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Previous work in bringing HoTT to Lean

special support for Homotopy Type Theory in Lean 2

– github.com/leanprover/lean2/blob/master/hott/hott.md

– Serre spectral sequence in Lean 2, by Floris van Doorn
github.com/cmu-phil/Spectral

HoTT in Lean 3 by Gabriel Ebner, et al: github.com/gebner/hott3

– port of the Lean 2 HoTT library to Lean 3.

– The Lean 3 kernel is inconsistent with univalence.

– No modifications to the Lean kernel.

github.com/leanprover/lean2/blob/master/hott/hott.md
github.com/cmu-phil/Spectral
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Polynomial Functors : A prelude



Let C be a category with finite limits.

Let 𝑝 ∶ 𝐸 → 𝐵 be an exponentiable morphism in C. Thus:

/𝐸 /𝐵

Σ𝑝

�

Π𝑝

�

Δ𝑝

When 𝐵 = 1 is the terminal object, we write

Σ𝐸 ⊢ Δ𝐸 ⊢ Π𝐸



/𝐸 /𝐵

Σ𝑝

�

Π𝑝

�

Δ𝑝

@[inherit_doc]
prefix:90 "Σ_ " => Over.forget

@[inherit_doc]
prefix:90 "∆_ " => Over.pullback

@[inherit_doc]
prefix:90 "Π_ " => CartesianExponentiable.functor



The polynomial endofunctor 𝑃𝑝 ∶ C → C associated to 𝑝 is the
composite

C/𝐸 C/𝐵

C C

Π𝑝

Σ𝐵Δ𝐸

𝑃𝑝

In the internal language of C,

𝑃𝑝 (𝑋) =
∑︁
𝑏∶𝐵

𝑋𝐸 (𝑏)



def functor [HasBinaryProducts C] (P : UvPoly E B) :
C ⇒ C :=

(∆_ E) ≫ (Π_ P.p) ≫ (Σ_ B)



Natural models of HoTT



variable {Ctx : Type u} [SmallCategory Ctx] [HasTerminal
Ctx]

notation:max "y(" Γ ")" => yoneda.obj Γ

variable (Ctx) in

class NaturalModelBase where
Tm : Psh Ctx
Ty : Psh Ctx
tp : Tm Ð→ Ty
ext (Γ : Ctx) (A : y(Γ) Ð→ Ty) : Ctx
disp (Γ : Ctx) (A : y(Γ) Ð→ Ty) : ext Γ A Ð→ Γ
var (Γ : Ctx) (A : y(Γ) Ð→ Ty) : y(ext Γ A) Ð→ Tm
disp_pullback {Γ : Ctx} (A : y(Γ) Ð→ Ty) :

IsPullback (var Γ A) (yoneda.map (disp Γ A)) tp A



Let 𝑡 𝑝 ∶ 𝑇𝑚 → 𝑇𝑦 be the representable typing natural transformation
of a natural model.

Consider the associated polynomial endofunctor
𝑃𝑡 𝑝 ∶ 𝑃𝑠ℎ(Ctx) → 𝑃𝑠ℎ(Ctx) defined as

Σ𝑇𝑦 ○ Π𝑡 𝑝 ○ Δ𝑇𝑚 .

Thus, internally,

𝑃𝑡 𝑝 (𝑋) =
∑︁
𝐴∶𝑇𝑦

𝑋 [𝐴]

Applying P to 𝑇𝑦 itself gives the object of type families:

𝑃𝑡 𝑝 (𝑇𝑦) =
∑︁
𝐴∶𝑇𝑦

𝑇𝑦 [𝐴]



Theorem (Awodey, 2017):

The natural model models the rules of dependent type theory for
the type formers Σ, Π and the universe.
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Theorem (Garner): The map 𝑡 𝑝 ∶ 𝑇𝑚 → 𝑇𝑦 models the rules for
intensional identity types just if there are maps (𝑖, 𝐼𝑑) making the
following diagram commute

𝑇𝑚 𝑇𝑚

𝑇𝑚 ×𝑇𝑦 𝑇𝑚 𝑇𝑦

𝐼

𝛿 𝑡 𝑝

𝐼𝑑

and the induced comparison square a uniform weak pullback.



class NaturalModelPi where
Pi : (P tp).obj Ty Ð→ M.Ty
lam : (P tp).obj Tm Ð→ M.Tm
Pi_pullback : IsPullback lam ((P tp).map tp) tp Pi



class NaturalModelSigma where
Sig : (P tp).obj Ty Ð→ M.Ty
pair : (P tp).obj Tm Ð→ M.Tm
Sig_pullback : IsPullback pair ((uvPoly tp).comp

(uvPoly tp)).p tp Sig



variable [M : NaturalModelBase Ctx]

class NaturalModelIdBase where
Id : pullback tp tp Ð→ M.Ty
i : Tm Ð→ M.Tm
Id_commute : δ ≫ Id = i ≫ tp



irreducible_def NaturalModelIdData :=
{ J : pb2 Ð→ (P q).obj M.Tm // J ≫ Y = 1 _ }

class NaturalModelId extends NaturalModelIdBase Ctx where
data : NaturalModelIdData Ctx

def NaturalModelId.J [NaturalModelId Ctx] :
pb2 Ð→ (P q).obj M.Tm := by

theorem NaturalModelId.J_section [NaturalModelId Ctx] : J
(Ctx := Ctx) ≫ Y = 1 _ := by



The Groupoid Model of HoTT



The Hofmann-Streicher groupoid model (1995):

● Types 𝐴 are groupoids.

● Terms 𝑥 ∶ 𝐴 are objects.

● Identity types 𝐼𝑑𝐴 𝑥 𝑦 are hom-sets (discrete groupoids).

● Dependent types (𝑥 ∶ 𝐴 ⊢ 𝐵 ∶ 𝑇𝑦𝑝𝑒) are fibrations of groupoids.

● The propositional truncation of a type 𝐴, is the groupoid with the
same objects as 𝐴, but with a unique isomorphism between any pair of
objects.

● The universe consists of discrete groupoids.

● The universe is univalent.



We can use the groupoid model for

● synthetic group theory by defining groups as pointed, connected
groupoids,

● groupoid quotients,

● Eilenberg-MacLane spaces 𝐾 (𝐺,1), and some basic cohomology,

● classifying spaces 𝐵𝐺, and the theory of covering spaces,

● calculation of 𝜋1(𝑆1) = 𝑍 using univalence and circle induction,

● Joyal’s combinatorial species,

● Rezk completion of a small category.



We are half way there on obtaining the groupoid model of HoTT
in Lean4.
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