ∩ [φ′]x,~x
� � // S0

i ×Xε).

Using the induction hypothesis, the identity and the properties ofR and I1, the assertion
to be proved follows.

This completes the proof of our claim on the special kinds of subobjects. Notice
that if we take X to be a single object in R, the claim simply says that every subobject
[φ]~x
� � // X is actually in R. Taking into account 8.3.3 too, this shows that I1 (treated

as the inclusion) is full with respect to subobjects, proving (iv). The fullness of I1 is a
consequence of (iii) and (iv).

Remark In this proof, we have used server identities involving sups, disjoint sums, prod-
ucts and images. They are easy to verify for an arbitrary “sufficiently” logical category
R, but as a matter of fact, it is sufficient to verify them in the category of B-valued
sets, ShB, for an arbitrary Boolean algebra B (and in case the sups involved are at most
countable, in the category of sets, Set). The reason is that then the identities will follow
in R, by using the completeness and soundness theorems. Namely, the fact that a partic-
ular such identity holds in R is equivalent to the truth of one or more Gentzen sequents
σi in the language LR, in the canonical interpretation R of LR, or by the soundness
theorem, it is equivalent to the fact that TR ` σi (i = 1, 2, . . . ) for a theory TR all of
whose axioms are true in R. To infer TR ` σi, we deduce TR |= σi, for ordinary set
models, say, in the case when all sups involved are at most countable. But inspection
shows that TR |= σi (i = 1, 2, . . . ) will be a consequence that the identity in question
holds in Set. This remark justifies the customary procedure of verifying certain facts
in Set, and then generalizing it to arbitrary toposes, say. Actually, there is a more in-
volved general principle (based on the so-called Levi absoluteness theorem) that justifies
considering just Set in certain cases even if uncountable sups are involved.

Proof of (v) The proof is essentially contained in the computations made for (iv)
above. First of all, every object is of the form [φ]~x (c.f. 8.3.3). Using the notations of
the previous proof, it is easy to see that the object [φ]~x is isomorphic to∐

ε∈JXε ∩ [φ]~x.
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Since the object Xε ∩ [φ]~x is isomorphic to one in R as we have shown above, we obtain
what we want.

Using (v) and the fact that < κ many objects coming from R do have disjoint sums,
we obtain that R1 has disjoint κ-sums, i.e. the assertion in (i).

The proof of (ii) is easy an it is left to the reader. The assertion of (ii) is intuitively
clear since when constructing the extension R1 we did not do more that absolutely
necessary to have disjoint < κ-sums in R1. �

(B) The exact completion of a category

Theorem 8.4.3 Let R1 be a logical category (no infantry hypothesis is used). There is
a logical category R2 = (R1)ex together with a logical functor I2 :R1 → R2 such that

(i) R2 has quotients by equivalence relations, c.f. Definition 3.3.6.

(ii) R2 is the solution to the universal problem of finding a logical extension of R1

such that quotients by equivalence relations exist (a detail statement would look like that
in 8.4.2(ii)),

(iii) I2 is conservative,

(iv) I2 is full with respect to subobjects and full.

(v) Every object in R2 is isomorphic to a quotient I2(A)/I2(R), for some A ∈ Ob(R1)
and some equivalence relation R �

� // A×A in R1.

(vi) If R1 is κ-logical, then R2 is κ-logical and I2 is a κ-logical functor.

(vii) If R1 is κ-logical and has disjoint κ-sums, then R2 is a κ-pretopos.

Proof. Let us denote by L1 the canonical language associated with R1, and let T1 =
(T1, (L1)γωω) be the “internal theory” of R1 such that models of T1 are exactly the
logical functors from R1. We are going to extend L1 to L2 and T1 to T2, as follows. Let

R �
� f // A × A be an arbitrary equivalence relation on A, all in R1. We associate with

R→ A×A a new sort, denoted by A/R, and a new operation symbol p :A→ A/R (this
notation indicates the sorting of p). We also add the following axioms to T1:

⇒ ∃a[x ≈ p(a)] (x is a variable of sort A/R)

R∼ (a, a′)⇒ p(a) ≈ p(a′)

p(a) ≈ p(a′)⇒ R∼ (a, a′)

(as usual, R∼ (a, a′) stands for

∃r[a ≈ π1ρ(r) ∧ a′ ≈ π2ρ(r)]

where A × A
π1 //
π2

//A are the canonical projections). Performing simultaneously these

additions to the language and to the set of axioms, we arrive at the new theory T2 =
(T2, L2). (It goes without saying that we take care that for different pairs (A,R) of date,
the derived symbols A/R, p should also be always distinct.)

We put R2 = R(T2). As before, we have the commutative diagram

R1 R2

T1 T2

I2 //

can.

OO

M ′2

77

incl.
//

can.=M2

OO
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with I2 a logical functor.

Since I2 is logical, it preserves equivalence relations. Therefore, if R is an equivalence
relation on A (inR), then [R] = M2(R) = I2(R) is an equivalence relation on [A] = I2(A)
and, because of the axioms put into T2, [A/R] = M2(A/R) is the quotient: [A/R] =
I2(A)/I2(R), with canonical surjections [p] = M2(p) : I2(A) → [A/R]. In particular,
quotients of equivalence relations coming from R exist.

The proof of (iii) is just like that of 8.4.2(iii) and uses only the fact that Set has
quotients by equivalence relations.

Proof of (iv) We will use 7.1.4 and thereby simplify the arguments considerably
(a similar simplification in 8.4.2(iv) is available in the finitary case, κ = ℵ0). The
required conclusion will follow once we have shown the following. Let N1, N2 :R2 → Set
be models (logical functors) and let F : I∗2 (N1) = M1 → I∗2 (N2) = M2 be a natural
transformation (= homomorphism); then there is G :N1 → N2 such that I2(F ) = G.
Instead of talking about models of R2, we can equivalently talk about models of the
theory T2. Also, Mi becomes the reduct of Ni to the sublanguage L1 ⊂ L2.

Even more importantly, by 8.2.4 it is sufficient to extend F to a homomorphism
G :N1 → N2 between N1 and N2 as structures of the similarity type L2. We extend
F :M1 → M2 to G :N1 → N2 as follows. Let S = A/R be a typical new sort and
p :A → A/R the corresponding “formal surjection” in the language L2. We have to
define GS :N1(S)→ N2(S) such that

M1(A) N1(A)

M2(A) N2(A)

N1(A/R)

N2(A/R)

FA
��

N1(p) //

N2(p)
//

GS=GA/R
��

commutes, for all A and R as above. (Once we have done this, we have defined G as
an extension of F and we have verified that G has the homomorphism property with
respect to the new operation symbols p, hence, with respect to all symbols in L2.) Now,
use the fact that since N1, N2 are models of T2 in Set, Nk(S) is the quotient by the
equivalence relation Nk(R)

� � // Nk(A)×Nk(A), with the canonical surjection Nk(p). To
show that the map GS exists making the above diagram commutative is straightforward
but here are the details. Let Ak = Nk(A), pk = Nk(p), Rk = Nk(R) and f = FA;
remember that we are in the category of sets. Let us make the simplifying assumption

that for R
ρ //A× A, Nk(ρ) is the inclusion, Rk ⊂ Ak × Ak. Using now the part FR of

the homomorphism F , we see that 〈a, a′〉 ∈ A1 ⇒ 〈f(a), f(a′)〉 ∈ A2. If p1(a) = p1(a′),
then 〈a, a′〉 ∈ A1 by the definition of the quotient, hence 〈f(a), f(a′)〉 ∈ A2, and thus
p2(f(a)) = p2(f(a′)) in A2/R2, again by the definition of quotient. Since p1 is surjective,
this says that the function p1(a) 7→ p2(f(a)) is well defined on the whole of A1/R1 =
N1(S). This function can be taken to be GS and the above diagram will commute.

This shows that I∗2 is full, hence by 7.1.4 I2 is full with respect to subobjects.

Note that parts (iii) and (iv) of the theorem say that I2 induces an isomorphism
between the subobject lattices of A and I2(A), for any object A of R1.

Proof of (iv) Every object in R2 that is the M2-interpretation of a sort in L2 can be
represented as a quotient I2(A)/I2(R) where R

� � // A× A is an equivalence relation in
R1. Hence, by the observation 8.3.3, every object B in R2 is a subobject of a product
of such quotients

B
� � //×n

i=1I2(Ai)/I2(Ri).
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Use now the formula
×n

i=1(Ai/Ri) =×n
i=1Ai/×n

i=1Ri

(c.f. also the Remark after the proof of 8.4.2(iv)) and the fact that

×n
i=1Ri

� � // (×n
i=1Ai)× (×n

i=1Ai)

is an equivalence relation (we put A = I2(A), etc.). This reduces the question to the
case when B is a subobject of a quotient

B
� � // A/R.

Consider the pullback diagrams:

C A

B A/R

p.b.

