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0.1 Natural Models
In this section we describe the categorical semantics of HoTT via Natural Models.
This will not be a detailed account of the syntax of HoTT, but will be a detailed
account of what is needed to interpret such syntax. It will follow [Awo17], but with
a more compact description of identity types using the technology of polynomial
endofunctors, and a universe of small types.

Notation. We will have two universe sizes - one small and one large. We denote the
category of small sets as set and the large sets as Set. For example, we could take
the small sets set to be those in Set bounded in cardinality by some inaccessible
cardinal.

0.1.1 Types
Let ℂ be a locally small category, i.e. a category whose class of objects is a Set
and whose hom-classes are from set. We write Psh(ℂ) for the category of (large)
presheaves over ℂ,

Psh(ℂ) =def [ℂop,Set]

Definition 0.1.1. Following Awodey [Awo17], we say that a map tp ∶ Tm → Ty
is presentable when any fiber of a representable is representable. In other words,
given any Γ ∈ ℂ and a map 𝐴 ∶ y(Γ) → Ty, there is some representable Γ ⋅ 𝐴 ∈ ℂ
and maps disp𝐴 ∶ Γ ⋅ 𝐴 → Γ and var𝐴 ∶ y(Γ ⋅ 𝐴) → Tm forming a pullback

y(Γ ⋅ 𝐴) Tm

y(Γ) Ty

var𝐴

y(disp𝐴) tp

𝐴

The Natural Model associated to a presentable map tp ∶ Tm → Ty consists of

• contexts as objects Γ,Δ,… ∈ ℂ,

• a type in context y(Γ) as a map 𝐴∶ y(Γ) → Ty,

• a term of type 𝐴 in context Γ as a map 𝑎∶ y(Γ) → Tm such that

Tm
tp
��

Γ 𝐴
//

𝑎
>>}}}}}}}}
Ty

commutes,

• an operation called “context extension” which given a context Γ and a type
𝐴∶ y(Γ) → Ty produces a context Γ ⋅ 𝐴 which fits into a pullback diagram
below.

y(Γ.𝐴) //

��

Tm

��

y(Γ) 𝐴
// Ty
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Remark. Sometimes, we first construct a presheaf 𝑋 over Γ and observe that it
can be classified by a map into Ty. We write

𝑋 //

��

Tm

��

y(Γ)
⌜𝑋⌝

// Ty

to express this situation, i.e. 𝑋 ≅ y(Γ ⋅ ⌜𝑋⌝).

0.1.2 Pi types
We will use 𝑃tp to denote the polynomial endofunctor (definition 0.3.1) associated
with our presentable map tp. Then an interpretation of Π types consists of a
pullback square

𝑃tpTm Tm

𝑃tpTy Ty

𝜆

𝑃tptp
⌟

tp

Π

(0.1.1)

0.1.3 Sigma types
An interpretation of Σ types consists of a pullback square

𝑄 Tm

𝑃tpTy Ty

pair

tp◁tp
⌟

tp

Σ

(0.1.2)

where the composition of polynomials tp ◁ tp ∶ 𝑄 → 𝑃tpTy is given by

𝑄 𝑅 𝑅 𝑃tpTy

Tm × Tm Ty × Tm Tm Ty

Tm Ty •

tp◁tp

⌟
counit

⌟
tp∗Tm∗Ty

⌟ ⌟ tp

tp

Here, counit ∶ tp∗tp∗Tm∗Ty → Tm∗Ty is the counit of the adjunction tp∗ ⊣ tp∗ at
Tm∗Ty ∈ Psh(grpd)/Tm.

0.1.4 Identity types
To interpret the formation and introduction rules for identity types we require a
commutative square (this need not be pullback)

Tm Tm

tp ×Ty tp Ty

refl

𝛿 tp

Id

(0.1.3)
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where 𝛿 is the diagonal:

Tm

tp ×Ty tp Tm

Tm Ty

𝛿

⌟
tp

tp

Then let 𝐼 be the pullback. We get a comparison map 𝜌

Tm

𝐼 Tm

tp ×Ty tp Ty

𝜌

refl

𝛿 ⌟
tp

Id

Then view 𝜌 ∶ tp → 𝑞 as a map in the slice over Ty.

