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1 Categories with Families

1.1 Categories with families as algebraic structures

Categories with Families (CwF) is one of the most useful way to formalize the structural

core of (dependent) type theories. A CwF is a categorical gadget with a key feature: it can

be presented as a generalized algebraic theory. Therefore, it can be seen as an (idealized)
language for dependent type theories. We also show that CwFs model dependent type theories.
They are therefore suitable intermediary gadgets between traditional formal systems for

dependent type theory and categorical notions of model.

To begin, recall the construction of categories with families.

Construction1.1. LetB be a (potentially large) category. Consider the associatedGrothendieck

fibration Fam(B)→ Set of the (strict) 2-functor [♠1:not functor?♠]
Fun(−,B) : Setop → CAT

where for an (indexing) set I, Fun(I,B) is the category of functors from discrete category I to

B. The objects of this fibred category are families {Xi}i∈I of objects of B indexed by a set I, and

a morphism is a pair (α, f)where α : J→ I and f a family of morphisms {fj : Yj → Xα(j)}j∈J in

B. A morphism (α, {fj : Yj → Xα(j)}j∈J) is cartesian if and only if each fj is a bĳection.
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Let Fam(Set) be the category of families of sets. Note that for any functor T to Fam(Set),
we get a new functor to U : Cop → Set by composing with the forgetful functor Fam(Set)→
Set which takes a family {Xi}i∈I to the indexing set I and a morphism (α, f) to α.

Definition 1.2. A category with families is a tuple (C,T) where C is a category with a

terminal object, and T : Cop → Fam(Set) is a Fam(Set)-valued presheaf on the category C,
such that for any object Γ of C, and any element A ∈ tyT(Γ) the presheaf (C/Γ)op → Set ,
defined by the functorial assignment γ 7→ T(∆)(A[γ]), is representable, where A[γ] stands

for U(γ)(A). The representing object of this representation is denoted by pΓ,A : Γ ·A→ Γ . This

means that there is an element qΓ,A ∈ T(Γ ·A)p∗Γ,A(A) such that for every object ∆ of C and every

morphism γ : ∆→ Γ and every a ∈ T(∆,A[γ])we have a uniquemorphism (γ, a)A : ∆→ Γ ·A
such that pΓ,A ◦ (γ, a)A = γ, and moreover (γ, a)∗Aq = a. We call the morphism (γ, a)A

extension of γ by a, and Γ ·A the extended context.

Remark 1.3. In every CwF (C,T), every morphism ∆→ Γ.A in ctx is of the form (γ, a)A for

some a ∈ tmT(∆,A[γ]). Suppose α : ∆ → Γ.A in ctx. By the uniqueness of the universal

property of the extended context Γ.A, we have α = (pAα, qA[α]).

Remark 1.4. Indeed, since Fam(Set) ∼= (Set ↓Set), the data of T : Cop → Fam(Set) is

equivalent to a morphism π : U• → U of presheaves.

Cop Fam(Set)

Set

T

U U

U•

yΓ U

π

A

a

U•

y∆ yΓ U

π

yγ

a[γ]

A

a (1)

Conversely, we can organize the data of π : U• → U into a functor T : Cop → Fam(Set)
where T(Γ) :≡ (U•(Γ)(A))A∈U(Γ) :≡ (tmT(Γ,A))A∈tyT(Γ) is given by the bundle π(Γ) : U•(Γ)→
U(Γ).

We shall refer to the objects of C as contexts, and we shall refer to A ∈ U(Γ) as type A in

context Γ , and to the above lift a : yΓ → U• a term of A in context Γ . We may write tyT for U .
We understand U to be model the universe of our type theory. [♠2:Show how to get a

natural model of type theory (a la Awodey) from a CwF.♠] We understand U•(Γ) to consist of

pairs (A,a) where A is a ‘type’ in context Γ and a is a term in type A over Γ .

Note that we have an equivalence of categories

[Cop,Set]/U ' [(U o C)op

,Set]

The functor from left to right takes π : U• → U to a presheaf tmT on the category of elements of

U which acts on objects by taking (Γ,A) to the set of lifts (aka terms) a : yΓ → U• of A against

π. The strict functoriality of this action is given by precomposition, seen in the rightmost

diagram in below.

Remark 1.5. We use the notation A 7→ Γ to say that A ∈ tyT(Γ). The naturality of π gives a
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commutative square

U•(∆) U•(Γ)

U(∆) U(Γ)

π(∆)

U•(γ)

π(Γ)

U(γ)

for every context morphism γ : ∆ → Γ . This says that if a ∈ tmT(Γ,A) then a[γ] , γ∗a ∈
tmT(∆,A[γ]) The universal property of the weakening context morphism pΓ,A and the generic

term qΓ,A is seen in diagram (2): given any context morphism γ : ∆ → Γ and any term

a ∈ tmT(∆,A[γ], there is a unique dashed arrow (γ, a)A in C which pulls qΓ,A back to a.

Moreover, from this universal property, we get a unique morphism γ ·A : ∆ ·A[γ]→ Γ ·A
, defined as (γ ◦ p∆,A[γ], q∆,A[γ]), satisfying the following equations

1. pΓ,A ◦ γ.A = γ ◦ p∆,A[γ] (in other words, it makes the square at the bottom of the diagram

below commutes) and,

2. q∆,A[γ] = qΓ,A[γ.A]

Now, from (i), we conclude that A[γ][pΓ,A] = A[p∆,A[γ]][p∗Γ,Aγ] which attests to the fact that

substitutions commute with weakenings. From the uniqueness property, we infer that

pΓ,A.A = (pΓ,A, qΓ,A) = idΓ.A

q∆,A[γ] : A[γ][p∆,A[γ]] qΓ,A : A[pΓ,A]

a : A[γ] A

∆.A[γ] Γ.A

∆ Γ

pΓ.A,B

γ.A

p∆,A[γ] pΓ,A(γ,a)A

γ

(2)

Proposition 1.6. p∆,A[γ] and γ.A forms a pullback cone over pΓ,A, γ.

Proof. Suppose Θ is a context and u, v are context morphisms which render the diagram on

the left in below commutative. From the latter it follows that qA[v] : A[pA][v] = A[γ][u],

and therefore, we get a unique morphism (u, qA[v]) with pA[γ] ◦ (u, qA[v]) = u, and

qA[γ.A][(u, qA[v])] = qA[γ][(u, qA[v])] = qA[v]. By the uniqueness property, we conclude

the upper right triangle also commutes.