� � //

� � //
��

p=canonical
��

and
R′ C × C

R A×A

� � //

� � //
��

γ×γ
��

It is easy to see that R′
� � // C×C is an equivalence relation on C, and B ' C/R. Using

part (iv), we have C ' I2(C0) for some C0 ∈ Ob(R1), and without loss of generality,
we can assume C = I2(C0). Using (iv) again, R′ �

� // I2(C0) × I2(C0) is of the form
R′ = I2(R′′). By conservativeness (iii), R′′ is an equivalence relation on C0 and we have
B ' I2(C0)/I2(R′′), completing the proof of (v).

Proof of (i) This is an easy consequence of (v). Using (v), it is enough to show
the following. If R′ �

� // (I2(A)/I2(R))2 is an equivalence relation on I2(A)/I2(R),
then (I2(A)/I2(R))/R′ exists in R2. But it is easy to see that (I2(A)/I2(R))/R′ =
I2(A)/I2(R′′) where

I2(A×A) (I2(A)/I2(R))2

R R′
p.b.

can. surj. //

//
?�

OO

?�

OO

and the equivalence relation R′′ is such that R = I2(R′′) (by (iv)).

Proof of (vii) The required fact is that now R2 has disjoint κ-sums. This is a conse-
quence of part (v) and the identity∐

i∈JAi/Ri =
∐
i∈JAi/

∐
i∈JRi

(with the obvious injection
∐
i∈J Ri → (

∐
i∈J Ai)

2).
We have completed the proof of 8.4.3. �

Theorems 8.4.2 and 3 not only prove 8.4.1, but give considerable additional informa-
tion on the pretopos generated by R.

Theorem 8.4.4 For any κ-logical category R, there is a κ-pretopos P = Pκ(R) and a
κ-logical functor I0 :R → P such that
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(i) Pκ(R) satisfies 8.4.1.

(ii) I0 induces an isomorphism of the subobject lattices of R and I0(R), for every
object R of R,

(iii) every object of P is isomorphic to one of the form (
∐
i∈J I0(Si))/R, for some

objects Si in R and for some equivalence relation R �
� // (

∐
i∈J I0(Si))

2; here card J < κ.

(iv) The equivalence relations R on an object of the form
∐
i∈J I0(Si) are exactly the

ones that can be obtained as follows: consider subobjects Rij
� � // Si × Sj in R; assume

the following are true in R:

“each Rij is reflexive an symmetric”

Rij∼ (si, sj) ∧ Rjk∼ (sj , sk)⇒ Rik∼ (si, sk);

construct R as

R =
∐
〈i,j〉∈J2I0(Rij)

� � // ∐
〈i,j〉∈J2I0(Si)× I0(Sj) ' (

∐
〈i,j〉∈J2I0(Si))

2.

The Rij
� � // Si × Sj are uniquely determined by R �

� // (
∐
I0(Si))

2.

(v) The morphisms f in P of the form:

(
∐
i∈J1

I0(S1
i ))/R1 f // (

∐
i∈J2

I0(S2
i ))/R2

are exactly the ones that are obtained as follows:

consider subobjects Fij
� � // Si × Sj in R for i ∈ J1, j ∈ J2

and consider R1
ii′
� � // S1

i × S1
i′ R2

jj′
� � // S2

j × S2
j′

giving rise to R1 and R2, respectively, as in (iv); assume the following are true in R:

R1
ii′∼ (s1

i , s
1
i′) ∧ Fij∼ (s1

i , s
2
j ) ∧ Fi′j′∼ (s1

i′ , s
2
j′)⇒ Rjj′∼ (s2

j , s
2
j′)

for i, i′ ∈ J1 and j, j′ ∈ J2,

⇒
∨
j∈J2
∃s2
jFij(s

1
i , s

2
j )

for any i ∈ J1;

construct F as the image
∃p×q(

∐
〈i,j〉∈J1×J2

I0(Fij))

with
A =

∐
iI0(S1

i )

B =
∐
iI0(S2

i )

A
p= can. //A/R1

B
q= can. //B/R2∐

i,j I0(Fij) A×B

∃p×q(
∐
i,j I0(Fij)) A/R1 ×B/R2

� � //

��
p×q
��

� � //
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and finally, construct f as the morphism whose graph is F . The Fij are uniquely deter-
mined by f , R1, R2.

Remarks 8.4.4 give a complete description of P(R) as obtained from R. The mere
existence of P(R) satisfying 8.4.1 is more or less a consequence of general principles,
but the specific properties listed in 8.4.4 are not. E.g., a priori it might have happened
that the addition of disjoint sums and quotients had to be repeated infinitely many times
to get a pretopos. (iii) tells us that two such steps are sufficient.

Proof of 8.4.4 Start with an arbitrary κ-logical category R. Construct R1 as in
(A), Theorem 8.4.2 and the construct R2 from R1 as in (B), Theorem 8.4.3. Define

R I0 //P = R2 as the composite

R I1 //R1
I2 //R2 = P.

The fact that P is a κ-pretopos, moreover (i), (ii) and (iii) are obvious consequences of
8.4.2, and 8.4.3. Finally, (iv) and (v) are consequences of analysis based entirely on (ii)
and (iii); we omit the details. �

We would like to emphasize the description of certain categories appearing in alge-
braic geometry that results from 8.4.4. We first take the finitary case, κ = ℵ0. Let
C be a category with finite limoo and let C be turned into an algebraic site by imposing
the generating collections Cov0(C) of finite covering families for any C ∈ Ob(C). Let T
be the theory associated with C as a site (c.f. Chapter 6, Section 1). Let R = R(T ).
Finally, let P be the pretopos P(R) = P(T ). As we are going to point out in the next
chapter, P is nothing but the category of coherent objects and morphisms in the coherent
topos C

∼
(= category of sheaves over C). To recapitulate the description of P that we

have obtained, first recall the class O of simple formulas (in the language having the
objects of C as sorts, and the morphisms of C as operation symbols) that we singled out
as sufficient to define the objects of R(T ). Then a syntactic representation of P is the
following:

(i) consider simple formulas Si (i = 1, . . . , n) and Rij∼ such that the sequents in

8.4.4(iv) are consequences of T in the formal sense “`”. From the formal entity

(
∐n
i=1Si)/(

∐n
i=1Ri) = A/R;

all objects of P are of this form.

(ii) continuing with the notation of (i), add a new morphism (operation symbol) p:

A
p //A/R,

add new morphisms (operation symbols):

Si
ji //

∐n
i=1Si

Rij
hij //

∐
i,jRij

and add the ‘axioms’ related to disjoint sums and quotients as defining relations (the
precise meaning of this is incorporated in the definition of R(·); in our case, the pretopos
P is obtained as R(T ′) for a suitable T ′ as described above)

(iii) the representation of a general morphism of P is obtained following 8.4.4(v) in
particular, it uses simple formulas Fij , and finally,
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(iv) two representations of morphisms, with the same domain and codomain pre-
sented as in (i) are identified to define the same morphism if and only if the correspond-
ing simple formulas Fij , F

′
ij are provably equivalent in T ′ (for each pair of indices i, j);

here T ′ is T together with the new axioms mentioned in (iii).

This description, supplemented with the description when it is true that T ` σ for a
sequent σ, provides a full presentation of P(C) = P. Having in mind a suitable notion
“primitive recursive presentation”, we have

Metatheorem 8.4.5 For an algebraic site C, the pretopos P of coherent objects and
morphisms of C

∼
is presented primitive recursively in C. In particular, if C is recursively

presented, so is P.

At another extreme, we can take κ = ∞, and we obtain a syntactical description
of the classifying topos E(T ) of an arbitrary theory T in Lg∞ω. Applying this to an
arbitrary site C with finite left limits, through the theory T = TC , we obtain a syntactical
description of E(TC). In the next chapter, we will point out that E(TC) is nothing but C

∼
,

the category of (set-valued) sheaves on C (up to equivalence).
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Chapter 9

Classifying topoi

§1. Classifying topoi

This section summarizes and reformulates some of the work of earlier chapters around
the notion of ‘classifying topos’.

Let T be a ‘theory’, in a purposely unspecified sense, and let us assume that we
have the notion of “E-model of T”, for an arbitrary (Grothendieck) topos E . We write
M :T → E to denote that M is an E-model of T . For simplicity, assume that we have a
category, also denoted by T , such that models M : T → E can be identified with certain
functors T → E . E.g., if T is a theory in Lgωω and R(T ) is its associated logical category
(c.f. Chapter 8, Section 1), then T can be identified with R(T ) and models M : T → E
can be identified with logical functors R(T )→ E .