Tm

𝐼

tp ×Ty tp

Tm

Ty

𝜌

𝛿

tp 𝑞fst

Now (by definition 0.3.6) applying 𝑃− ∶ (Psh(ℂ)/Ty)op → [Psh(ℂ),Psh(ℂ)] to
𝜌 ∶ tp → 𝑞 gives us a naturality square (this also need not be pullback).

𝑃𝑞Tm 𝑃tpTm

𝑃𝑞Ty 𝑃tpTm

𝜌⋆
Tm

𝑃𝑞tp 𝑃tptp

𝜌⋆
Ty

(0.1.4)

Taking the pullback 𝑇 and the comparison map 𝜀 we have

𝑃𝑞Tm

𝑇 𝑃tpTm

𝑃𝑞Ty 𝑃tpTy

𝜀

𝜌⋆
Tm

𝑃𝑞tp
⌟

𝑃tptp

𝜌⋆
Ty

(0.1.5)

Finally, we require a section J ∶ 𝑇 → 𝑃𝑞Tm of 𝜀, to interpret the identity elimination
rule.
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0.1.5 A type of small types
We now wish to formulate a condition that allows us to have a type of small types,
written U, not just judgement expressing that something is a type. With this
notation, the judgements that we would like to derive is

U ∶ Ty
𝑎∶ U

El(𝑎) ∶ Ty

In the Natural Model, a universe U is postulated by a map

𝜋 ∶ E → U

In the Natural Model:

• There is a pullback diagram of the form

U //

��

Tm

��

1
⌜U⌝

// Ty

(0.1.6)

• There is an inclusion of U into Ty

El ∶ U ↣ Ty

• 𝜋 ∶ E → U is obtained as pullback of tp; There is a pullback diagram

𝐸 // //

��

Tm

��

U //
El

// Ty

(0.1.7)

With the notation above, we get

y(Γ.El(𝑎)) //

��

E //

��

Tm

��

y(Γ) 𝑎
//

𝐴

<<
U

El
// Ty

Both squares above are pullback squares.

0.1.6 Stablity of the universe under type formers
Take the pullback diagram eq. (0.1.7). That is a morphism in the category of poly-
nomials. By definition 0.3.7 we have a cartesian natural transformation 𝑃𝜋 → 𝑃tp
induced by the pullback eq. (0.1.7). This cartesian natural transformation induces
the cube diagram below; all of the squares in the cube are pullback squares.
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𝑃𝜋𝐸 𝑃tp𝐸

𝑃𝜋Tm 𝑃tpTm

𝑃𝜋U 𝑃tp𝑈

𝑃𝜋Ty 𝑃tpTy

(0.1.8)

We will use the compositions 𝑃𝜋𝑈 → 𝑃tpTy and 𝑃𝜋𝐸 → 𝑃tpTm below.

Definition 0.1.2. We will say that universe U is closed under formation of Π-types
when we have some map Π𝑈 ∶ 𝑃𝜋U → U making the following square commute

𝑃𝜋U //

ΠU

��
�
�
�

𝑃tpTy

Π
��

U
El

// Ty

(0.1.9)

Note that this is merely propositional when El is a monomorphism.

From the universal property of pullbacks we can define 𝜆𝑈𝑃𝜋E → E.

𝑃tp𝐸 𝐸

𝑃tpTm Tm

𝑃𝜋𝑈 𝑈

𝑃tpTy Ty

𝜆𝑈

𝜆

Π𝑈

El

Π

The top and bottom squares in the cube above are not pullbacks, but we know
three of the vertical faces are pullback squares. By the pullback pasting lemma it
follows that the back square involving Π𝑈 and 𝜆𝑈 is also a pullback square. This
concludes the construction of the Π type former for the universe U. The only data
we needed to supply was the lift Π𝑈 of Π∶ 𝑃tpTy → Ty to the universe U.

Definition 0.1.3. We will say that universe U is closed under formation of Σ-types
when we have some map Σ𝑈 ∶ 𝑃𝜋U → U making the following square commute

𝑃𝜋U //

ΣU

��
�
�
�

𝑃tpTy

Σ
��

U
El

// Ty

(0.1.10)

Again, this is merely propositional when El is a monomorphism.
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Now consider the polynomial composition 𝜋 ◁ 𝜋.