Θ Γ.A

∆ Γ

v

u
p pΓ,A

γ

 

Θ

∆.A[γ] Γ ·A

∆ Γ

v

u

(u,qA[v])

γ.A

p∆,A[γ] pΓ,A

γ

(3)
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Construction 1.7. In every CwF (C,T), over a small category C, we have maps pΓ : ty(Γ)→
Ob(C/Γ) , natural in Γ , which take A ∈ tyT(Γ) to the object pΓ,A : Γ ·A→ Γ . In the presheaf and

topos models this map has an inverse.

Construction 1.8. If write the structure of a CwF in terms of discrete fibrations instead of

presheaves of sets, we get the following towers of discrete fibrations.

tmT(Γ,A) tmT(Γ) tmT o tyT o C

1 tyT(Γ) tyT o C

1 C

p
πtmT,Γ

p
πtmT

A
p

πtyT

Γ

The presheaves U and U• corresponding to the discrete fibrations πtyT and πtyT ◦ πtmT . As such,

πtmT corresponds to a natural transformation π : U• → U .
The universal property of (CwF4) can be rephrased by saying that 〈Γ.A, pΓ,A : Γ.A →

Γ, qΓ,A :A[pΓ,A]]〉 is a terminal object in in the slice category πtmT/(Γ,A), i.e. the category of triples

(∆ ∈ ctx, γ ∈ ctx(∆, Γ), a ∈ tmT(∆,A[γ])).

Remark 1.9. The universal property of context extension can be alternatively formulated in

the category of presheavesPShv(C): Any commutative diagram on the left can be subdivided

to a commutative diagram on the right where all the triangles in the diagram below commute.

The morphism (γ, a)A which makes the top and left triangles commute is found uniquely.

y(Γ) U

y(∆) U•

 γ

(A,a)

π

A
y(Γ) U

y(∆) U•

y(Γ.A)γ

(A,a)

π

A

(γ, a)A

y(pΓ,A) A ◦ y(pΓ,A)

(A[pΓ,A], qΓ,A)

This shows that y(pΓ,A) is the pullback of π along A : y(Γ)→ U .
Remark 1.10 (From CwF to Contextual Categories). A CwF is contextual iff there is a length

function

l : Ob(C)→ N

such that l(Γ) = 0 iff Γ = 1, and l(Γ) = n+ 1 iff there are unique ∆ ∈ Ob(C) and A ∈ tyT(∆)
such that Γ = ∆ ·A, and l(∆) = n.

Remark 1.11 (From CwF to Comprehension Categories). Any CwF is a comprehension
category.

tyT o C C→

C

H

πT0 cod

(4)
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where the left functor is a discrete fibration and the right functor is a fibration whenever C has
pullbacks. The horizontal functor takes an object (Γ,A) to the weakening map (aka display

map) pΓ,A : Γ ·A→ A, and it takes a (substitution) morphism γ : ∆→ Γ to the cartesian square

∆.A[γ] Γ.A

∆ Γ

p∆,A[γ] p pΓ,A

γ

(5)

Therefore the functor F is cartesian. [♠3:How do you define F on morphism from structure of

CwF?♠] In fact, the diagram (4) can be extended to

tmT o tyT o C C↓,s

tyT o C C→

C

Htm

πtmT Us

Hty

πtyT cod

(6)

While the fibres of cod are slice categories C/Γ , the fibres of cods , cod ◦Us are pointed

slice categories (C/Γ)•. The functor Htm takes an object 〈Γ,A, a〉 to pΓ,A : Γ.A � Γ : a and a

morphism γ : 〈∆,A[γ], a[γ]〉→ 〈Γ,A, a〉 to commutative squares

∆.A[γ] Γ.A

∆ Γ

p p p

γ

a a

Construction 1.12. There is a comonad Q on the category tyT o C sending an object (Γ,A) to

the object (Γ ·A,A[pΓ,A]). The co-unit ε : Q⇒ Id is given level-wise by

ε(Γ,A) = pΓ,A : (Γ ·A,A[pΓ,A])→ (Γ,A)

The co-multiplication ∂ : Q⇒ Q ◦Q is given level-wise by the unique morphism

∂(Γ,A) : (Γ ·A,A[pΓ,A])→ (Γ ·A ·A[pΓ,A], A[pΓ,A][pΓ ·A,A[pΓ,A]]])

where the corresponding morphism of contexts is obtained as the diagonal factorization

through the pullback square below:

Γ ·A

Γ ·A ·A[pΓ,A] Γ ·A

Γ ·A Γ

id

id

pΓ ·A,A[pΓ,A] pΓ,A

pΓ,A
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A coalgebra a : (Γ,A)→ Q(Γ,A) is precisely(?) a term a ∈ tmT(Γ,A). Therefore, the discrete

fibration πtmT is comonadic. In this sense, the generic term qΓ,A ∈ tmT(Γ ·A,A[pΓ,A]) is indeed
the generic (free?) coalgebra on Q(Γ,A).

Definition 1.13. A strict homomorphism of CwF (C,T) and (D,T ′) consists of functors

Fctx, Fty, Ftm, indicated in the diagram below, such that Fctx preserves the terminal context 1 on

the nose, and all triangles and squares in below commute:

tmT o tyT o C tmT ′ o tyT ′ oD

tyT o C tyT ′ oD

C→ D→

C D

πtmT

Ftm

πT ′
1

Fty

πtyT

H H ′

cod

F
→

cod

Fctx

1. πT ′0 ◦ Fty = Fctx ◦ πtyT means that, for all contexts Γ and for all types A ∈ tyT(Γ), we have

F(A) ∈ tyT ′(F(Γ)) , and F(A[γ]) = FA[F(γ)] ∈ tyT ′(∆)

where F(Γ) and F(A) are respectively shorthand notations for Fctx(Γ) and for the second

component of Fty(Γ,A) in tyT ′(Fctx(Γ)).

2. F
→ ◦H = H ′ ◦ Fty means that, for all contexts Γ and types A ∈ tyT(Γ), we have

F(Γ.A) = F(Γ).F(A) , and F(pΓ,A) = F(p)F(Γ),F(A)

where F(A) is a shorthand notation for π2Fty(Γ,A).

3. πT ′1 ◦ Ftm = Fty ◦ πtmT means that for all contexts Γ and types A ∈ tyT(Γ) and terms

a ∈ tmT(Γ,A), we have

F(a) ∈ tmT ′(Γ,A) ,and F(a[γ]) = F(a)[F(γ)] ∈ tmT ′(FΓ, FA[F(γ)])

4. We also require that

F(qΓ,A) = qF(Γ),F(A)

1.2 The classifying CwF

To any dependent type theory one can associate a CwF; the structural core the dependent type

theory is then given by this CwF. This construction extends what is known as the classifying
category of a theory from first order logic. Similarly, the idea here is that the objects of the

classifying category are formed from the types of the theory, and the morphisms are lists

of open terms (i.e. terms in contexts). The construction of the classifying category provides

a tool for structural analysis of theories, i.e. understanding the type-theoretic constructors
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and rules as presentations of categorical structure (limits, colimits, exponential objects, etc.)

permeating across all mathematical fields.