Given a topos E0 and an E0-model M0 :T → E0, we call E0 a (the) classifying topos
of T with canonical E0-model M0 :T → E0 (or: classifying topos of T via M0 :T → E0)
if for every E-model M : T → E , for any topos E , there is an E-model of E0, u∗ : E0 → E
making the following commutative:

T E0

E

T
M0 //

M
%%
u∗

��

such that, moreover, u∗ is unique up to an isomorphism in the functor category EE0 .
Note that, according to our terminology, here ‘an E-model of E0” means one that is
a continuous functor between the sites E0 and E with the canonical topologies (c.f.
Chapter 1); also, equivalently, u∗ can be required to be u∗ form a geometric morphism
U = (u∗, u

∗, φ) : E → E0, c.f. 1.3.9 and 1.3.12.
We sometimes say that M0 : T → E0 is a (the) generic model of T , for M0 : T → E0

the canonical model into a classifying topos E0.
Notice that a classifying topos E0 with canonical model M0 : T → E0 is uniquely

determined up to equivalence over T in the sense that in case M1 : T → E1 is another
generic model in a topos E1, then there are equivalence functors u∗1 : E0 → E1, u∗0 : E1 → E0
such that u∗1 ◦u∗0 ' idE0 , u∗0 ◦u∗1 ' idE1 and M0 = u∗1 ◦M1, M1 = u∗0 ◦M0; here ‘'’ means
isomorphism in the respective functor categories. This fact allows us to talk about the
classifying topos which we denote by E(T ) and the generic model M0 : T → E(T ).

There is a slightly stronger notion of classifying topos. Consider the category of all E-
models of E0; i.e., the full subcategory of the functor category EE0 whose objects are the

189
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E-models of E0. Denote this category by Mod(E0, E). (We note that Mod(E0, E) is to the
category Homtop(E , E0)op, the opposite of the category of geometric morphisms E → E0
as the latter is introduced in Section 3.2 of SGA4, Exposé IV.) Also, Mod(T , E) denotes
the full subcategory of the functor category ET whose objects are the E-models of T .
Now clearly, given M0 : T → E0, M0 induces (by composition) M̂0 : Mod(E0, E) → ET .
The stronger definition of ‘classifying topos” is that E0 is a classifying topos of T with
canonical model M0 : T → E0 if the induced functor M̂0 : Mod(E0, E) → ET maps a
model E0 → E into a model T → E and actually establishes an equivalence, also denoted

by M̂0, M̂0 : Mod(E0, E) ∼ // Mod(T , E). It is easy to see that this is indeed at least as
strong a condition as the previous one.

Now, Chapter 8 explicitly constructs classifying topoi for finitary or infinitary coher-
ent theories; we think of Theorems 8.4.1 and 8.4.4 in particular. More precisely, we can
put the matter as follows.

Recall (c.f. Chapter 8, Section 1) that a coherent theory T is a pair T = (F, T )
given by a fragment F of Lg∞ω and a set T of axioms in F . Also, for a topos E an
E-model M : T → E is any interpretation of the language L of T in E that satisfies
the axioms in T ; namely, since E is a topos, every fragment of Lg∞ω is automatically
adequately (i.e., stably) interpreted by any interpretation M :L → E . In other words,
since we are interested in ‘target categories’ with are topoi, the fragment F in specifying
T is irrelevant. Enlarge F to some (any) Lµω with µ an infinite regular cardinal or
µ =∞, (clearly, we can assume that F is a set). Then by 8.3.1(i), the µ-logical category
R = Rµ(T ) will, if we wish, serve as a category that can replace T in diagrams involving
models M : T → E for E a topos; a model M now corresponds to a µ-logical functor
R → E .

Theorem 9.1.1 Any coherent theory T has a classifying topos, in fact in the stronger
sense indicated above.

Proof. Consider jus the set T of axioms of T ; forget about the fragment F . Now
consider T axiomatizing a theory in the full logic Lg∞ω. By 8.3.1(i), there is a small
∞-logical category R = R∞(T ) that can replace T whenever T is models in a topos.
Now, apply 8.4.1 (or 8.4.4) for κ =∞. We obtain an ∞-pretopos E0 = P∞ and a model

M0 : T → E0 (M0 : T can. // R I0 // E0) with exactly the universal property defining “E0 is
a classifying topos of T with canonical model M0”, with ‘topoi’ replaced by∞-pretopoi.
It is left to show that E0 has a set of generators (to make it into a topos, c.f. 3.4.8) and
that M0 : T → E “works in the stronger sense” as well.

The first claim follows from the fact that R is small as well as the representation of
the objects of E0 as quotients of disjoint sums of objects coming from R, c.f. 8.4.4(iii).
Since the family of canonical injections for any disjoint sum is obviously an effective
epimorphic family, and the canonical morphism form an object to a quotient of that
object by an equivalence relation is an effective epimorphism, it clearly follows that the
set of objects I0(S) for S ∈ Ob(R) form a set of generators for E .

The second claim will not be verified in detail; it would easily follow using 8.3.1(ii)
as wee as consequences of it in the situations of 8.4.2 and 8.4.3. �

Note that our construction is independent of the general topos theory of Chapter 1
and is in some sense syntactical, i.e., a “presentation relative” to the logical operations
of a topos.

Here is a way to construct the classifying topos as the category of sheaves over a site.
A “better” way will be described in Section 4 (Coste’s construction).

Given a theory T = (F, T ), we first of all assume that F is Lgµ∞ for an infinite
regular cardinal µ and we pass to R = Rµ(T ) (c.f. Chapter 8, Section 3; actually, we
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could define R more sparingly on the basis of any fragment F containing T ). Now,
we regard the µ-logical category R as a site with the µ-precanonical topology, i.e., the
topology generated by those coverings in the canonical topology (c.f. 1.1.9) which have
< µ members. E.g., if µ = ℵ0, the ℵ0-precanonical, or simply precanonical, topology is
one that is generated by finite coverings which are stable effective epimorphic families.
Denote by E(R) of E(T ) the topos which is the category of sheaves R

∼
over the site R

with the µ-precanonical topology. Let ε :R → E(R) be the ‘representable sheaf’ functor

(c.f. Chapter 1, Section 3) and M0 the composite T can. //R ε // E(R) = E(T ).

Proposition 9.1.2 M0 : T → E(T ) is a generic model of T .

This proposition becomes obvious once one realizes

Proposition 9.1.3 The µ-logical functors from any µ-logical category R are exactly the
functors from R which are continuous with respect to the µ-precanonical topology.

This last proposition is the ‘<∞’ version of 3.4.10 and it is proved in the same way.
Now, 9.1.2 immediately follows since the requisite universal property for E(T ) will be

identical to the universal property of R
∼

(c.f. 1.3.15) with respect to continuous functors
from the site R with the µ-precanonical topology.

Next we turn to a consideration which is a converse of the just preceding one, namely,
we will regard C

∼
for an arbitrary site C, as a classifying topos for a theory. From this

view point, in the next section, we will reconsider Grothendieck’s theory of coherent
objects of a coherent topos, c.f. Exposé VI of SGA 4.

First, recall the theory TC associated with a site C form Chapter 6, Section 1. TC is
formulated in the language LC canonically associated with the underlying category of C.
The set of axioms TC of TC contains the following

(i) all axioms of category, items 1 and 2 before 2.4.5, for true identity morphisms
and true commutative triangles of C;

(ii) all the axioms related to finite left limit diagrams in C (c.f. 2.4.5);

(iii) all axioms of the form

a ≈ a⇒
∨
i∈I∃ai(f(ai) ≈ a)

for any (basic) covering family (Ai
fi //A)i∈I of C. We have (c.f. 6.1.1)

Proposition 9.1.4 M : C → E is continuous (an E-model of C) iff M is an E-model of
the theory TC, for any topos E.

Observe that any functor from C is, at the same time, an interpretation of the
language LC . Conversely, any interpretation of LC satisfying (i) above is a functor from
C.

Proposition 9.1.5 C
∼

is equivalent to the classifying topos E(TC) of TC over C; i.e.,

with C ε // C∼ and the generic model TC
M0 // E(TC), there is an equivalence C

∼ e1 //
e2
oo E(TC)

that carries ε into M0 : ε = e2 ◦ M0, M0 = e1 ◦ ε (here we consider M0 a functor
C → E(TC)).

The proof is immediate on the basis of 9.1.4, the definition of the classifying topos
and the universal property 1.3.14 of C

∼
.

Notice that, via the description provided by 8.4.4, this gives an explicit presentation
(with respect to logical operations) of the category of sheaves C

∼
, base on a presentation,

namely TC , of the site C itself.
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The main conclusion of this section (c.f. especially 9.1.2 and 9.1.5) is that the con-
struction of the classifying topos E(T ) of a theory has precisely the same scope as the

Grothendieck construction of the category of sheaves C
∼
. Each E(T ) can be thought of

as a C
∼
, and each C

∼
as an E(T ); both, in fact, in a natural way.

§2 Coherent objects

Next we turn to coherent objects of a topos (c.f. Exposé VI, SGA 4).

Definition 9.2.1 (c.f. loc. cit.) Let E be a topos.

(i) An object X of E is called quasi-compact (q.c.) if every covering (Xi → X)i∈I
(in the canonical topology on E) has a finite subcovering (Xi → X)i∈I′ , I

′ ⊂ I finite.

(ii) An object X ∈ Ob(E) is coherent if it is q.c. and if the following is true: whenever
Q1, Q2 are q.c. objects in E, Q1 → X, Q2 → X are arbitrary morphisms in E, then
Q1 ×X Q2 in the pullback diagram

Q1 X

Q1 ×Q2 Q2

//
OO OO

//

is q.c.

(iii) Coh(E), the category of coherent objects of E, is the full subcategory of E whose
objects are the coherent objects of E.