𝑄𝑈 𝑅𝑈 𝑅𝑈 𝑃𝜋𝑈

𝐸 ×𝐸 𝐸 × 𝑈 𝐸 𝑈

𝐸 𝑈

𝑄 𝑅 𝑅 𝑃tpTy

Tm × Tm Tm × Ty Tm Ty

Tm Ty

𝜋◁𝜋

⌟ ⌟

⌟
𝜋

⌟ ⌟
tp∗Tm∗Ty

⌟
tp

tp

Using pullback pasting, we see that the horizontal faces of the left cuboid and the
right cube are all pullbacks. Hence we have a pullback

𝑄𝑈 𝑅𝑈 𝑃𝜋𝑈

𝑄 𝑅 𝑃tpTy

𝜋◁𝜋

⌟ ⌟

tp◁tp

which is the left side of the following cube

𝑄𝑈 𝐸

𝑄 Tm

𝑃𝜋𝑈 𝑈

𝑃tpTy Ty

pair𝑈

𝜋◁𝜋

pair

tp◁tp Σ𝑈

El

Σ

As was the case for Π, pullback pasting along the vertical faces shows that the
back face involving Σ𝑈 and pair𝑈 is also a pullback square. This concludes the
construction of the Σ type former for the universe U. Again, the only data we
needed to supply was the lift Σ𝑈 of Σ∶ 𝑃tpTy → Ty to the universe U.
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𝜋 ×U 𝜋 E

tp ×Ty tp Tm

E U

Tm Ty

⌟

⌟

Definition 0.1.4. We will say that universe U is closed under formation of Id-types
when we have some map Id𝑈 ∶ 𝜋 ×U 𝜋 → U making the following square commute

𝜋 ×U 𝜋 tp ×Ty tp

U Ty

Id𝑈 Id

El

Again, this is merely propositional when El is a monomorphism.

From this we can obtain refl𝑈 since E is a pulback.

𝐸 𝐸

Tm Tm

𝜋 ×U 𝜋 𝑈

tp ×Ty tp Ty

refl𝑈

𝛿𝑈
refl

𝛿 Id𝑈

El

Id

We must ensure that the left face commutes - which we can prove using the universal
property of tp×Ty tp. It remains to construct J𝑈 , a section of 𝜀𝑈 , given below

E 𝐼𝑈 E E Tm

𝜋 ×U 𝜋 U 𝐼𝑈 𝐼 Ty

𝜋 ×U 𝜋 tp ×Ty tp

𝑃𝑞𝑈E 𝑇𝑈 𝑃𝜋E E Tm

𝑃𝑞𝑈U 𝑃𝜋U U Ty

𝜌𝑈

refl𝑈

𝛿

⌟
𝜋

Id𝑈 ⌟

𝑞𝑈

⌟

⌟

𝜀𝑈

(𝜌𝑈
⋆)E

𝑃𝑞𝑈 tp

⌟
𝑃𝜋𝜋

⌟

(𝜌𝑈
⋆)U

(0.1.11)
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Now the above give us the following pullback factorization of eq. (0.1.7)

𝜋 tp

E Tm

𝐼𝑈 𝐼

U Ty

𝜅

𝜌𝑈

⌟

𝜋

𝜌

tp

𝑞𝑈
⌟

𝑞

El

𝜅𝑞

If we apply definition 0.3.7 to the lower pullback square, i.e. 𝜅𝑞 then we will get a
cartesian natural tranformation 𝑃𝜅𝑈

∶ 𝑃𝑞𝑈 → 𝑃𝑞. Like in eq. (0.1.8), evaluating this
at the pullback square eq. (0.1.7) induces the cube below with pullbacks on every
face.

𝑃𝑞𝑈E 𝑃𝑞E

𝑃𝑞𝑈Tm 𝑃𝑞Tm

𝑃𝑞𝑈U 𝑃𝑞U

𝑃𝑞𝑈Ty 𝑃𝑞Ty

(0.1.12)

Now we consider the diagrams for both 𝜀 and 𝜀𝑈
𝑃𝑞𝑈E 𝑇𝑈 𝑃𝜋E

𝑃𝑞𝑈U 𝑃𝜋U

𝑃𝑞Tm 𝑇 𝑃tpTm

𝑃𝑞Ty 𝑃tpTy

𝜀𝑈
⌟

⌟𝜀

The right face is the composed diagonal pullback square from eq. (0.1.8). The left
face of the outer cube is the composed diagonal pullback square from eq. (0.1.12).
The front face of the outer cube is the naturality square for 𝜌⋆ from eq. (0.1.5) and
similarly the back face is the naturality square for 𝜌𝑈⋆ from eq. (0.1.11).