The classifying category construction can also be understood as a functor which has a right

adjoint, usually referred to as the internal language construction. The internal languagemodels

the type theory in any suitably (according to the theory) structured category, and therefore, it

allows us to see appropriately structured categories (in our case CwF) as representation of

type theories.

Construction 1.14. The CwF associated to a type theory τ is a quadruple (C(τ), ty(τ)T , tm
(τ)
T , _._)

whereby

(CwF1) C(τ) is the categoryof contexts and substitutions: Theobjects are the contexts [x1 :A1, . . . , xn :An],
of lengthnwheren is a finite ordinal, up to definitional equality and renaming[♠4:write

something about α-conversion for types, e.g. de Bruĳn indices – much more difficult

than FOL. see here ♠] of free variables.

A morphism of of contexts – called substitution – is of the form

f : [x1 :A1, . . . , xm :Am]→ [y1 :B1, . . . , yn :Bn(y1, . . . , yn−1)]

considered up to definitional equality and renaming of free variables and it is an

equivalence class of sequences of terms f1, . . . , fn such that

x1 :A1, . . . , xm :Am ` f1 : B1
.
.
.

x1 :A1, . . . , xm :Am ` fn : Bn(f1, . . . , fn−1),

and two such maps f = (fi), g = (gi) are equal exactly if for each i,

x1 :A1, . . . , xm :Am ` fi = gi : Bi(f1, . . . fi−1);

Composition of morphisms in C(τ) is given by substitution: e.g. if

[x1 :A1, x2 :A2, x3 :A3]
f
−→ [y1 :B1, y2 :B2(y1)]

g
−→ [z :C]

then g ◦ f is given by the following judgement:

x1 :A1, x2 :A2, x3 :A3 ` g[f1/y1, y2[f1/y1]][f2/y2] : C.

and the identity Γ → Γ by the variables of Γ , considered as terms. We shall abbreviate a

context to a list Γ = 1 ·A0 ·A1 ·A2 · . . . An where

() ` A0 Type

x0 : A0 ` A1(x0) Type
.
.
.

x0 : A0, . . . , xn−1 :An−1 ` An(x0, . . . , xn−1) Type

7
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Starting from a chain of context weakenings

Γ = 1 ·A0 ·A1 ·A2 · . . . An
pn
−→ 1 ·A0 ·A1 ·A2 · · · ·An−1

pn−1
−−→ . . .

p1
−→ 1 ·A0

p0
−→ 1

we recover the variables xi as the generic terms of A0, · · · , An weakened to Γ :

Γ 1 ·A0 · · · ·An−1 1 ·A0 1

A0[p0] · · · [pn] A0[p0] · · · [pn−1] A0[p0] A0

pn p0

(CwF2) ty(τ)T : (C(τ))op → Set is a presheaf on the category of contexts where ty(τ)T (Γ) is the set

{A | Γ ` A Type}. The (right) action of C(τ) on ty(τ)T is given by ty(τ)T (γ : ∆→ Γ)(A) = A[γ]

where A[γ] is the result of substituting A along γ, e.g. consider the term 2n : (n : N)→
(n : N), and the type family Fin → N. Then Fin[2n] → N has only finite sets of even

cardinal. That is Fin[2n](n) = Fin(2n);

(CwF3) tm(τ)
T : ((ty(τ)T )o C(τ))op → Set is a presheaf on the category of elements of ty(τ)T where

tm(τ)
T (Γ,A) :≡ {a | Γ ` a : A}

The action of morphisms is given by tm(τ)
T (γ : (∆,A[γ]) → (Γ,A)) (a) = a[γ], where

we write ∆ ` a[γ] : A[γ] for the terms obtained as the result of substituting γ in a,

and it corresponds in C(τ) to the pullback γ∗a of section a with the property that

a ◦ γ = (γ, λx.x) ◦ γ∗a.

∆.A[γ] Γ.A

∆ Γ

(γ,λx.x)

γ∗pΓ,A
y pΓ,A

γ

γ∗a a (7)

(CwF4) For the judgment Γ ` A Type, the context extension operation is given as follows: Γ ·A is

given by the extended context [Γ, a : A], the projection pΓ,A : Γ · A → Γ is given by the

context weakening (the forgetful substitution) [Γ, a : A]→ Γ which is identity on Γ , and

the generic term qΓ,A ∈ tm(Γ ·A,A[pΓ,A]) is given by the judgment Γ, a : A ` a : A.

Remark 1.15. The type-theoretic derivation

Γ ` a : A γ : ∆→ Γ

∆ ` a[γ] : A[γ]

corresponds to the naturality of π.

Remark 1.16. A term Γ ` a : A in τ corresponds to a section of pΓ,A in the associated CwF

C(τ). Note that this property holds in every CwF: given a ∈ tmT(Γ,A), by the universal

property of context extension, we have a unique context morphism (Γ, a)A : Γ → Γ ·A such
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that pΓ,A ◦ (Γ, a)A = idΓ and qΓ,A[(Γ, a)A] = a ∈ A (= A[idΓ ]). Conversely any section s of pΓ,A
can be recovered as (Γ, qΓ,A)[s]. Therefore, we have

tmT(Γ,A) ∼= {γ ∈ C(Γ, Γ ·A) | pΓ,A ◦ γ = idΓ }

This shows some redundancy in the definition of CwF, i.e. terms are subsumed into

context morphisms. The notion of categories with attributes is an attempt to rectify these

redundancies.

1.3 Internal languages

Example 1.17. To every locally cartesian category C with chosen pullbacks we can associate

a category with families whose context category is C, and ty(A) , C/A and tm(A,B) is

interpreted by sections of the morphism B→ A in C. The empty context is interpreted by the

terminal objects and the substitution of types is then given by the chosen pullbacks. We call

this CwF the standard CwF associated to C.
Given an object Γ in C, we have a strict homomorphism of standard CwF’s Γ ∗ : C → C/Γ

which takes a contextA to Γ ×A, a type p : B→ A to Γ ×p : Γ ×B→ Γ ×A, and term s : A→ B

to the term Γ × s : Γ ×A→ Γ × B.

