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1 Introduction

The purpose of this article is to explore and report on the state-of-the-art in machine learning (ML) for math-
ematical research, serving as an extension to Williamson’s survey [36]. Our main contribution is the impact of
LLMs and recent advances in the theorem-proving community.

Mathematics, as a societal endeavor, encompasses teaching, learning, research, publishing, and outreach.
There are complex dynamics between different stakeholders. Corporate interests often diverge from academic
research. Academic research itself, is bounded by exhaustive publication protocols. The social nature of Mathe-
matics often transcends beyond private thoughts; and its utility can raise crucial ethical questions, [5]. However,
due to constraints, we curtail our discussion here. We refer to the text [12] for an introduction to these ideas.
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The structure of the article follows that of a research mathematician, as described by Atyiah, [9]

In mathematics, ideas and concepts come first, then come questions and problems. At this stage
the search for solutions begins, one looks for a method or strategy...Before long you may realize,
perhaps by finding counterexamples, that the problem was incorrectly formulated... Without proof
the program remains incomplete, but without the imaginative input it never gets started.

This distribution of mental activity is partly reflected in the survey of an online collaborative project [16], see
Fig. 1,

Figure 1: Distribution of comment contents

In section (2), we discuss progress towards the first stages of conjecturing. In section (3) we discuss progress
towards AI-assisted proofs, or formalization. Lastly, in (4), we outline recent attempts in which the two are
integrated. As observed by many, [37], AI-enabled mathematics not only helps mathematicians in their research
but also serves as a litmus test for AGI itself: the ability to reason mathematically is a central unsolved problem
in artificial intelligence.

1.1 Language models for mathematics

Recent advances and successes of large language models suggests exciting avenue. Modern LLMs are based on
the decoder transformer architecture, [31]. With transfer learning, one can leverage the pre-trained model’s
knowledge to achieve better performance on the target task, even with limited labeled data.1 This led to a
range of pre-trained language models on mathematical data and fine-tuned on mathematical tasks. Language
models satisfy the following two important properties:

• scaling laws. The ability of the model scales with both the number of parameters and the training corpus.
The availability of good quality training corpus compared to natural language is scarce. In terms of
training corpus, there are generally two types

1. Curated datasets, such as Hendryck et al’s [11], GitHuB, or arXiv datasets

2. Synthetic datasets. Recent works, [37], suggests improvements from training on synthetic datasets.

• in-context learning (a.k.a prompting). This is a surprisingly simple way that steers LMs. This is the
process of augmenting the context of instruction.

The extent to which mathematicians can leverage language models will be the focal point of this survey paper.
2 Tao gives a succinct summary of the current state of the art in using LLM-generated materials [28].

Both humans and AI need to develop skills to analyze this new type of text. The stylistic signals
that I traditionally rely on to “smell out” a hopelessly incorrect math argument are of little use
with LLM-generated mathematics. Only line-by-line reading can discern if there is any substance.
Strangely, even nonsensical LLM-generated math often references relevant concepts. With effort,
human experts can modify ideas that do not work as presented into a correct and original argument.

1Note, however, that the inference of what a model makes is often dependent on its training corpus.
2We do not discuss on the fundamental problem of LLM’s availability and their monetary restrictions. This, however, has

immediate consequences for researchers. Smaller models empirically exhibit poorer estimation of tails of distributions, places
higher probability mass on repetitions, etc, many of such empirically do not appear in larger models.

2



2 Learning from Lakotos: Conjectures and counterexamples

In the enlightening book, Proofs and Refutations of Lakotos [14] . Lakatos imagines an imaginary classroom,
where the teacher makes a conjecture of the Euler-Poincaré formula for polyhedra: given a polyhedron where
V,E and F are the number of vertices, edges and faces, respectively, then

V − E + F = 2 (1)

The teacher provides an attempted proof where students respond by providing counterexamples. The dialogue
continues back and forth, and the process can be summarized as

Figure 2: Lakatos method as explained in [7]

The two key elements are generating conjecture, 2.1 and verifying conjecture 2.3. This section explores how
AI can assist in these two parts.3. Lastly, we note that there are fields of machine learning which has direct
immediate impact to all natural sciences such as semantic search - once a conjecture is made, the first step
would often be a search on whether similar results have been proven. For instance, a typical query would be of
the form: ”Is it true that X is satisfied for Y ?”. Such open-ended questions are hard. It is also unlikely that
the same phrasing or even words were used in the hypothetical reference. 4 We limit our discussion to aspects
of ML methods that are particular to the field of mathematics.