Since the left face is a pullback square, to make 𝐽𝑈 ∶ 𝑇𝑈 → 𝑃𝑞𝑈E it suffices to
consider

𝑇𝑈 𝑇

𝑃𝑞𝑈E 𝑃𝑞Tm

𝑃𝑞𝑈U 𝑃𝑞Ty

𝑑

𝐽𝑈 𝐽

⌟
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It follows from uniqueness of maps into pullbakcs that 𝐽𝑈 so defined is a section of
𝜀𝑈 . This concludes the construction of the Id type former for the universe U. Again,
the only data we needed to supply was the lift Id𝑈 of Id to the universe U.

0.1.7 Binary products and Exponentials
It is convenient to specialize Σ and Π types to their non-dependent counterparts.
In the natural model we can construct these by considering first the map

(fst, snd) ∶ Ty × Ty → 𝑃tpTy

which we can visualize in

Ty Tm × Ty Tm

Ty × Ty Ty

snd

fst∗tp
⌟

tp

fst

Then, respectively, the pullback of the diagrams eq. (0.1.1) and eq. (0.1.2) for
interpreting Π and Σ rules along this map give us pullback diagrams for interpreting
function types and product types.

𝐹 𝑃tpTm Tm

Ty × Ty 𝑃tpTy Ty

(dom,fun)

𝜆

(dom,cod)

𝜆

𝑃tptp

⌟
⌟

tp

(fst,snd)

Exp

Π

Tm × Tm 𝑄 Tm

Ty × Ty 𝑃tpTy Ty

(snd,fst,tp∘snd)

pair

tp×tp
⌟

pair

tp◁tp
⌟

tp

(fst,snd)

×

Σ

By the universal property of pullbacks and proposition 0.3.2 We can write a map
Γ → 𝐹 as a triple (𝐴,𝐵, 𝑓) such that 𝐴,𝐵 ∶ Γ → Ty and

Γ ⋅ 𝐴 Tm

Γ Ty

𝑓

disp𝐴 tp

𝐵

This gives us four equivalent ways we can view a function. Namely, as 𝑓 ∶ Γ⋅𝐴 → Tm
in the above diagram, 𝜆 ∘ 𝑓 ∶ Γ → Tm, as (𝐴,𝐵, 𝑓) ∶ Γ → 𝐹 , or as a map between
the displays disp𝐴 → disp𝐵
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Γ ⋅ 𝐴

Γ ⋅ 𝐵 Tm

Γ Ty

(disp𝐴,𝑓)

𝑓

disp𝐴 disp𝐵

⌟

𝐵

For the formalization, we need not prove that the pullback of tp ◁ tp is tp × tp.
Rather, we can also use the universal property of pullbacks and proposition 0.3.2
to classify a map into the pullback (whatever it may be) as a pair (𝛼, 𝛽), where
𝛼, 𝛽 ∶ Γ → Tm. This could then be adapted to a proof that the pullback is what
the diagram claims it to be.

Naturally, there are the same constructions bounded by the universe, which will
exist when Π𝑈 and Σ𝑈 exist.

U × U U U × U U

Ty × Ty Ty Ty × Ty Ty

Exp𝑈

El×El El

×𝑈

El×El El

Exp ×

The identity function id𝐴 ∶ Γ → Tm of type Exp ∘ (𝐴,𝐴) ∶ Γ → Ty can be defined
by the following

Γ

Γ ⋅ 𝐴 Tm 𝐹 Tm

Γ Ty Ty × Ty Ty

(𝐴,𝐴,var𝐴)

id𝐴

(𝐴,𝐴)var𝐴
disp𝐴

⌟
tp

𝜆

(dom,cod) tp

𝐴 Exp

Viewed as a map between the display maps, this is simply the identity Γ ⋅ 𝐴 →
Γ ⋅ 𝐴.

Γ ⋅ 𝐴

Γ ⋅ 𝐴 Tm

Γ Ty

var𝐴

disp𝐴

var𝐴
disp𝐴

⌟
tp

𝐴

Composition is also simplest when viewed as an operation on maps between fibers.
Given 𝑓 ∶ disp𝐴 → disp𝐵 and 𝑔 ∶ disp𝐵 → disp𝐶 , the composition is 𝑔 ∘ 𝑓 ∶ disp𝐴 →
disp𝐶 .