Example 1.18. To every cartesian category Cwith a terminal object and chosen binary products

we can associate a category with families whose context category is C, and ty(Γ) is given by

the family of projections (Γ ×A→ Γ | A ∈ Ob(C)) and tm(Γ,A) is interpreted by morphisms

Γ → A in C. The empty context is interpreted by the terminal objects and the substitution of

types is trivial. We call this CwF the trivial CwF associated to C.

Definition 1.19. We call a CwFpropositional if for everyA ∈ ty(Γ) themorphism pA : Γ.A→ Γ

is a monomorphism.

Proposition 1.20. Every CwF has a canonical propositional sub-CwF. We just take the types whose
weakening maps are mono. We denote the canonical propositional sub-CwF of (C,T) by (C,T(−1)).

Example 1.21. To every topos E we can associate a propositional CwF whose context category

is E , and ty(A) is given by the family of subobjects (ϕ : A→ Ω) and tm(A,ϕ) is interpreted

by morphisms A→ [ϕ] in C. The empty context is interpreted by the terminal objects and

the substitution of types is given by composition. We call this CwF the propositional CwF
associated to C. This CwF indeed is the canonical propositional sub-CwF of the standard

CwF of E .

Note that for objects Γ and A of E , the propositional CwF of E /Γ interprets ϕ ∈ ty(Γ ∗A)
by a morphism ϕ : Γ ×A→ Ω.

We have a strict CwF homomorphism Γ ∗ : C → C/Γ which takes a context A to Γ ×A, a
type ϕ : A→ Ω to ϕ ◦ π2 : Γ ×A→ Ω, and term Γ → [ϕ] to the term Γ ×A→ Γ × [ϕ].

The example below is another way to associate a CwF to topos. It originally appeared as

the exmaple ??? in (?).
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Example 1.22. To every elementary topos E we can associate a CwF (ctxE , tyE , tmE , _._)where

• ctxE , E

• tyE (Γ) ,
∐

A∈Ob(E ) HomE (Γ ×A,Ω) is the collection ([♠5:not set? maybe a small set of

generators for G.toposes♠]) of pairs (A,ϕ)whereA is an object of E , andϕ : Γ ×A→ Ω

is a ‘property’ of A in context Γ .

A context morphism γ : ∆→ Γ acts on ty by

(A,ϕ : Γ ×A→ Ω) 7→ (A,γ∗ϕ : ∆×A→ Ω),

where γ∗ϕ , ϕ ◦ (γ× idA).

• tm(Γ,A,ϕ) = {t : Γ → A ∈ Mor(E ) | ϕ((Γ, t)) = trueΓ } A morphism γ : (∆,A, γ∗ϕ) →
(Γ,A,ϕ) acts on ty o C by

t : Γ → A 7−→ γ∗t , t ◦ γ : ∆→ A

• The extension of a context Γ by a type (A,ϕ : Γ × A → Ω) is given by the subobject

Γ.(A,ϕ) classified byϕ. The weakening map pΓ,(A,ϕ) is given by the composite morphism

Γ.(A,ϕ)� Γ ×A pr1−−→ Γ

We summarize the above construction in the table below:
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CwF(E ) Topos E

Γ : ctx Γ ∈ Ob(E )

Γ ` (A,ϕ) Type ϕ : Γ ×A→ Ω

Γ ` t : (A,ϕ) t : Γ → A s.t. ϕ ◦ (Γ, t) = trueΓ

Γ ` (A,ϕ) Type γ : ∆→ Γ

∆ ` (A,ϕ)[γ] Type
∆×A γ×A

−−→ Γ ×A ϕ
−→ Ω

Γ ` t : (A,ϕ) γ : ∆→ Γ

∆ ` t[γ] : (A,ϕ)[γ]
∆

γ
−→ Γ

t
−→ A

Γ : ctx Γ ` (A,ϕ) Type

pΓ,(A,ϕ) : Γ · (A,ϕ)→ Γ

Γ.(A,ϕ) 1

Γ ×A Ω

Γ

mϕ

pΓ,(A,ϕ)

p
true

pr1

ϕ

Γ : ctx Γ ` (A,ϕ) Type

Γ · (ϕ,A) ` qΓ,(A,ϕ) : (A,ϕ)[pΓ,(A,ϕ)]
pr2 ◦mϕ : Γ · (A,ϕ)→ A

Table 1: categories with families associated to an elementary topos

Note that in the table above the compositemorphism t◦γ , corresponding to the re-indexed
term t[γ], satisfies the requirement that (ϕ ◦ (γ×A)) ◦ (∆, t ◦ γ) = true∆ – seen in below as

the commutativity of the outer rectangle – since the two squares commute.

∆ Γ 1

∆×A Γ ×A Ω

p
(∆,t◦γ)

γ !

(Γ,t) true

γ×A ϕ

Also note that the morphism pr2 ◦mϕ : Γ · (A,ϕ) → A corresponding to the generic term

qΓ,(A,ϕ) satisfies the requirement that

ϕ ◦ (pΓ,(A,ϕ) ×A) ◦ qΓ,(A,ϕ) = ϕ ◦ (pΓ,(A,ϕ) ×A) ◦ (Γ · (A,ϕ), pr2 ◦mϕ) = ϕ ◦mϕ = trueΓ ·(A,ϕ)

simply because mϕ = (pΓ,(A,ϕ), pr2 ◦mϕ). We have summarized the map pΓ,(A,ϕ), the term
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qΓ,(A,ϕ), and their joint universal property in the diagram below.

∆.(A,ϕ)[γ] Γ.(A,ϕ)× (A,ϕ) Γ.(A,ϕ) 1

∆×A Γ.(A,ϕ)×A Γ ×A Ω

∆ Γ · (A,ϕ) Γ

p

pr1

p

p

p
true

pr1

p×A

pr1

ϕ

(γ,a)A

(id,a)

p

(id,q)

where (γ, a)A is the unique morphism induced by the factorization

∆

Γ · (A,ϕ) 1

Γ ×A Ω

!

(γ,a)

(γ,a)A

mϕ true

ϕ

Proposition 1.23. tyE (Γ) ' E /Γ

Proof. For every type Γ ` (A,ϕ)Typewecanassign anobject ofE /Γ , namelypΓ,A : Γ ·(A,ϕ)→ Γ .

Conversely, given an object p : X→ Γ of E /Γ , we associate to p the type gph(p) : Γ × X→ Ω,

where gph(p) is the characteristic morphism of the subobject (p, id) : X � Γ × X. Now

notice that p ∼= pΓ,(X,gph(p)) in the slice category E /Γ by definition of the extended context

Γ · (X,gph(p)).