Recall (c.f. Chapter 6) that an algebraic site is one (which has finite left limits and)
whose topology is generated by finite covering families and a coherent topos is one that
is equivalent to the category of sheaves C

∼
over an algebraic site C.

Theorem 9.2.2 (Grothendieck; loc. cit. Exercise 3.11, p. 232)

(i) For every coherent topos E, Coh(E) is a pretopos, it is equivalent to a small
category, and the inclusion functor Coh(E)

� � // E is (finitely) logical, i.e. it preserves
finite left limits, finite sups and images.

(ii) For P a small pretopos, for P
∼

the category of sheaves over P as a site with the

precanonical topology, P
∼

is a coherent tops and P ε //P∼ factors through the inclusion

Coh(P
∼
)→ P

∼
in ε′ :P → Coh(P

∼
)

P Coh(P
∼
) P∼ε′ // //

ε

55

such that ε′ is an equivalence

ε′ :P ∼ // Coh(P).

(iii) With P = Coh(E), E a coherent topos, the inclusion Coh(E) → E satisfies

the universal property of P εP //P∼, where P is regarded as a site with the precanonical
topology.

Before proceeding to the proof, we mention two immediate corollaries.
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Corollary 9.2.3 A small category is a pretopos if and only if it is equivalent to Coh(E)
for a coherent topos E.

Corollary 9.2.3 For pretopoi P1, P2, if P
∼

1 and P
∼

2 are equivalent categories (where the
sites are meant with the precanonical topologies) then P1 and P2 are equivalent as well.

Recall the theory TC associated to the site C and the pretopos P(TC) = Pℵ0(TC)
associated to the theory TC , c.f. 8.4.1′ for κ = ℵ0. During our proof of 9.2.2 we will also
establish

Theorem 9.2.5 For an algebraic site C, we have canonical equivalences

Coh(E(TC)) ' Coh(C
∼

) ' P(TC).

Via 8.4.4, this gives an explicit presentation of the category of coherent objects of a
coherent topos, in terms of a presentation of an algebraic site giving rise to the topos.

For the proof of 9.2.2, we need the following lemma coming form SGA 4.

Lemma 9.2.6 Let C be an algebraic site, E = C
∼

the category of sheaves over C, ε : C → E
the canonical functor

(i) Every covering in C contains a finite subcovering (i.e., every object in C is “q.c.”
in the site C).

(ii) For every A ∈ Ob(C), ε(A) is q.c. in E.

(iii) Suppose (Xi → X)i∈I is a finite covering in E of X by q.c. objects Xi (I finite).
Then X is q.c.

(iv) Every object of the form ε(A), for A ∈ Ob(C), is coherent in E.

Proofs. (AD (i)) The coverings in C form the smallest system containing some given
finite families and closed under the closure condition 1.1.1(i)-(iv). “By induction” cor-
responding to these closure conditions, it is straightforward to show that every covering
in C has the required property.

(AD (ii)) We will use, among others, the fact (1.3.7) that the objects εA (A ∈ Ob(C))
form a set of generators for E , as well as the technical Lemma 1.3.8(i). Let (Xi → εA)i∈I
be a covering in E . By 1.3.7, for each i ∈ I there are coverings of the form (εBij →
Xi)j∈Ji . Furthermore, by 1.3.8(i) we can assume (by further refining these coverings)
that here each of the composites εBij → Xi → εA is of the form εgij for a morphism
gij :Bij → A in C. By composing coverings, we get that (εBij → εA)i∈I,j∈Ji is a covering

in E . By 1.3.3(ii), (Bij
gij //A)i,j is a covering in C. By part of (i) of the present lemma,

there is a finite subset I ′ ⊂ I (and finite subsets J ′i ⊂ Ji) such that (Bij → A)i∈I′,j∈J′i

is a covering in C. Then so is (εBij
εgij // εA)i∈I′,j∈J′i in E , by 1.3.3(ii) again. A fortiori,

(Xi → εA)i∈I′ is a covering, proving assertion (ii).

(AD (iii)) Let (Yj → X)j∈J be a covering. We have the coverings (Yj×XXi → Xi)j∈J
‘by pullback’, for each i ∈ I. Each of the latter has a finite subcovering, say with index
sets J ′i . Put J ′ =

⋃
i∈I J

′
i ; J

′ is finite. By composition, (Yj ×X Xi → X)i∈I,j∈J′i is a
covering. A fortiori, (Yj → X)j∈J′ is a covering, proving (iii).

(AD (iv)) Let Q1, Q2 be q.c. objects of E , and consider a pullback diagram

Q1 εA

Q1 ×Q2 Q2

//
OO OO

//Y =
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By 1.3.7, Q1 and Q2 can be covered by morphisms with domains which are objects of the
form εB; since they are q.c., finitely many such morphisms suffice. Let (εBi → Q1)i∈I ,
(εCj → Q2)j∈J be finite coverings. By 1.3.8(i), we can further assume that each of the
composites εBi → Q1 → εA, εCj → Q2 → εA is of the form εgi, εhj ; respectively, for
some gi :Bi → A, hj :Cj → A in C. By applying pullback to these coverings twice (as
well as using ‘composition’), we clear have that

(εBi ×εA εCj → Y )i∈I,j∈J

is a covering family in E .
Now, since ε is left exact and the morphisms εBi → εA, εCj → εA ‘come from’

the morphisms gi :Bi → A, hj :Cj → A, respectively, each of the morphisms Yij =
εBi ×εA εCj → εA in the pullback diagram

εBi εA

εBi ×εA εCj εCj

εgi //
OO

εhj

OO

//Yij =

is (can be taken to be) the ε-image of the pullback diagram

Bi A

Bi ×A Cj Cj

gi //
OO

hj

OO

//

in C. But then ε(Bi ×A Cj) = Yij is quasi compact by (ii) of the present lemma. Since
(Yij → Y )i,j is a finite covering, by (iii) it follows that Y = Q1 ×εA Q2 is q.c., showing
the second condition for coherence of εA. Since εA is q.c. by (ii), εA is coherent as
required. �

Now we begin the proof of 9.2.2 and 9.2.5. First we prove 9.2.2(ii). Let P be a

pretopos, consider P a site with the precanonical topology an let P
∼

be the category of

sheaves over this site. Consider the representable sheaf functor ε :P → P
∼
. Note that

since every covering in the site P belongs to the canonical topology on P and hence every
presheaf over P is a sheaf, ε (being the composition of the Yoneda embedding C → Ĉ
and the associated sheaf functor a : Ĉ → C

∼
) is full and faithful. ε is conservative as well:

the proof of 1.4.8 applies! Also, P has quotients of its equivalence relations, since P is a
pretopos. These facts mean that ε :P → P

∼
satisfies conditions (i) to (iii) of 1.4.11. Using

1.4.11, we show that the essential image of ε in P
∼

is exactly the collection of coherent

objects of P
∼
, i.e., that (i) εA is coherent for every A ∈ Ob(P) and (ii) whenever X

is coherent in P
∼
, there is A ∈ Ob(P) such that X ' ε(A). Assertion (i) follows from

9.2.6(iv) since the site P is obviously algebraic. Conversely, let X be a coherent object

in P
∼
; we verify the condition 1.4.11 for X as S there. by 1.3.7 and the fact that X is

quasi compact, there are finitely many objects Ai (i ∈ I) in P and morphisms fi such

that (εAi
fi //X)i∈I is an (effective) epimorphic family (in P

∼
). Then, with p induced by

the universal property of the disjoint sum (coproduct)
∐
i∈I εAi, we have an (effective)

epimorphism p :
∐
i∈I εAi → X (c.f. also 1.4.7). Being a pretopos, P has finite disjoint

sums. Let A =
∐
i∈I Ai be the disjoint sum of the Ai in P. ε preserves finite disjoint

sums by 3.4.13 since ε :P → P
∼

is logical by 9.1.3. Hence
∐
i∈I εAi is (can be take to
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be) εA and we have the effective epimorphism p : εA→ X. εA is quasi compact in P
∼

by
9.2.6(i). Since X is assumed to be coherent, the fibered product Y = εA×X εA (using
this morphism p) is quasi compact. Hence, as before, there is an effective epimorphism
of the form ε(B) → Y with B ∈ Ob(P). This shows precisely the condition 1.4.11
concerning the object X, thus assertion (ii) follows by 1.4.11.

We have shown that the full and faithful functor ε :P → P
∼

has essential image the

coherent objects in P
∼
. It follows that ε establishes an equivalence P ∼ // Coh(P

∼
) in the

precise sense stated in 9.2.2(ii).
Turning to part (i) of 9.2.2, let C be an algebraic site. We use the associated theory

TC and the pretopos P = P(TC) together with the canonical model M0 : TC → P given
by 8.4.1′ as also in the statement of 9.1.5.

We now show the following

Claim 9.2.7 The categories C
∼

and P
∼

are equivalent, C
∼
' P
∼

.