2.1 Generating conjectures and new concepts

One of the more prominent approaches to generate hypothesis, follows pipeline of Davies et al. [6]

Figure 3: Pipeline for hypothesis generation in [6].

To illustrate this, consider the example of Euler-Poincaré formula, 1. One begins at the leftmost blue box. The
grey boxes are required by human intervention. One conjectures a relation between features X(z) and Y (z) of
a polyhedra z. In our case we let

X(z) = (V (z), E(z),Vol(z),Sur(z))

3In a somewhat similar spirit, Harris’ blog post, [10], made an intriguing thought exercise of whether a machine can recreate
the Poincaré conjecture in Thurston’s paper [29]

4Progress towards autoformalization, 3.4, could help with this.
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be the number of vertices, edges, volume and surface area of z, respectively. Let

Y (z) = (F (z))

be the number faces of z. Our goal is to find a function f̂(X(z)) = Y (z). Using classical supervised learning,
we can obtain

f̂((X(z)) = X(z) · (1,−1, 0, 0) + 2

However, when data is high dimensional and the underlying relation is non-linear, f̂ is only there for intution.
The outcome of this training process is thus accompanied with attribution techniques , such as gradient based
techniques, [26]. Another related work is the Ramanujan5 machine, [18]. The machine attempts to find equality
of the following form

x = a0 +
b1

a1 +
b2

a2+···
an, bn ∈ Z

One often refers to the right-hand side as polynomial continued fractions (PCFs). For example, the Golden
ratio can be represented as

1 +
1

1 + 1
1+···

The Ramanujan machine algorithm produced several new equalities6 and new conjectures. The approach is
to define a space of meaningful PCFs and reduce the problem to a search problem. There were two search
algorithms suggested: one referred to as Meet-In-The-Middle7, and the other is gradient descent, which is the
same as that used in machine learning. An interesting step forward, as suggested in [18, 5.2], is whether one
can more effectively create this space by using recent advances in NLP, via finding latent representations from
widely available scientific corpus. This was used in the context of chemistry, [30].

Another key aspect of mathematics is creating definitions, [32]. 8 Examples of recent creations include the
notion of quasicategories [21] and perfectoid spaces [23], both of which have brought great advancements in
mathematics. We end this subsection with the open question: could AI create new meaningful definitions?

2.2 Machine learning for experimentation

There are many unexpected connections in mathematics. Most of these come from experimentation and com-
putation. In number theory, one has the j-invariant function, which is a modular function on the upper half
plane H := {τ ∈ C : imτ > 0}.

j(τ) :=
1

q
+ 196884q + 2149370q2 + · · · where q = e2πiτ

This is an object of close connection to elliptic curves, [24]. John-McKay found that these coefficients have
close relations with dimensions of irreducible representations of Monster groups (which led to subsequent work
vertex operator algebras.) This involved many linear algebra computations.

5Ramanujan is famous for finding surprising relations.
6They were proven soon after
7The approach here is intuitive: to compare two lists of sizes M and N of values, the time complexity is O(MN). The algorithm

makes time complexity as O(M +N).
8This is in contrast to daily life. In Fodor et al’s paper ”against definition”, the paper discusses how in the non-technical

language one does not actually work with definitions.
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From a more näıve and cruder point of view, we question whether ML can speed up experimentation in the
context of mathematics. Examples include the work of Charton, [3], which trains transformers to perform
numerical computation, [4], which learns mathematical properties of differential systems, and Bao et al, [1],
which trains a machine to find properties of algebraic objects. Albeit varied attempts, such areas still remained
quite unexplored.

2.3 Conjecture verification

We give two instances of which methods in machine learning can aid in disproving conjectures.
In the field of solving PDE, neural networks has already been used in closely related context of physics, [20].
For instance, The physics of an equation is explained by a PDE 9

P (u(x, t)) = 0

where u is a function of location x and time t. One then apply supervised learning to solve for u. This is the
basis of Physics-informed neural networks (PINNs) and similar in spirit of the pipeline described in Fig. 2. This
has inspired many subsequent works. A recent example in the same spirit is the work of Wang et al. [34].
Wagner’s paper, [33], on the other hand, used reinforcement learning to guide the construction of counterexam-
ples in combinatorics. If G = (V = {v1, . . . , vn} , E) is a n-vertex graph, we can form D(G) := (d(vi, vj)1≤i,j≤n)
the distance matrix, whose eigenvalues we denote ∂1, . . . , ∂n.