0.1.8 Univalence
For two types 𝐴𝐵 ∶ Γ → Ty and two functions 𝑓, 𝑔 ∶ 𝐴 → 𝐵 we can define internally
a homotopy from 𝑓 to 𝑔 as

𝑓 ∼ 𝑔 ∶= Π𝑎∶𝐴 Id(𝑓 𝑎, 𝑔 𝑎)
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We define the types of left and right inverses of 𝑓 ∶ 𝐴 → 𝐵 as

BigLinv𝑓 ∶= Σ𝑔∶𝐵→𝐴 𝑔 ∘ 𝑓 ∼ id𝐴

BigRinv𝑓 ∶= Σ𝑔∶𝐵→𝐴 𝑓 ∘ 𝑔 ∼ id𝐵

and the property of being an equivalence

IsBigEquiv𝑓 ∶= BigLinv𝑓 × BigRinv𝑓

We could do the same for two small types 𝐴,𝐵 ∶ Γ → U

IsEquiv𝑓 ∶= Linv𝑓 × Rinv𝑓
Equiv𝐴𝐵 ∶= Σ𝑓∶𝐴→𝐵IsEquiv𝑓

Again, internally we can define a function

IdToEquiv𝐴𝐵 ∶ Id(𝐴,𝐵) → Equiv𝐴𝐵

which uses 𝐽 to transport along the proof of equality to produce an equivalence.
Univalence for universe U states that this itself is an equivalence

ua ∶ IsBigEquiv(IdToEquiv𝐴𝐵)

Note that this statement is large, i.e. not a type in the universe U.

U ⋅ U ⋅ Id U ⋅ U ⋅ Equiv

U ⋅ U

IdToEquiv

0.1.9 Extensional identity types and UIP
In this section we outline variations on the identity type in the natural model.
We will describe these as additional structure on Id, as opposed to introducing
different identity types. The first option is fully extensional identity types, i.e.
those satisfying equality reflection and uniqueness of identity proofs (UIP). Equality
reflection says that if one can construct a term satisfying Id(𝑎, 𝑏) then we have that
definitionally 𝑎 ≡ 𝑏, i.e. they are equal morphisms in the natural model. This
amounts to requiring that eq. (0.1.3) is a pullback, i.e. 𝜌 is an isomorphism

Tm Tm

tp ×Ty tp Ty

refl

𝛿
⌟

tp

Id

Note that this means 𝜌⋆ is an isomorphism, from which it follows that eq. (0.1.4) is
also a pullback, i.e. 𝜀 is an isomorphism.

𝑃𝑞Tm 𝑃tpTm

𝑃𝑞Ty 𝑃tpTm

𝜌⋆
Tm

𝑃𝑞tp
⌟

𝑃tptp

𝜌⋆
Ty
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If we were to only require UIP then this is asking that 𝐼 → tp ×Ty tp is a strict
proposition, meaning for any (𝑎, 𝑏) ∶ Γ → tp ×Ty tp there it at most one lift

𝐼

Γ tp ×Ty tp

!

(𝑎,𝑏)

One might wonder what other variations we could come up with by tweaking the
pullback conditions. In fact, only requiring that 𝜌 has a section is equivalent to
requiring that 𝜌 is an isomorphism. So this just the extensional case again.

If we require instead that 𝜀 is an isomorphism then this is giving an 𝜂-rule for
𝐽 , from which we can prove equality reflection and UIP [Hof95]. So this just the
extensional case again.

0.2 The Groupoid Model
In this section we construct a natural model in Psh(grpd) the presheaf category
indexed by the category grpd of (small) groupoids. We will build the classifier for
display maps in the style of Hofmann and Streicher [HS98] and Awodey [Awo23]. To
interpret the type constructors, we will make use of the weak factorization system
on grpd - which comes from restricting the “classical Quillen model structure” on
cat [Joy] to grpd.

0.2.1 Classifying display maps

Notation. We denote the category of small categories as cat and the large categories
as Cat. We denote the category of small groupoids as grpd.

We are primarily working in the category of large presheaves indexed by the (large,
locally small) category of small groupoids, which we will denote by

Psh(grpd) = [grpdop,Set]

In this section, Tm and Ty and so on will refer to the natural model semantics in
this specific model.