By the fundamental property of TC formulated in 9.1.4 as well as the construction
8.4.1′ of P(TC) M0 : C → P is a continuous functor and we have the following universal
property of P: for any topos E and continuous functor F : C → E we have the logical
functor P // E , unique up to isomorphism in EP , making

C P

E

M0 //

�� ww

commutative.
We build the diagram

C P

C∼ P∼

M0 //

ε1
��

η

ww
ε2
��

µ2

oo
µ1 //

as follows. ε1 = εC : C → C
∼

is the representable sheaf functor. P
∼

is the category of sheaves

over P as a site with the pre-canonical topology, ε2 = εP :P → P
∼

is the representable
sheaf functor for this site. Next, we use the universal property of P described above,
with E = C

∼
, to obtain the logical η :P → C

∼
, such that the triangle commutes. By 9.1.3, η

is continuous as a functor between sites, with the respective topologies considered here
(P : precanonical, C

∼
: canonical).

Having the continuous η :P → C
∼
, by the universal property of P

∼
over P (1.3.15)

we obtain the continuous µ2P
∼
→ C
∼

such that the lower triangle having µ2 as a side

commutes. Finally, the universal property of C
∼

with respect to C implies the existence
of µ1 such that the rectangle with lower side µ1 commutes.

We claim that µ2 ◦ µ1 ' idC∼, µ1 ◦ µ2 ' idP
∼ (the isomorphisms taking place in the

respective functor categories), which will establish Claim 9.2.7.
Denoting µ2 ◦ µ1 by f , we have f ◦ ε1 = ε1 but the commutativity properties of the

above diagram. From the uniqueness part of the universal property of C
∼

over C (“for

E = C
∼

”), it follows that f ' idC∼ as required for the first isomorphism.

Let g =
df
µ1 ◦ µ2. By the construction of our diagram, g ◦ ε2 ◦M0 = ε2 ◦M0. By the

uniqueness part of the universal property of P over C (c.f. 8.4.1′; P = P(TC); note that

models TC · · · are models C · · · ), g ◦ ε2 ' ε2 in the functor category (P
∼
)P . To conclude
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that g ' idP
∼, we will use something slightly stronger that the statement of the universal

property in 1.3.15 of P
∼

over P. Namely, we use that the functor

ε̂2 : Mod(P
∼
, E)→ Mod(P, E) (1)

(defined by composition with ε2) is an equivalence of categories, for any topos E . This
could have been verified in Chapter 1 at the appropriate place but it also follows from
the identification of P

∼
as the classifying topos of (the internal theory of) P (c.f. 9.1.2)

and the fact that classifying topoi do have the stronger universal property, c.f. 9.1.1.

Accepting that (1) is an equivalence, we can say the following. Apply (1) for E = P
∼
.

By the functor ε̂2, idP
∼ is mapped onto ε2, g is mapped onto g ◦ ε2. Since ε̂2 is full and

faithful, g ◦ ε2 ' ε2 implies that g ' idP
∼ as required.

This completes showing Claim 9.2.7.

Finally, to see 9.2.2(i) it is sufficient to invoke 9.2.7 and 9.2.2(ii) for P = P(TC).
In particular, since C

∼
and P

∼
are equivalent, any “purely categorical” property of P

∼
is

transferred to C
∼
. The definitions of coherence are “purely categorical”. Since Coh(P

∼
) '

P (c.f. 9.1.2) is a pretopos, Coh(C
∼

) is a pretopos. Moreover, the inclusion Coh(P
∼

)
� � // P∼

is logical since P ε2 //P∼ is, and since we have the precise statement of 9.2.2(ii). Hence, by

the above “transference principle”, the inclusion Coh(C
∼

)→ C
∼

is logical. This completes
the proof of 9.2.2(i); notice that we have shown 9.2.2(iii) and 9.2.5 as well. �

We note that our proof of Grothendieck’ theorem 9.2.2 is essentially different form
the proof which is suggested in Exercise 3.11, p. 232, loc. cit. The difference lies in our
use of a pretopos P constructed before we knew that Coh(E) was a pretopos itself.

Using the language of ‘coherent objects’, we now reformulate one of our main results,
7.1.8. First, a definition from SGA 4.

Definition 9.2.8 Given topoi E1, E2 and a continuous u∗ : E1 → E2 (or, a geometric
morphism U = (u∗, u

∗, φ) : E2 → E1), we say that u∗ is coherent (or, the geometric
morphism U is coherent), if u∗ maps coherent objects of E1 into coherent objects of E2.
Equivalently, u∗ is coherent if we have a commutative diagram as follows:

E1 E2

Coh(E1) Coh(E2)

u∗ //

I
//

?�
incl. i1

OO

?�
incl.i2

OO

Theorem 9.2.9 For a coherent continuous functor u∗ : E1 → E2 between coherent topoi
E1, E2, if û∗ : Mod(E2,Set)→ Mod(E1,Set) (defined by composition) is an equivalence,
then u∗ is an equivalence as well.

Proof. We will refer to the commutative diagram in 9.2.8. By 9.2.2(i), P1 = Coh(E1),
P2 = Coh(E2) are pretopoi. Since i1 and i2 are logical (c.f. 9.2.2(i)), u∗ is ∞-logical

and u2 is full and faithful, it easily follows that I is logical. Consider Î : Mod(P2) →
Mod(P1) (with Mod(P) = Mod(P,Set) of course) defined by composition (and de-
noted I∗ in 7.1.8). Using 9.2.2(iii), we have Mod(Ei,Set) ' Mod(Pi) (i = 1, 2)

and in fact, the fact that the diagram Mod(E2,Set) û∗ // Mod(E1,Set) is equivalent to
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Mod(P2) Î // Mod(P1). It follows that Î is an equivalence of categories. By 7.1.8, I is
an equivalence. Hence, by 9.2.2(iii) again, u∗ is an equivalence �

9.2.9 is ‘equivalent’ to Theorem 7.1.8 because the argument above is essentially re-
versible. On the other hand, 9.2.9 by its general form resembles Deligne’s theorem on
coherent topoi (6.2.2) (tit is a “Deligne theorem on a pair of coherent topoi”) and it
ought to be a reasonable basic an useful theorem on coherent topoi just as Deligne’s
theorem is. It remains to be seen if it really is. We will illustrate the effect of the
theorem on a familiar special case in the next section.

Also observe that 9.2.9 is concerned with categories of models whereas in Deligne’s
theorem there is no reference to the category of models.

We can generalize the notion of coherent object to that of κ-coherent object, for any
infinite regular cardinal κ. For this purpose, we talk about κ-quasi compact objects by
requiring a sub covering of power < κ instead of a finite subcovering in 9.2.1.

Then everything in this section except 9.2.9 automatically generalizes. A ‘coherent
topos’ is replaced by a “κ-coherent topos’ which can be defined as the category of sheaves
C∼over a κ-algebraic site C, the latter one having a topology generated by covering fam-

ilies of cardinality < κ. ‘Pretopos’ should be replaced by ‘κ-pretopos’, the precanonical
topology by the κ-precanonical one.

Partly in view of the example in the next section, we give two more reformulations
of Theorem 9.2.9. Observe that the second reformulation does not mention pretopoi or
coherent objects.

Theorem 9.2.10 (“Points are enough for classifying”.) Let T be a finitary coherent
theory with language L.

(i) Let M be an interpretation of the language L in Coh(E), with a coherent topos E.
Suppose M induces, by composition, an equivalence

Mod(E ,Set) ∼ // Mod(T ,Set)

(in particular, whenever N : E → Set is a model of E, the composition L M // Coh(E) incl.//

E N //Set is a model of T ). Then the composite L M // Coh(E) incl.// E is a generic model
of T in E.

(ii) Let C be an algebraic site and M and interpretation of the language L in the
(underlying) category C. Suppose that M induces, by composition, an equivalence

M̂ : Mod(C,Set) ∼ // Mod(T ,Set)

(in particular, whenever C N //Set is a model of C, L M // C N //Set is a model of T ).

Then the composite L M // C ε // C∼ is a generic model of T (or, C
∼

is the classifying topos

of T , with canonical model L M // C ε // C∼).

Proof. We treat (ii) only; (i) is similar. We will build the following diagram:

P(T )

L C

P(TC)

E(T ) C∼

Coh(E(T )) Coh(C
∼

)
tt

M //

**

--
u∗

// qq
��

ε=εC

��

::� o

incl.
��

Oo

incl.
��

∼
//

oo ∼oo
//
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Here TC is the theory associated to the site C, P(TC) is the pretopos completion of
TC , C → P(TC) is the canonical model of T in P(TC). First of all, we claim that

the interpretation M ′ :L M // C //P(TC) is a model of T in P(TC), i.e. it satisfies all
axioms of T . Let φ ⇒ ψ be such an axiom; we want to see that M ′~x(φ) ≤ M ′~x(ψ). Let
M ′~x(φ) := A �

� // X, M ′~x(ψ) := B �
� // X in P(TC). Suppose A 6≤ B. By the completeness

theorem applied to the logical category P(TC), there is a Set model F :P(TC) → Set

such that F (A) 6≤ F (B). But then for the model N : C //P(TC) F //Set of T , N ◦M
does not satisfy the axiom φ⇒ ψ, contrary to the assumption (c.f. parenthetical phrase
in (ii)). Thus M ′ :L→ P(TC) must indeed be a model of T .