Γ · (X,gph(p)) X 1

Γ × X Ω

Γ

pΓ,(X,gph(p))

∼=

(p,id)

p

p
true

pr1

gph(p)

Remark 1.24. A crucial point: since reindexing of both types and terms is defined using

composition it is functorial in a strict sense, without any need for coherent choices of pullbacks

in E . This makes indeed ty and tm genuine presheaves.

Remark 1.25. ty(Γ) ∼= Sub(Γ ×A), and choosing A = 1 we observe that Sub(Γ) sits strictly
inside ty(Γ).

Definition 1.26. A homomorphism F : CwF(E )→ CwF(F ) has a dependent right adjoint
G whenever for every context Γ ∈ E and every F -type A ∈ tyF (FΓ) there is a E -type

GΓ(A) ∈ tyE (Γ) together with isomorphisms

ΦA : tmF (F(Γ), A) ∼= tmE (Γ,GΓ(A))

12



which are stable under substitution morphisms, i.e. (GΓA)[γ] = G∆(A[γ]) and (ΦAa)[γ] =

ΦA[γ](a[γ]) for any a ∈ tmF (FΓ,A).

Remark 1.27. One can show that F preserves all colimits whenever it has a dependent right

adjoint. As a consequence, assuming the exponential functor (I→ −) has a dependent right

adjoint, the interval I is connected

∀ϕ:I→B(∀i:Iϕi)∨ (∀i:I¬ϕi),

which is postulated in ? as an axiom.

Remark 1.28 (Generalized algebraic theory of categories with families). [♠6:()♠]

1.4 Enriching basic CwF with Σ,Π, Id,U-types

By default a CwF does not support the interpretation of type formers such as dependent

pairs, dependent functions, or intensional identity types. Such type formers are specified

as additional structure on the CwF. Type formers are given by operations and equations on

types and elements.

In the tables below we describe the appropriate additional CwF structures corresponding

to each type former. First, we start with the dependent sum types.

rules/operations type theory CwF

form

Γ ` A Type Γ, a : A ` B Type

Γ `
∑

(a : A), B Type

A ∈ ty(Γ) B ∈ ty(Γ ·A)

ΣAB ∈ ty(Γ)

intro

Γ ` a : A Γ ` b : B[a/x]

Γ ` pair[a:A],B(a, b) :
∑

(a : A), B

a ∈ tm(Γ,A) b ∈ tm(Γ, B[(Γ, a)])

(a, b) ∈ tm(Γ, ΣAB)

elim

Γ, z:
∑

(x:A)B ` C Type Γ, x:A,y:B ` c : C[pair(x, y)/z]

Γ, p :
∑

(x:A)B ` split(p, c) : C[p/z]

C ∈ ty(Γ.ΣAB) c ∈ tm(Γ.A.B,C[(−,−)])

split(c) ∈ tm(Γ.ΣAB,C)

equations

(ΣAB)[γ] = ΣA[γ]B[γ.A]

(a, b)[γ] = (a[γ], b[γ.A])

split(c)[γ.ΣAB] = split(c[γ.A.B])

comp(β)
Γ, z :

∑
(x:A)B ` C Type Γ, x:A,y:B ` c : C[(x, y)/z]

Γ, x : A,y : B(x) ` split((x, y), c) ≡ c(x, y) :C[(x, y)/z]

C ∈ ty(Γ.ΣAB,B) c ∈ tm(Γ.A.B,C[(−,−)])

split(c[(−,−)]) = c ∈ tm(Γ.A.B,C[(−,−)])

Table 2: Σ-structure for CwF

In the table above

split(p, c) :≡ indΣAB(z.C, x.y.c, p)

13



obtained from the induction principle of the dependent sum types. Also, we have used

the notation (a, b) for pair[a:A],B(a, b), which overloads the notation already used for context

morphisms. However, we eliminate the risk of confusion, however small, by reminding the

reader in such situations which meaning of that notation we have in mind.

Various operations in the Σ-structure of a CwF can be visualized by a diagram in the

category C of contexts. All squares in the top level are pullback squares. In the bottom

level the side squares, although commutative, are not pullback squares. The introduction

rule is equivalent to the pairing morphism (−,−), the elimination rule to split(c), and the

β-computation equation to the commutativity split(c) ◦ (−,−) = c.

∆.A[γ].B[γ.A].C[(−,−)][γ.A.B] Γ.A.B.C[(−,−)]

∆.ΣA[γ]B[γ.A].C[γ.ΣAB] Γ.ΣAB.C

∆.A[γ].B[γ.A] Γ.A.B

∆.ΣA[γ]B[γ.A] Γ.ΣAB

∆.A[γ] Γ.A

∆ Γ

(−,−)

γ.A.B

p∆.A[γ],B[γ.A]

(−,−)

(id,c)

pΓ.A,B

(id,split(c))

pΓ,ΣAB

fst

p∆,A[γ]

γ.A

pΓ,A

γ

There is also amorphismsndwhich is obtainedby the applicationof splitoperator to the context
morphism corresponding to the judgment Γ, x : A,y : B(x) ` Γ, (x, y) :

∑
x:A B(x), y : B(x), i.e.

snd = split(pr2)

Γ.ΣAB.B[fst] Γ.A.B

Γ.ΣAB Γ.A

fst∗ pΓ.A,B
p

((−,−),id)

pΓ.A,B

fst

(id,snd) (8)

Next, we illustrate how Π-structures can be added to a CwF.
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rules/operations type theory CwF

form

Γ ` A Type Γ, a : A ` B Type

Γ `
∏

(a : A), B Type

A ∈ ty(Γ) B ∈ ty(Γ ·A)

ΠAB ∈ ty(Γ)

intro

Γ, a : A ` b : B

Γ ` λ(a :A). b :
∏

(a : A), B

b ∈ tm(Γ ·A,B)

λ(b) ∈ tm(Γ, ΠAB)

elim

Γ ` f :
∏

(a : A), B Γ ` t : A

Γ ` appa:A,B(f, t) : B[t/a]

f ∈ tm(Γ, ΠAB) t ∈ tm(Γ,A)

appΓ,A,B(f, t) ∈ tm(Γ, B[(Γ, t)])

equations

(ΠAB)[γ] = ΠA[γ]B[γ.A]

λ(b)[γ] = λ(b[γ.A])

(appΓ,A,B(f, t))[γ] = app∆,A[γ],B[γ.A](f[γ], t[γ])

comp(β)
Γ, a : A ` b : B Γ ` t : A

Γ ` appa:A,B(λ(a :A). b, t) ≡ b[t/a] : B[t/a]

b ∈ tm(Γ ·A,B) t ∈ tm(Γ,A)

app(λ(b), t) = b[(Γ, t)] ∈ tm(Γ, B[(Γ, t)])

comp(η)
Γ ` f :

∏
(a : A), B

Γ ` f ≡ λ(a :A). appa:A,b(f, a) :
∏

(a : A), B

f ∈ tm(Γ, ΠAB)

f = λ(app(f[pΓ,A], qΓ,A)) ∈ tm(Γ, ΠAB)

Table 3: Π-structure for CwF

Remark 1.29. We note that aΠ-type structure gives rise to a functorΠ of categories of elements

of presheaves ty ◦ (− ·−) and ty, where − ·− = dom ◦Hty (See diagram (4)). Component-wise

we have Π(Γ,A, B) = (Γ, ΠAB) where B ∈ ty ◦ (− ·−)(Γ,A) = ty(Γ ·A).