10 One application was to disprove the following
conjecture

Conjecture: Let G be a connected graph on n ≥ 4 vertices with diameter D, proximity π :=
1

n−1 minv∈V

∑
w∈V d(v, w) and distance spectrum, then

π + ∂⌊ 2D
3 ⌋ > 0

The algorithm ran with n = 30, produced a graph with value π + ∂⌊ 2D
3 ⌋ = 0.4:

9For instance, the viscous Burger’s equation is ∂u
∂t

+ u ∂u
∂x

= v ∂2u
∂x2

10Study of eigenvalues goes back as early as 1970s.
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Albeit not a counter-example, its shapes were sufficient for the author to come up with the general pattern and
construct the actual counter-example,

Both diagrams above are sourced from [33]. This example illustrates again, the case that ML methods useful
and are there to guide a human researcher - as depicted in 3, the incorporation of human feedback important.

3 Formal methods and the calculus of thoughts

Historically, the idea of inferring mathematical truths through a system of logical deductions goes back to
Aristotle (c.f. Prior Analytics). In the 17th century, the polymath Leibniz (1647-1716) dreamed of a universal
mathematical language, Calculus Ratiocinator, or the Calculus of thoughts, [22], where logical and mathematical
truths could be encoded and systematically deciphered.

Figure 4: A photo (Wikipedia) of the stepped reckoner , the first calculator that is able to do all four arithmetic
operations, created by Leibniz. Arguably the first physical manifestation of his philosophy.

The work of George Boole (1815-1864) in algebraic treatment of Aristotle’s syllogisms and the work of
Gottlob Frege in extending Aristotle’s propositional logic to what is nowadays referred to as the firs order logic
(c.f. Begriffsschrift) were the significant steps in the direction of logicizing mathematical reasoning in the 19th
century. Frege’s work in particular led to a philosophy of mathematics called logicism whose main tenet is that
all mathematical facts are analytic. In the late 19th century and the early 20th century, the logicist/formalist
approach led to the search for secure foundations for mathematics. ZFC set theory and later type theory
emerged as the two main favourite logical foundations for mathematics. In the foundationalist approach to
mathematics, every mathematical object is constructed from the most basic objects such as the type of natural
numbers subject to the derivation rules of logic. For several important reasons, type theory, has been favored
in formalizing mathematics in computers.

We remark that, for a long while, the foundationalist approach seemed to be at odds with the structuralist
view of mathematics (e.g. the mathematics of Riemann, Dedekind, Hilbert, Bourbaki, and Grothendieck). This
was mainly due to the ergonomical limitations of ZFC set theory in allowing a faithful encoding of mathematical
structures. Often the encoding of mathematical structures (e.g. manifolds) are completely unrecognizable from
their intuitive and informal definitions. Set theory although a complete foundation for mathematics, distorts the
structures in the process of formalizing them: think of mathematical structures as specifications in programming
language with high-level abstractions and the set theoretic encoding as binary code after compilation. We can
learn little from the binary code about what the programs do.

Dependent Type Theory and Homotopy Type Theory offer a vastly superior encoding of mathematical
structures. They are implemented in various Interactive Proof Assistants (ITP) such as Lean, Coq, Agda, Hol
Light, Isabelle, etc.

3.1 Automated Reasoning

Automatic theorem provers (ATPs) have grown in past decades, and is used in conjuction with interactive
proof assistants ITPs, 3.2, such as [8]. Historically, emphasis have been placed on SAT or Satisfyability modulo
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theories (SMT) problems, mainly focusing imporving the efficiency and performance.11 One fundamental task
is premise selection, [19]. SAT solvers are employed in Lean and Isabeller to increase user’s productivity: for
instance automating long chains of reasoning steps to prove formulas (c.f. tactic tauto in Lean), as well as
reasoning with and about equations and inequalities, and various algebraic decision procedures. In Isablle
external first-order provers can be invoked through sledgehammer.

3.2 Interactive Theorem Provers

Interactive Theorem Provers (ITPs) are the reasoning engines for formalization of mathematical proofs. Various
ITPs have been developed over the past decades, notably Mizar (1973), Isabelle (1994), Coq (1997), Agda (2007)
and more recently Lean (2013).

Here we shall focus on the most popular proof assistant, namely Lean 4. Lean is a functional programming
language and an ITP developed by Leonardo de Moura at Microsoft Research. At its core, Lean is a proof
checker, a system that checks the validity of mathematical proofs. But it is more than that. It can find errors
in the proofs, point them out, and explain their cause. If we leave a proof incomplete (e.g. by leaving the sorry
placeholders in the proof, see the figure below) it will remind us (in the InfoView displayed on the right panel
in the figure below) about all the proof obligations and the remaining goals when we click though the proof.
Moreover, using automated reasoning, it can suggest proofs. In the figure below it suggests a lemma from the
Lean’s mathematical library Mathlib which completes the proof.