With ε : C → C
∼

having the standard meaning, we obtain by (the proof of) 9.2.5 the

equivalence Coh(C
∼

) //oo P(TC) and the morphism P(TC)→ C
∼

such that all the following
commute

C P(TC) C∼,// 33// Coh(C
∼

) P(TC) C∼,//

incl.

22 // P(TC) Coh(C
∼

) C∼,// incl. //

Similarly, we get the left-hand side of the diagram, with symmetric commutation prop-
erties. Here E(T ) is the classifying topos of T ; it is a coherent topos. The logical functor
P(T )→ P(TC) is induced by the universal property of P(T ) over T by the fact that the

composite L M // C //P(TC) is a model of T ; the rectangle

L C

P(T ) P(TC)

//

�� ��
33

will commute.
Finally, the continuous functor u∗ : E(T )→ C

∼
is derived from the universal property

of E(T ) over Coh(E(T )) (c.f. 9.2.2(iii)) using P(T ) → P(TC); we will have that the
diagram

Coh(E(T )) P(T ) P(TC) Coh(C
∼

)

E(T ) C∼

// // //
_�

incl.
��

_�

incl.
��

u∗ //

is commutative. Now, we can apply 9.2.9 to u∗. The assumption of the equivalence

M̂ : Mod(C,Set) ∼ // Mod(T ,Set)

immediately lifts to an equivalence

û∗ : Mod(C
∼
,Set) ∼ // Mod(E(T ),Set)

hence by 9.2.9, u∗ is an equivalence as well. This proved theorem.

§3 The Zariski topos

We consider an example for classifying topos.
In the following discussion ‘ring’ means ’commutative ring with 1’.
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Let T be the (coherent) theory of nontrivial local rings. T is formulated in the
language L whose nonlogical symbols are the following operation symbols.

0, 1 (0-ary)

+,−, · (binary)

L has only one sort, “the underlying set of a ring”. The axioms of T are as follows:

axioms for a commutative ring with 1

0 = 1⇒ ,

⇒ ∃y(x · y ≈ 1) ∨ ∃y((1− x) · y ≈ 1).

An interpretation of the language L in a topos E , M :L → E , consists of an ob-
ject M(s) of the topos, together with appropriate morphisms M(0),M(1) : 1E

// //M(s),
M(+),M(−),M(·) :M(s) ×M(s) // //// M(s). If the interpretation satisfies the axioms
of rings, we briefly say that we have a ‘ring object in E ’. Similarly, we can talk about a
local ring object, etc. We clearly have

9.3.1 The models (in Set) of T are exactly the nontrivial local rings.

We now identify the classifying topos E(T ) of T as the well-known Zariski topos,
showing a result due to Hakim [1972]. The application of 9.2.10(ii) for this purpose was
suggested to us by Chris Mulvey.

Let Rf be the category of finitely presented rings (= quotients of polynomial rings
Z[x1, . . . , xn] (with Z the ring of integers) by ideals generated by finitely many polyno-
mials f(x1, . . . , xn) in Z[x1, . . . , xn]).

The category C is defined as the opposite of Rf , C = Ropp
f . We make C into a site by

introducing the Zariski topology on C as follows. Note that a covering family (Ai → A)i
in C becomes a ‘cocovering’ family (A→ Ai)i in Rf . Now, the Zariski topology on C is
generated by the following cocovering families (i) and (ii):

(i) the empty family ‘cocovering’ the zero ring;

(ii) for any A ∈ Ob(Rf ),

A
A
[

1
a

]
A
[

1
b

]22

,,

whenever a, b ∈ A, a+ b = 1.

In (ii) A
[

1
a

]
is obtained by localization, or by introducing an inverse 1

a generically,

i.e., A→ A
[

1
a

]
has the following universal property:

A A
[

1
a

]

B

//

f

"" ��

in the diagram, whenever in B b is an inverse of f(a), there is a unique A
[

1
a

]
→ B

mapping 1
a ∈ A

[
1
a

]
into b, and making the diagram commute.

Note that the Zariski topology on C can be generated by precisely two covering
families as follows:

(i) as above
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(ii)′ Z[x]

Z
[
x, 1

x

]

Z
[
x, 1

1−x

]
x 7→x 55

x7→x ))

where (ii)′ is self-explanatory. The reason is that any cocovering in (ii) can be obtained
by ‘push out’ in Rf , i.e., by pullback in C, from (ii)′, hence the topology generated by
(i) and (ii)′ contains each covering (ii).

The Zariski topos Z is C
∼
, with the site C specified above. Let ε : C → C∼ be the

canonical functor.
We can interpret the language in the category C by M :L → C as follows. Again,

remember that a morphism A → B in C is a morphism B → A in Rf . M(s) (s the
unique sort of L) is defined as Z[x]. The terminal object 1 of C is the initial object

Z of Rf . Accordingly, M(0) is defined as the unique morphism Z[x] α //Z such that
α(x) = 0. Similarly for M(1). The product Z[x]×Z[x] in C is the coproduct Z[x]∪Z[x]
in Rf ; and the latter is Z[x1, x2]. M(+) is defined as the unique morphism

Z[x] α //Z[x1, x2]

such that α(x) = x1 + x2. Similarly for ‘−’ and ‘·’. The reader is invited to check that
the interpretation M :L→ C just defined satisfies all axioms of commutative rings with
1. (A related, more general fact is stated in Section 4.)

The ‘generic model’ of T in the topos C
∼

will be the composite M0 = ε ◦M :L M //

C ε // C∼. Before we show this using 9.2.10(ii), we give another description of M0. We
note that the representable presheaves over C are already sheaves. So M0(s) is the
representable sheaf hM(1) = hZ[x] over C. For an object A of C = Ropp

f , hZ[x](A) =
HomC(A,Z[x]) = HomRf (Z[x], A) which last set can be identified with the underlying
set |A| of A: the elements a ∈ |A| are in one-one correspondence with homomorphisms
Z[x] → A. So, M0(s) is “the underlying set-functor” on Rf . The operations in L have
similar natural meanings in M0.

Next we show that M0 is indeed generic. First, ignore the topology on C and consider
the left exact functors C → Set, or briefly the C-algebras. Let Alg(C) be the category
of all C-algebras (full subcategory of the functor-category SetC). Given an algebra
F : C → Set, the composition F ◦M :L→ Set:

L C

Set

M //

F◦M %%
F
��

is a ring; this is so because M is a C-ring (i.e., M :L → C satisfies the ring axioms) as
we said above, moreover F is left exact and the ring axioms are formulated in terms of
finite left limits only. Actually, more is true viz.

9.3.2 The functor F 7→ F ◦M (compositon by M) establishes an equivalence between
the categories Alg(C) and R, the category of all commutative rings with 1.

We leave the verification of this to the reader (c.f. also Section 4). We just note that
the point is that (i) F ◦M is the ‘restriction’ of F to the ring (Z[x], 0, 1,+.−, ·) and actu-
ally (ii) F is determined by this restriction i.e., by the effects of F on Z[x], 0, 1 : 1 ////Z[x],
+,−, · :Z[x]×C Z[x] ////// Z[x].
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Now, the category of models C → Set, with C the site with the Zariski topology,
is the full subcategory of Alg(C) consisting of those algebras F : C → Set which, in
addition, are continuous with respect to the Zariski topology, or equivalently carry each
basic covering in C into a “true” covering in Set.

Claim 9.3.3 For any F ∈ Ob(Alg(C)), F : C → Set is a model for the Zariski site C iff
F ◦M is a local ring.

We argue as follows. Let F be an arbitrary algebra C → Set. Denote F (Z[x]) by
A. The ring F ◦M is nothing but (A, 0A, 1A,+A,−A, ·A) where, e.g., 1A is the element

1Set → A which is the F -image of the Rf -morphism Z[x] x 7→1 //Z, and ·A is the operation

A×A→ A which is the F image of theRf -morphism Z[x]
x7→x1·x2 // Z[x1, x2], etc. Below,

we drop the subscripts A from the operations in the ring F ◦M and we also write A
for the ring F ◦ M itself. Next, we invite the reader to check that in the following
commutative diagram in Rf :

Z Z
[
x, 1

x

]

Z[x] Z[x1, x2]

//

x7→1

OO
f1

x 7→x

88

x 7→x1·x2

//

x1 7→x
x2 7→ 1

x

OO

the rectangle is a push out (dual of pullback). Reversing the arrows we obtain a pullback
diagram in C. Since the algebra F preserves pullback of C, we obtain that in

A×AA

F (Z
[
x, 1

x

]
)1Set = B1

·A
oo

��

F (f1)

xx

oo

1A

��

the rectangle is a pullback, i.e., B as a subset of A× A is {〈a, a′〉 ∈ A× A : a · a′ = 1},
with F (f1) being the restriction to B of the projection 〈a, a′〉 7→ a. We have obtained
that

9.3.4 The image of the map F (f1) is precisely the set of invertible elements of A.

Similarly, we get for f2 :Z[x] x 7→x //Z
[
x, 1

1−x

]
we have

9.3.5 The image of F (f2) is the set of a in A such that 1− a is invertible.

Now, by looking at the cocovering (ii)′ in the Zariski site, by 9.3.4 and 5 we see that
F carries this into a ‘real’ covering in the sense of Set (an effective epimorphic family in
Set) iff for every a ∈ A, either a or 1−a is invariable, i.e., iff A is a local ring. Similarly,
F will carry (i) into a ‘real’ covering iff F is a nontrivial ring (0 6= 1). Now recall that
for a left exact F : C → Set to be continuous it suffices that F preserve the covering
generating the topology, c.f. 1.1.5. Thus, we have a proof of 9.3.3.