(ty(− ·−)o ty o C)op

(ty o C)op Cop Set

Set•

ty

Π

πty

− ·−

p

The 2-morphism p is given component-wise by the context weakening morphisms pΓ,A. The
whiskering with ty amounts to the maps ty(Γ) → ty(Γ.A) given by the substitution along

pΓ,A : Γ.A→ Γ . Note that Π : πty◦−·− ⇒ πty is a map of Grothendieck fibrations over C.
Furthermore, from the table above we extract the term former operations

λΓ,A,B : tm(Γ ·A,B)→ tm(Γ, Π(A,B)) (9)

appΓ,A,B : tm(Γ, Π(A,B))→ Πa∈tm(Γ,A)tm(Γ, B[(Γ, a, ])) (10)
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subject to the equations in the table above. Note that these equations only make sense in the

appropriate types. For instance for the second substitution equation we already need the

first one to hold. Moreover, for the third equation, we need the matching B[γ.A][(∆, t[γ])] =

B[(Γ, t)][γ] of the types which holds because of Proposition (1.6).

The computation rules and their corresponding CwF equations might seem too involved

to be understood immediately: we explain how the element λ(app(f[pΓ,A], qΓ,A)) is formed

step by step: we weaken the element f ∈ tm(Γ, ΠAB) to f[pΓ,A] ∈ tm(Γ.A, (ΠAB)[pA]) =

tm(Γ · A,ΠA[pA]B[pA[pA]]) which corresponds to the term Γ, a : A ` f :
∏

a:A B. Then using

the application operation app we apply f[pA] to qA ∈ tm(Γ · A,A[pA]) to obtain the element

app(f[pΓ,A], qΓ,A)) ∈ tm(Γ ·A,B[pA[pA]][(Γ.A, qA)]) = tm(Γ ·A,B) simply because pA[pA] ◦(Γ.A, qA) =

idΓ.A. Using the λ operation we get λ(app(f[pA], qA)) ∈ tm(Γ, ΠAB).

Γ.A.A[pA].B[pA[pA]] Γ.A.B Γ.A.(ΠAB)[pA] Γ.ΠAB

Γ.A.A[pA] Γ.A Γ

pB
p

eval

pΠAB
(Γ.A,qA)

pA

(Γ,b)

A universe is a type containing codes for types Next, we illustrate how U-structures can
be added to a CwF.

1.5 Propositions and Comprehension subtypes

Generally, in type theory, Comprehension subtypes {x : A | ϕ(x)} are given by the following

rules. Note that we form the comprehension subtype without using explicit coercion between

the original type A and its subtype {x : A | ϕ(x)}.

Γ ` A Type Γ, x : A ` ϕ : Ω

Γ ` {x : A | ϕ(x)} Type
(comp-form)

Γ ` t : A Γ ` ϕ(t) =Ω > : Ω

Γ ` t : {x : A | ϕ(x)}
(comp-intro)

Γ ` t : {x : A | ϕ(x)}

Γ ` t : A
(comp-elim)

We can formulate the above subtyping in the associated category with families. In CwF(E ),

we formulate the comprehension subtypes by “dependent conjunctions” of propositions.

(form) The subtyping formation rule:

Γ ` (A,ϕ) Type Γ.(A,ϕ) ` ψ : Ω

Γ ` (A, χϕ,ψ) Type
(comp-form)
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According to the table (1.4), the premises above are interpreted asmorphismsϕ : Γ×A→
Ω andψ : Γ.(A,ϕ)→ Ω (with the property that the equation trueΓ.(A,ϕ)×Ω◦(idΓ.(A,ϕ), ψ) =
trueΓ.(A,ϕ) holds which always does, and therefore, it does not impose any constraints).

Note that in this interpretation we have identified the term Γ.(A,ϕ) ` ψ : Ω with the

term Γ.(A,ϕ) ` ψ : (Ω, trueΓ.(A,ϕ)). The conclusion of the formation rule above is then

interpreted by the classifying morphism χmϕ◦mψ : Γ × A → Ω which we abbreviate

to χϕ,ψ. Note that the conclusion judgment of the formation rule corresponds to the

subobject {x : (A,ϕ) | ψ(x)}� Γ ×A.

1 {x : Γ.(A,ϕ) | ψ(x)}

Ω Γ.(A,ϕ) 1

Γ ×A Ω

true

!

mψ

ψ

mϕ
p

true

ϕ

χmϕ◦mψ

(intro) The subtyping introduction rule

Γ ` t : (A,ϕ) Γ ` ψ(t) = trueΓ : Ω

Γ ` t : (A, χϕ,ψ)
(comp-intro)

where ψ(t) , ψ[(Γ, t)] and trueΓ , true[!Γ ]. Now note that the outer rectangle is a

pullback square. This is becausemϕ is amonomorphism: suppose χϕ,ψ◦mϕ◦u = true◦
!X for some u : X→ Γ · (A,ϕ). Therefore, u has a unique lift ũ : X→ {x : Γ.(A,ϕ) | ψ(x)}

againstmϕ ◦mψ so thatmϕ ◦mψ ◦ ũ = mϕ ◦ u. Sincemϕ is mono we havemψ ◦ ũ = u.

Since the classifying morphism ofmψ is uniquely determined, we have χϕ,ψ ◦mϕ = ψ.

{x : Γ.(A,ϕ) | ψ(x)} {x : Γ.(A,ϕ) | ψ(x)} 1

Γ Γ · (A,ϕ) Γ ×A Ω

pmψ

!

mϕ◦mψ true

(Γ,t)
mϕ

ψ

χϕ,ψ

All in all, we have

χϕ,ψ ◦ (Γ, t) = χϕ,ψ ◦mϕ ◦ (Γ, t) = ψ ◦ (Γ, t) = trueΓ

where the last equation follows from the second premise of the introduction rule.