Definition 0.2.1 (Pointed). We will take the category of pointed small categories
cat• to have objects as pairs (ℂ ∈ cat, 𝑐 ∈ ℂ) and morphisms as pairs

(𝐹 ∶ ℂ1 → ℂ0, 𝜙 ∶ 𝐹𝑐1 → 𝑐0) ∶ (ℂ1, 𝑐1) → (ℂ0, 𝑐0)

Then the category of pointed small groupoids grpd• will be the full subcategory of
objects (Γ, 𝑐) with Γ a groupoid.

Definition 0.2.2 (The display map classifier). We would like to define a natural
transformation in Psh(grpd)

tp ∶ Tm → Ty
with representable fibers.

Consider the functor that forgets the point

𝑈 ∶ grpd• → grpd in Cat.

12



If we apply the Yoneda embedding y ∶ Cat → Psh(Cat) to 𝑈 we obtain

𝑈∘∶ [−,grpd•] → [−,grpd] in Psh(Cat).

Since any small groupoid is also a large category 𝑖 ∶ grpd ↪ Cat, we can restrict
Cat indexed presheaves to be grpd indexed presheaves (this the nerve in 𝑖! ⊣ res).
We define tp ∶ Tm → Ty as the image of 𝑈∘ under this restriction.

Cat Psh(Cat) Psh(grpd)

grpd [−,grpd] Ty

y res

Note that Tm and Ty are not representable in Psh(grpd).

Remark 0.2.3. By Yoneda we can identify maps with representable domain into the
type classifier

𝐴 ∶ yΓ → Ty in Psh(grpd)
with functors

𝐴 ∶ Γ → grpd in Cat

Definition 0.2.4 (Grothendieck construction). From ℂ a small category and 𝐹 ∶
ℂ → cat a functor, we construct a small category ∫𝐹 . For any 𝑐 in ℂ we refer to
𝐹𝑐 as the fiber over 𝑐. The objects of ∫𝐹 consist of pairs (𝑐 ∈ ℂ, 𝑥 ∈ 𝐹𝑐), and
morphisms between (𝑐, 𝑥) and (𝑑, 𝑦) are pairs (𝑓 ∶ 𝑐 → 𝑑, 𝜙 ∶ 𝐹 𝑓 𝑥 → 𝑦). This
makes the following pullback in Cat

(𝑐, 𝑥) (𝐹𝑐, 𝑥)

(𝑐, 𝑥) ∫𝐹 cat• (𝐶, 𝑐)

𝑐 ℂ cat 𝐶

⌟

𝐹

Definition 0.2.5 (Grothendieck construction for groupoids). Let Γ be a groupoid
and 𝐴∶ Γ → grpd a functor, we can compose 𝐹 with the inclusion 𝑖 ∶ grpd ↪ Cat
and form the Grothendieck construction which we denote as

Γ ⋅ 𝐴 ∶= ∫𝑖 ∘ 𝐴 disp𝐴 ∶ Γ ⋅ 𝐴 → Γ

This is also a small groupoid since the underlying morphisms are pairs of morphisms
from groupoids Γ and 𝐴𝑥 for 𝑥 ∈ Γ. Furthermore the pullback factors through
(pointed) groupoids.

Γ ⋅ 𝐴 grpd• cat•

Γ grpd cat

disp𝐴

⌟ ⌟

𝐴

13



Corollary 0.2.6 (The display map classifier is presentable). For any small groupoid
Γ and 𝐴 ∶ yΓ → Ty, the pullback of tp along 𝐴 can be given by the representable
map ydisp𝐴.

yΓ ⋅ 𝐴 Tm

yΓ Ty
ydisp𝐴

⌟
tp

𝐴

Proof. Consider the pullback in Cat

Γ ⋅ 𝐴 grpd•

Γ grpd

⌟

𝐴

We send this square along res ∘ y in the following

Cat Psh(Cat)

grpd Psh(grpd)

y

res
y

The Yoneda embedding y ∶ Cat → Psh(Cat) preserves pullbacks, as does res since
it is a right adjoint (with left Kan extension 𝜄! ⊣ res𝜄).