Now, Mod(C,Set) is the full subcategory of Alg(C) whose objects are models of C,
the category of local rings; Mod(T ,Set) is the full subcategory of the category of all
rings whose objects are the local rings. Hence, putting 9.3.2 and 9.3.3 together we obtain
the the functor F 7→ F ◦M establishes an equivalence

Mod(C,Set) ∼ // Mod(T ,Set).
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But this is precisely the condition in 9.2.10(ii). Hence M0 = ε ◦M :L → Z for the
Zariski topos Z is indeed the ‘generic model’ of T .

Recapitulating the definition, the fact just verified means the following. Given any

Grothendieck topos E with a local ring object A (i.e., an interpretation L A // E of
the language of rings which satisfies the axioms for ‘local rings’), there is a geometric
morphism U = (u∗, u

∗, φ) : E → Z, with the Zariski topos Z, such that u∗ :Z → E
carries the generic local ring M0 into A, moreover, U is essentially unique.

We hasten to add that the application of something like 9.2.10(ii) is far from being
essential in the above verification. Rather, the situation is as in a common kind of
application of the ordinary completeness theorem: one can use completeness to conclude
that a particular sentence is derivable from a particular theory, but usually on can
actually (with little or much work, depending on the situation) exhibit such a deduction,
thereby eliminating the application of completeness. In fact, for the Zariski topos, it
would not be hard to show directly that it is the classifying topos for the theory of local
rings.

Actually, the content of the statement: “points are enough for classifying” specialized
to the present situation is more faithfully expressed by saying that whenever the above
argument involving local rings can be repeated for some arbitrary algebraic site C, then
C∼ is necessarily equivalent to the Zariski topos.

We note that quite similarly we can show that the Etale topos is the classifying
topos of the theory of separably closed local rings (c.f. Wraith [ ? ]). The Etale site is
the category of all affine schemes with the Etale topology. Actually, all we need is the
Etale equivalent of 9.3.3 above. The details are not given here.

§4 Appendix. Coste’s construction of the classifying
topos of a theory

In Coste and Coste [1975], there is a new construction of the classifying topos of a
finitary coherent theory. In this section we extend this construction to an L∞ω theory,
but for the particular case of a language with operation symbols only. The reason of this
restriction is to compare the general theorem with the method of SGA 4 to construct
classifying ringed topos, base on localizations onRopp

f , the dual of the category of finitely
presented rings.

We shall show that, under this restriction on languages, the natural extension of the
procedure of SGA 4 is quite general and that localizations (Grothendieck topologies)
differ only notationally form coherent axiomatizations.

We need first to recall some facts about Universal Algebra which, although widely
known do not seem to be readily available in the literature.

Let L be a language with operation symbols only and let T0 be any equational theory,
i.e., whose axioms are coherent sequents of the form

⇒ t = t′

where t, t′ are terms of L.
A finitely presented T0-algebra can be defined in one of the following equivalent ways:

1. (Gabriel-Ulmer [1971]) as a T0-algebra (i.e. a model of T0) A such that the
representable functor hA : Mod(T0) = T0-algebras → Set preserves filtered limoo .

2. (“Conventional” way) as a T0-algebra of the form F [x1, . . . , xn]/E, where F [x1,
. . . , xn] is the free T0-algebra on a finite set of indeterminates, each having a given sort
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and E is a congruence relation defined by a finite set Φ of equalities between “polyno-
mials”, i.e., f ≡ g (E) iff T0 ` Φ⇒ f = g.

A word about this equivalence: 2. ⇒ 1. is trivial; to show 1. ⇒ 2. one requires the fact
(pointed out to us by A. Kock) that a retract of a finitely generated T0-algebra in the
sense of 2. is again finitely generated.

The category C0, the dual of the (full) subcategory of finitely presented T0-algebras
has a simple syntactical description. Indeed, define C(T0), the category associated to T0

as follows: as objects we take finite sets Φ of atomic formulas of L, i.e., finite sets of equal-
ities between terms; as morphisms Φ(x1, . . . , xn) → Ψ(y1, . . . , ym) equivalence classes
of m-tuples of terms 〈t1, . . . , tm〉 with free variables among x1, . . . , xn such that T0 `
Φ ⇒ Ψ(t1/y1, . . . , tm/ym), under the equivalence relation 〈t1, . . . , tm〉 ∼ 〈s1, . . . , sm〉 iff
T0 ` ti = si for i = 1, . . . ,m. Composition is defined by means of substitution in the
obvious way.

Proposition 9.4.1 C(T0) is equivalent to C0, the dual of the category of finitely presented
T0-algebras.

We sketch the proof. With the (finite) set Φ(x1, . . . , xn) of equalities, we asso-
ciate “its coordinate algebra” F [x1, . . . , xn]/C(Φ), where C(Φ) is the congruence de-
fined by Φ (see 2.) of the definition of finitely presented T0-algebra). If 〈t1, . . . , tm〉 is a
representative of a morphism Φ(x1, . . . , xn) → Ψ(y1, . . . , ym) and f ∈ F [y1, . . . , ym],
we define a function F [y1, . . . , ym] → F [x1, . . . , xn]/C(Φ) by sending f(y1, . . . , ym)
into the class of f(t1(x1, . . . , xn), . . . , tm(x1, . . . , xn)). This function factors through
F [y1, . . . , ym]/C(Ψ), precisely because of the definition of C(Ψ). Indeed, let f ≡ g C(Ψ).
Hence T0 ` Ψ ⇒ f = g. But T0 ` Φ ⇒

∧
Ψ(t1/y1, . . . , tm/ym). Therefore T0 ` Φ ⇒

f(t1/y1, . . . , tm/ym) = g(t1/y1, . . . , tm/ym), i.e.,

f(t1/y1, . . . , tm/ym) ≡ g(t1/y1, . . . , tm/ym) (C(Φ)).

We have shown that our association “coordinate algebra of” is functorial. This
functor is (obviously) essentially surjective and faithful (exercise!). Let us check that it is

full. In fact, let F [x1, . . . , xn]/C(Φ)
f //F [y1, . . . , ym]/C(Ψ) be given. By composition,

we obtain F [x1, . . . , xn]
TΦ //F [x1, . . . , xn]/C(Φ) //F [y1, . . . , ym]/C(Ψ). Then one can

find s1, . . . , sn ∈ F [y1, . . . , ym] such that TΨ(si) = f ◦TΦ(xi), since TΨ is onto. The class
of 〈s1, . . . , sn〉 gives the desired morphism Ψ→ Φ.

With either of these two descriptions of C0 one easily concludes

Proposition 9.4.2 C0 has finite limoo and the functors C0 → Set which preserve these
limoo are precisely the T0-algebras.

Now we can state

Theorem 9.4.3 Let T be a coherent theory in L∞ω, with language L having operation
symbols only and let

Alg(T ) = { ⇒ t = t′|t, t′ are terms of L and T ` ⇒ t = t′}.

Furthermore, let T0 ⊆ Alg(T ) be any equational theory in L and let C0 be the dual of the
finitely presented T0-algebras. Then there is a localization on C0 such that Sh(C0) ' E [T ],
the classifying topos of T .

Proof. We need the following result whose proof is an easy induction on formulas and
which was proved as 8.3.2.
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Lemma 9.4.4 Every coherent formula of a Lκω language L (with κ regular) is equivalent
to a disjunction of the form

∨
{∃x1, . . . ,∃xni

∧
Φi : i ∈ I}, where card(I) < κ and Φi is

a finite set of atomic formulas.

By 9.3.4, we may assume that T has a coherent axiomatization of the form

Φ⇒
∨
{∃y1, . . .∃yni

∧
Ψi : i ∈ I}

where Φ and Ψi are (finite) sets of atomic formulas.
Each axiom and theorem (of this form) gives rise to the obvious “co-covering” fam-

ily (in Copp0 ) (F [x1, . . . , xn]/C(Φ)
τi //F [x1, . . . , xn, y1, . . . , yni ]/C(Φ ∪ Ψi))i∈I , where

〈x1, . . . , xn〉 is the sequence of free variables of the axiom (or theorem).
To show the stability of the covering families in C0 is equivalent to show that push-

outs of “co-covering” families “co-cover”.
The push-out of f and τi is given by the diagram

F [z1, . . . , zm]/C(Θ) F [z1, . . . , zm, y1, . . . , yni ]/C(Θ ∪Ψ′i)

F [x1, . . . , xn]/C(Φ) F [x1, . . . , xn, y1, . . . , yni ]/C(Φ ∪Ψ′i)

τ ′i //

f

OO
f ′
OO

τi
//

obtained as follows: the fullness of the functor “coordinate algebra of” gives us an n-
tuple 〈s1, . . . , sn〉 of elements of F [z1, . . . , zm] whose class is the morphism Φ→ Θ sent
by that functor into f . We let Ψ′i = Ψi(s1/x1, . . . , sn/xn) and we let f ′ be the morphism
which that functor associates with (the class of)

〈s1, . . . , sn, y1, . . . , yni〉 : Θ ∪Ψ′i → Φ ∪Ψi.