Figure 5: Lean Formalization of the proof of the infinitude of primes by Euclid, circa 300 BC, in Book IX,
Proposition 20 of Euclid’s work ”Elements.” – created by the first author

11ATPS are often based on first-order logic, which limits their expressibility.
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Over the last few years, we have seen breakthroughs in large-scale deployment of ITPs in the cutting-edge
mathematical research such as the Liquid Tensor Experiment [2]. LTE is one of the first big tests where proof
assistants can organize mathematical proofs at scale.

We now discuss the many potentials of LLMs. Despite the fact that LLMs are not good at reasoning, they
can still be very useful when formalizing mathematics. They are great tools for pattern matching and this
feature can be well combined with the architecture of the proof assistants. such as suggesting next proof steps
inside a proof tactic bloc in Lean. This can be part of a feedback loop between a user using Lean and a LLM, this
is explored further in 4. Another application which we envision is the better UIUX with Lean’s mathematical
library (Mathlib).12 LLM-based tools can be useful in hallucinating and finding the formal statements which
are possible matches for the natural language prompt. Both these tools (proof suggestions in tactic blocs, and
searching lemmas/theorems based on natural language prompts) can be integrated with Lean as plugins in the
VSCode editor.

3.3 Some Challenges for Interactive Theorem Provers

We discuss three challenges to further the field of ITPs. In the practice of mathematics, lots of time is spent
on examples, concepts, and conjectures, as discussed in 2. These activities are not reflected in the final formal
libraries mathematics. We need AI tools to help us with suggesting, forming and testing conjectures. This
involves a good design of benchmarks.

Proof by analogies pose another interesting challenge. In mathematical discourse, there are often words
such ”analogously” and ”similarly” which mathematicians broadly understand. Here is a challenge: How do we
formalize proofs by similarity or even more difficult analogical proofs?

Proofs and intuition by picture and diagrams are even harder to formalize. But perhaps here we can find
a useful application for multi-modal learning. Consider the formal Lean statements about geometric objects
such as manifolds or fibre bundles. Can we train a model which spits out diagrams and pictures for geometric
constructions from formal Lean statements.

Lastly, as with many fields of applications, there is a lack of data to train neural network models for formalized
proofs. Many techniques have been developed to compensate this difficulty, which were briefly discussed in 1.1.
Given fixed compute training budget, it has been suggested that the expert iteration outperforms proof search
only (e.g. Lean GPT-f which solved IMO problems with 36 layers and 774 million trainable parameters).

3.4 Autoformalization

Autoformalization is the task of turning informal descriptions to formal mathematics. Examples of formalization
include the Kepler conjecture, the Four-Color theorem, and the Feit-Thompson theorem, giving certainty to
the correctness. Autoformalization is seen as essential, [27, 3] in training language model. Compared to large
body of corpus on the web, the Archive of Formal Proofs consists of less than 0.5% of the training data than
large language model like Codex. Recent progress uses large language models, Wu et al. [37], which contrast
to older series of work [17]. The main challenges of autoformalization include (1) bridging the logical gaps
left in pen-and-paper proofs, (2) assuming the implicit contexts and assumptions, and (3) aligning informal
definitions/concepts to formal ones.

12When proving statements, we know which lemmas and theorems of informal mathematics we need but we don’t know whether
they exist in the vast
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4 Future directions: the scientific coauthor

As suggested in a similar form by a professor of Mathematics, Alex Kontrovich, and already existing in many
fields of research, [25] , a natural holy grail is to have a scientific coauthor. A typical pipeline should look like:

Prompt GPT? Response

Lean?

(1) (3)

(2)

In (1), the reader suggests an idea. In (2) the model runs inferences and checks against itself using interactive
theorem provers. In (3) it makes it final inference. Lastly, the process is cycled.
Combining all of (3) , (2) into one seamless pipeline is ambitious and is far from current capabilities. Works in
this direction include, Draft, Sketch and Proof, of Jiang et al, [13], and LeanDojo. 13 To name a few further
desirable traits: proof explaining/outlining, proof repair, library design.

Lastly, whether in use of autoformalization, 3.4, or response generation, as 2, it is desirable that the output
to be sound and reliable. LLM outputs can have unwanted repetition, [38], lack of generalization, lack of
robustness [35], and even non-human interpretable, as can be seen in [37]. Some future avenues are suggested
in [15, 7.2].

13Unfortunately, this still has many drawbacks.
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