(elim) The subtyping introduction rule

Γ ` t : {x : Γ.(A,ϕ) | ψ(x)}

Γ ` t : (A,ϕ)
(comp-intro)
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holds since χϕ,ψ ◦ (Γ, t) = χϕ,ψ ◦mϕ ◦mψ ◦ (̃Γ, t) = ψ ◦mψ ◦ (̃Γ, t) = trueΓ

2 Presheaf Semantics

See the introduction of (?) for an overview of the uses of presheaf model in the constructive

settings, and its relation to the Kripke-Joyal semantics. By a presheaf semantic we mean a

CwF structure on the category PShv(C) where C is the category of cartesian cubes. The table

below shows how this CwF interpretation works.

CwF structure Presheaf Semantics

Γ : ctx Γ : Cop → Set
Terminal context () : ctx 1 : Cop → Set
A ∈ ty(Γ) A : (Γ o C)op → Set
Γ ` a : A a : 1→ A in PShv(Γ o C)

A ∈ ty(Γ) γ : ∆→ Γ

A[γ] ∈ ty(∆)
composite (∆o C)op γ×C

−−→ (Γ o C)op A
−→ Set

a ∈ tm(Γ,A) γ : ∆→ Γ

a[γ] ∈ tm(∆,A[γ])
(∆o C)op (Γ o C)op Set

(γo C)op

A

1

a

Γ : ctx A ∈ ty(Γ)

pΓ,A : Γ ·A→ Γ

(Γ o C)op Set

Cop

πΓ

A

Γ.A

Γ.A(I) =
∐

ρ∈Γ(I)A(I, ρ)

c.f. Lemma (??)

Γ : ctx A ∈ ty(Γ)

qΓ,A : tm(Γ ·A,A[pA])
(Γ.Ao C)op Set qA(I, ρ, u) = u

A[pA]

1

qA

Table 4: categories with families associated to an elementary topos
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Contexts Γ, ∆, . . . are interpreted as presheaves on the category C of cubes. A ∈ ty(Γ)
is interpreted as a presheaf A : (Γ o C)op → Set. Unwinding this, we get a family of sets

(A(I, γ) | I ∈ C, ρ ∈ Γ(I)) together a restriction map A(I, ρ)→ A(J, ρ.f), taking u to u.f, and

satisfying (u.f).g = u.(fg) and u. idI = u. These restriction induce the restriction maps of

Γ.A ∈ PShv C.
The following facts are going to be used again and again, and we present them in a remark

here.

Remark 2.1. The explicit formula for substitution of types is given by A[γ](I, ζ) , A(I, γI(ζ)).

In particular,

• the substitution along the display projection morphism pA : Γ.A → Γ is given by

A[pA](I, ρ, u) = A(I, ρ).

• Even more especially, for a closed type A, the substitution along Γ → (·) is given by

A[Γ ](I, ρ) = A(I). If the context is clear, we may occasionally write A instead of A[Γ ].

• The substitution of type B ∈ ty(Γ.A) along context morphism (Γ, a) : Γ → Γ.A for

a ∈ tm(Γ,A) is given by B[(Γ, a)](I, ρ) = B(I, ρ, a(I, ρ)).

From the lemma (??) we have that

Proposition 2.2. ty(Γ) ' Ob(PShv(C)/Γ) natural in Γ .

The expression a ∈ tm(Γ,A) is interpreted as a natural transformation a : 1⇒ Awhere 1

is the constant presheaf with the terminal set value. In particular, we get a matching family

{a(I, γ)} of sections as shown in the diagram below:

A(J, ρf) A(I, ρ)

A(J) A(I)

1 1

Γ(J) Γ(I)

A(f)a(J,ρ.f)

ρ.f

a(I,ρ)

ρ

Γ(f)

which expresses the equation

a(J, Γ(f)(ρ)) = A(f)(a(I, ρ)) (11)

As we observed in Remark (1.16), in every CwF terms corresponds to the sections of the

weakening context morphisms. Therefore, we can equivalently describe the term a : 1⇒ A

as a section of pA in the category PShv(C).

Γ Γ.A

Γ

id

(Γ,a)

pA
(12)
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where (Γ, a)I(ρ) = (ρ, a(I, ρ)). The naturality of (Γ, a) expressed by equation

(Γ.A)(f)(ρ, a(I, ρ)) = (Γ(f)(ρ), a(J, Γ(f)(ρ)))

follows from equation (11).

Similarly, the substitution of terms, interpreted in the above table by whiskering, can be

instead given as follows:

∆.A[γ] Γ.A

yI ∆ Γ

p

γ.A

pA

δ

(δ,a[γ](I,δ))

γ

where

a[γ](I, δ) = a(I, γ ◦ δ) (13)

and in particular,

c[pΓ,A]I(ρ, a) = c(I, ρ) (14)

for any c ∈ tm(Γ, C).

In § 1.4 (Tables (2), (3)), we introduced additional Σ,Π-structures on top of a CwF. In the

rest of this section, we shall analyze it for the presheaf model, and therefore, we prove the

presheaf semantics supports Σ,Π-types. Our treatment follows (?).
Additionally, we show in details that the Σ and Π-structures are interpreted respectively

as the left and right adjoints to reindexing functor.

2.1 Σ-structure for the presheaf model

The interpretation of Σ-structure ΣAB ∈ ty(Γ) for A ∈ ty(Γ) and B ∈ ty(Γ.A) is defined by the

presheaf ΣAB : (Γ o C)op → Set which takes an object (I, ρ) to

ΣAB(I, ρ) = {(a, b) | a ∈ A(I, ρ), b ∈ B(I, ρ, a)}

and takes a morphism f : (J, ρ.f)→ (I, ρ) in the category (Γ o C) to

ΣAB(f) : ΣAB(I, ρ)→ ΣAB(J, ρ.f)

(a, b) 7→ (a.f, b.f)

The pairing operation of the introduction rule gets interpreted as the natural transformation

(a, b) : 1⇒ ΣABwhere

(a, b)(I, ρ) = (a(I, ρ), b(I, ρ))

By the way ΣAB is defined we have obvious projections fst, snd.
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2.2 Π-structure for the presheaf model

Thepremise ofΠ-structure is interpretedbypresheavesA : (Γ o C)op → Set andB : (Γ.Ao C)op →
Set. Out of thesewewould like to construct a presheafΠAB : (Γ o C)op → Setwhich interprets

the Π-structure of Table (3).

Define

ΠAB(I, ρ) ={
(bJ,f :

∏
u:A(J,ρ.f)

B(J, ρ.f, u) | J ∈ Ob(C), f : J→ I ∈Mor(C) & ∀g : K→ J. bJ,f(u).g = bK,g◦f(u.g)
}

(15)

where the inner dependent product is the dependent product of a family in the locally

cartesian closed category of sets. The following diagram gives an illustration of all the

symbols in the above definition.