Notice that T0 ` Θ⇒ Φ(s1/x1, . . . , sn/xn), since the class of 〈s1, . . . , sn〉 is a morphism.
Furthermore, since

T ` Φ⇒
∨
{∃y1, . . . ,∃yni

∧
Ψi : i ∈ I}

it follows that

T ` Φ(s1/x1, . . . , sn/xn)⇒
∨
{∃y1, . . . ,∃yni

∧
Ψ′i : i ∈ I},

which means that (τ ′i)i∈I “co-covers”.
To finish the proof, we notice that the continuous finite limoo preserving functors are

precisely those T0-algebras A such that every map

F [x1, . . . , xn]/C(Φ)→ A

factors through some

F [x1, . . . , xn]/C(Φ)→ F [x1, . . . , xn, y1, . . . , yni ]/C(Φ ∪Ψi),

which is precisely the condition

A |= Φ⇒
∨
{∃y1, . . . , yni

∧
Ψi : i ∈ I}.

As an example, let us consider the coherent theory of local rings, i.e., whose axioms
are (besides those of the theory of rings)

(i) 0 = 1⇒
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(ii) ⇒
∨
{∃y(xy = 1),∃y(x(1− y) = 1)}.

We take for T0 the (equational) theory of rings. The localization in question is
obtained by closing under push-outs the following “co-covering” families in Rf , the
category of finitely presented rings:

(i)′ Z/C(0 = 1) is co-covered by the empty family.

(ii)′ Z[X]
Z[X,Y ]/C(XY = 1)

Z[X,Y ]/C((1−X)Y = 1)

11

--

Spelling out these cocoverings in the more familiar language of ideals, we obtain the
usual Zariski localization (and a “new proof” of Hakims’s theorem, §3 of this chapter).

If we wish to eliminate non-zero nil-potent elements from this theory, we add the
families

(iii)′ Z[X]/(Xn)→ Z, for each n = 1, 2, . . .

(where the class of X goes to 0), obtained from the logical conditions

(iii) Xn = 0⇒ X = 0, for each n = 1, 2, . . . .

§5 Appendix

In his paper [1975], Lawvere gives another definition of coherent object (in coherent
topos) and asserts the equivalence of the two. His definition is closer in spirit to the
original Serre’s definition of an algebraic coherent sheaf (c.f. Serre [1955]).

An object A of a topos E is κ-presented (in the sense of Gabriel-Ulmer [1970]) if
hA : E → Set preserves κ-filtered lim// . An object A is Lκ-coherent if given any two
κ-presented objects P1, P2 and maps P1 → A, P2 → A, the pull-back P1 ×A P2 is again
κ-presented.

Proposition 9.5.1 (Lawvere [1975]). Let E be a κ-coherent topos, A ∈ |E|. Then A is
κ-coherent iff A is Lκ-coherent.

Proof. Let E ' Sh(C), for some κ-algebraic site C. From the “κ-version” of Theorem
1.23 [SGA 4, Exposé VI] we have

Lemma 9.5.2 Let E be a topos and A ∈ |E|.

(i) A is κ-quasi-compact iff for every κ-filtered inductive system (Xi)i∈I , the natural
application

lim// ih
X(Yi)→ hX(lim// iYi)

is injective.

(ii) If E is κ-coherent and A is κ-coherent, then A is κ-presented (i.e., the above
application is bijective).

Let A be a Lκ-coherent object. We claim that A can be covered by a κ-coherent
object C → A. In fact, from (i) of 9.5.2, A is κ-quasi-compact and hence it can be
jointly covered by a family (εCi)i∈I of cardinality < κ. By 9.2.6, the Ci are κ-coherent.

The κ-version of Corollary 1.15 [loc. cit.] gives

Proposition 9.5.3 A coproduct of a family of card < κ of κ-coherent objects is κ-
coherent.

Letting now C =
∐
i∈I Ci, we have that C is κ-coherent and C → A.
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Using (ii) of 9.5.2 we conclude that C is κ-presented and hence so is C ×A C (by
the definition of A being Lκ-coherent). From 9.5.2(i) it follows that C ×A C is κ-quasi-
compact.

In other words, we have shown that A can be exactly covered (in the sense of 1.4.11)
via

Y : Cohκ(E)→ E .

By Lemma 1.4.11, A is κ-coherent.
For the converse, let A be κ-coherent. By 9.5.2(ii), it is κ-presented. Assume that

P1, P2 are κ-presented and let P1 → A, P2 → A be given. We claim that P1 ×A P2

is κ-presented. We shall use the following “κ-version” of Corollary 1.24.2 of SGA 4,
Exposé VI:

Lemma 9.5.4 Let E be a coherent topos.

(i) An object A of E is κ-presented off there is a coequalizer diagram B C0 C1
oo oooo

with C0, C1 κ-coherent and a morphism B → A such that A B Boo
1Boo
w
oo is again a

co-equalizer and w2 = w ◦ w = w.

(ii) The full subcategory of κ-presented objects has limoo indexed by families of cardi-
nality less that κ.

To return to the proof of our proposition, assume first that P1 is κ-coherent. By
9.5.4 applied to P2, there is a diagram

A P2 B B C0 C1
oo oooooo

1Boo
w

oooooooo

such that C0, C1 are κ-coherent and both diagrams

P2 B B,
1Boo
w

oooooo B C0 C1
oo oooooo

are co-equalizers with w2 = w.
Pulling back this diagram along P1 → A and noticing the stability of lim// under

pull-backs we obtain the new diagram

A P2 B B C0 C1

P1 P1 ×A P2 P1 ×A B P1 ×A B P1 ×A C0 P1 ×A C1

oo oooooo
1Boo
w

oooooooo

oooooooo1oo
w′
oooooooo

�� �� �� �� ��

where w′
2

= w′ and all co-equalizers are preserved. Since P1 ×A C0, P1 ×A C1 are
κ-coherent by Theorem 9.1. , P1 ×A P2 is κ-presented, using 9.5.4(i) again.

The general case now follows from this diagram. Indeed, by the special case P1×AC0

and P1 ×A C1 are now κ-presented and part (ii) of 9.5.4 implies that P1 ×A P2 is the
κ-presented.



References

Antonius, W.
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[1972] Topos annelés et schémas relatifs, Ergebnisse Band 64 (Springer Verlag).

Higgs, D.
[1973] A category approach to Boolean valued set-theory, preprint.

Joyal, A. and G.E. Reyes
[ ? ] Model completion in categorical logic, to appear.

Karp, C.R.
[1964] Languages with expressions of infinite length (North-Holland).

Keisler, H.J.
[1971] Model Theory for Infinitary Logic (North-Holland).

Kleene, S.C.
[1967] Mathematical Logic (John Wiley and Sons, Inc.)

Kock, A. and G.E. Reyes

[1977]
Doctrines in categorical logic, in: Handbook of Mathematical Logic, ed.
J. Barwise (North Holland).

Kripke, S.

[1965]
Semantical analysis of intuitionistic logic I, in: Formal Systems and Re-
cursive Functions, North Holland, pp. 92-130

Lawvere, F.W.

[1963]
Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A.
50, pp. 869-872.

[1965]
Functorial semantics of elementary theories, in: Logic Colloquium, Le-
icester 1965 (North Holland).

[1969] Adjointness in foundations, Dialectica 23, pp. 281-296.

[1975]
Continuously variable sets: algebraic geometry = geometric logic, in:
Logic Colloquium 73 Bristol (North Holland), pp. 135-156.

[CWM] MacLane, S.
[1971] Categories for the Working Mathematician (Springer Verlag).

Makkai, M.

[1969]
On the model theory of denumerably long formulas with finite strings of
quantifiers, J. Symbolic Logic 34, pp. 437-459.

Makkai, M. and G.M. Reyes

[1976]
Model-theoretic methods in the theory of topoi and related categories,
Bulletin de l’Acad. Polon. Sci., ser. sci. math. astr. phys. 24, Part I: pp.
379-384, Part II: pp. 385-392.

Mansfield, R.

[1972]
The completeness theorem for infinitary logic, J. Symbolic Logic 37, pp.
31-34.



REFERENCES 209

Mitchell, W.

[1972]
Boolean topoi and the theory of sets, J. Pure Appl. Algebra 2, pp. 261-
274.

Osius, G.

[1973]
The internal and external aspects of logic and set theory in elementary
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