B(I, ρ, a)

B(J, ρ.f, u)

B(K, ρ.f.g, u.g)

1 A(I, ρ)

1 A(J, ρ.f)

1 A(K, ρ.f.g) 1 Γ(I)

1 Γ(J)

1 Γ(K)

B(g)

a

A(f)

bJ,f(u)

u

A(g)

bK,f◦g(u.g)

u.g

ρ

Γ(f)ρ.f

Γ(g)

ρ.f.g

(16)

For any morphism f : (J, ρ.f)→ (I, ρ) in Γ o C, define the action of f on ΠAB as follows

ΠAB(f) : ΠAB(I, ρ)→ ΠAB(J, ρ.f)

b 7→ b.f

where (b.f)K,g , bK,f◦g (Note that for this tomake sensewe needA(K, (ρ.f).g) = A(K, ρ.(f◦g))
and B(K, (ρ.f).g, u) = B(K, ρ.(f ◦ g), u) which hold because (ρ.f).g = ρ.(f ◦ g) ). Obviously

this definition is functorial, i.e. ΠAB(f ◦ g) = ΠAB(f) ◦ ΠAB(g).
Now, let us interpret the operations λΓ,A,B and appΓ,A,B(, ), introduced in (9). We write them

as sections of appropriate display maps.

Γ.A.B Γ.ΠAB

Γ.A Γ

pΓ.A,B pΓ,ΠAB

pΓ,A

(Γ.A,b) (Γ,λ(b)) (17)
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Given b = (bI,ρ,a | I ∈ C, ρ ∈ Γ(I), a ∈ A(I, ρ)), we define λ(b), component-wise, as

λ(b)I(ρ)J,f(u) = b(J, ρ.f, u)

where f : J→ I and u ∈ A(J, ρ.f). Note that λ(b)(I, ρ) ∈ ΠAB(I, ρ) because of the uniformity

condition λ(b)I(ρ)J,f(u).g = b(J, ρ.f, u).g = b(K, ρ.f.g, u.g) = λ(b)I(ρ)K,f◦g(u.g). Lastly, λ(b)

is indeed natural w.r.t. to I:

(λ(b)I(ρ).f)K,g(u) = λ(b)I(ρ)K,f◦g(u) = b(K, ρ.(f ◦ g), u) = (λ(b)J(ρ.f))K,g(u)

From the naturality condition we conclude that λ(b) is indeed a map of presheaves as in

diagram (17).

The interpretation of the operation appΓ,A,B(−,−) is as follows: suppose b ∈ tm(Γ, ΠAB)

and a ∈ tm(Γ,A) are given. Let us denote B[(Γ, a)] by B(a), which fits into the following

pullback diagram.

B(a) Γ.A.B

Γ Γ.A

p pΓ,A

(Γ,a)

(18)

In terms of presheaves, B(a) correspond to the composite functor

(Γ o C)op
((Γ,a)oC)op

−−−−−−→ (Γ.Ao C)op B
−→ Set

and therefore, B(a)I(ρ) = B(I, ρ, a(I, ρ)). Define appΓ,A,B(b, a)I(ρ) = b(I, ρ)(I,id)(a(I, ρ)).

Clearly, appΓ,A,B(b, a)I(ρ) ∈ B(a)I(ρ), and moreover it is natural in I.

It remains to check the β-reduction and η-expansion identities.

appΓ,A,B(λ(b), t)I(ρ) = λ(b)I(ρ)I,id(t(I, ρ)) {By the definition of app}

= b(I, ρ, t(I, ρ)) {By the definition of λ}

= b[(Γ, t)]I(ρ) {By the equations (12), (13)}

(19)

For the η-expansion identity, first note that A[pA]I(ρ, u) = A(I, ρ), b[pA]I(ρ, u) = bI(ρ),

and qAI(ρ, u) = u ∈ A(I, ρ). Therefore,

λ(app(b[pA], qA)I(ρ)J,f(u) = app(b[pA], qA)J(ρ.f, u) {By the definition of λ}

= bJ(ρ.f)J,idJ(u) {By the definition of app}

(20)

Therefore,

λ(app(b[pA], qA)I(ρ) = bI(ρ)

Remark 2.3. We have an isomorphism

ΠAB(I, ρ) ∼= ΠJ∈Ob(C)Πf∈C(J,I)Πa:A(I,ρ)B(J, ρ.f, a.f)

From left to right we have the assignment b 7→ λj.λf.λa.bJ,f(a.f). From right to left we have

the assignment w 7→ λJ.λf.λu.w(J, ρ.f, u)
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Proposition 2.4. For a type A ∈ ty(Γ), The Π-structure ΠA(−) on the presheaf category PShv(C)
is the right adjoint to the reindexing functor along pA.

PShv(C)/Γ.A ⊥ PShv(C)/Γ

ΠpA

∆pA

(21)

Proof. First the categorical equivalence in Lemma (??) associates to A ∈ ty(Γ) a map of

presheaves Γ.A→ Γ .

To define the functor ΠpA in the diagram (21), we use the definition of presheaf ΠAB ((15)),

for B ∈ ty(Γ ·A), and then apply Lemma (??) to obtain a projection map ΠpA(pB) : Γ.ΠAB→ Γ

of presheaves. This maps is defined componentwise by the first projection

Γ.ΠAB =
∐

(ρ,u)∈Γ.A(I)

B(I, ρ, u)→ ∐
ρ∈Γ(I)

A(I, ρ) = Γ.A(I)

Now, we prove that ΠpA(pB) has the appropriate universal property, that is there is a

correspondence
Γ.(A× C) Γ.A.B

Γ.A

πA

α

pB

 ∼=


Γ.C Γ.ΠAB

Γ

pC

β

pΠAB


where

Γ.A.B(I) =
∐
ρ∈Γ(I)

∐
u∈A(I,ρ)

B(I, ρ, u) .

We establish the above correspondence component-wise and natural in I: starting from α,

define

(βI(ρ, c))J,f :
∏

u:A(J,ρ.f)

B(J, ρ.f, u)

by the assignment u 7→ αJ(ρ.f, u, c).

Note that the naturality of α means that αI(ρ, a, c).f = αJ(ρ.f, a.f, c.f). From this we

deduce naturality of β.

Conversely, starting from β, define αI(ρ, a, c) = (βI(ρ, c))I,idI(a). It is straightforward that

the assignments α 7→ β and β 7→ α are inverses of each other.
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