0.2.2 Groupoid fibrations
Definition 0.2.7 (Fibration). Let 𝑝 ∶ ℂ1 → ℂ0 be a functor. We say 𝑝 is a
split Grothendieck fibration if we have a dependent function lift 𝑎 𝑓 satisfying the
following: for any object 𝑎 in ℂ1 and morphism 𝑓 ∶ 𝑝 𝑎 → 𝑦 in the base ℂ0 we have
lift 𝑎 𝑓 ∶ 𝑎 → 𝑏 in ℂ1 such that 𝑝(lift 𝑎 𝑓) = 𝑓 and moreover lift 𝑎 𝑔 ∘𝑓 = lift 𝑏 𝑔 ∘ lift 𝑎 𝑓

𝑎 𝑏

𝑥 𝑦

lift𝑎𝑓

𝑓

In particular, we are interested in split Grothendieck fibrations of groupoids, which
are the same as isofibrations (replace all the morphisms with isomorphisms in the
definition).

Unless specified otherwise, by a fibration we will mean a split Grothendieck fibration
of groupoids. Let us denote the category of fibrations over a groupoid Γ as FibΓ,
which is a full subcategory of the slice grpd/Γ. We will decorate an arrow with ↠
to indicate it is a fibration.

14



Note that disp𝐴 ∶ Γ ⋅ 𝐴 → Γ is a fibration, since for any (𝑥 ∈ Γ, 𝑎 ∈ 𝐴𝑥) and
𝑓 ∶ 𝑥 → 𝑦 in Γ we have a morphism (𝑓, id𝐴𝑓 𝑎) ∶ (𝑥, 𝑎) → (𝑦,𝐴 𝑓 𝑎) lifting 𝑓 . Fur-
thermore

Proposition 0.2.8. There is an adjoint equivalence

[Γ,grpd] FibΓ

disp
≃

fiber

where for each fibration 𝛿 ∶ Δ → Γ and each object 𝑥 ∈ Γ

fiber𝛿 𝑥 = full subcategory {𝑎 ∈ Δ | 𝛿 𝑎 = 𝑥}

It follows that all fibrations are pullbacks of the classifier 𝑈 ∶ grpd• → grpd, when
viewed as morphisms in Cat.

Pullback of fibrations along groupoid functors is not strictly coherent, in the sense
that for 𝜏 ∶ Ξ → Δ and 𝜎 ∶ Δ → Γ and a fibration 𝑝 ∈ FibΓ we only have an
isomorphism

𝜏∗𝜎∗𝑝 ≅ (𝜎 ∘ 𝜏)∗𝑝
rather than equality.

In order to interpret reindexing/substitution strictly, it is convenient to work with
classifiers [Γ,grpd] instead of fibrations.

Proposition 0.2.9 (Strictly coherent pullback). Let 𝜎 ∶ Δ → Γ be a functor between
groupoids. Since display maps are pullbacks of the classifier 𝑈 ∶ grpd• → grpd we
have the pasting diagram

Δ.𝐴𝜎 Γ.𝐴 grpd•

Δ Γ grpd

𝜎𝐴

disp𝐴𝜎

⌟
disp𝐴

⌟

𝜎 𝐴

This gives us a functor ∘𝜎 ∶ [Γ,grpd] → [Δ,grpd] which is our strict version of
pullback.

Corollary 0.2.10 (Fibrations are stable under pullback).

[Γ,grpd] FibΓ

[Δ,grpd] FibΔ

∘𝜎

fiber

𝜎∗

disp

We can deduce a corresponding fact about fibrations: since fibrations are closed
under isomorphism, and since any pullback in grpd of a fibration 𝑝 is isomorphic
to the display map dispfiber𝑝∘𝜎, any pullback of a fibration is a fibration.

A strict interpretation of type theory would require Σ and Π-formers to be stable
under pullback (Beck-Chevalley). Thus we again define these as operations on
classifiers [Γ,grpd].

15



Definition 0.2.11 (Σ-former operation). Then given 𝐴 ∶ Γ → grpd and 𝐵 ∶
Γ ⋅ 𝐴 → grpd we define Σ𝐴𝐵 ∶ Γ → grpd such that Σ𝐴𝐵 acts on objects by
forming fiberwise Grothendieck constructions

Σ𝐴𝐵(𝑥) ∶= 𝐴(𝑥) ⋅ 𝐵 ∘ 𝑥𝐴

where 𝑥𝐴 ∶ 𝐴(𝑥) → Γ ⋅ 𝐴 takes 𝑓 ∶ 𝑎0 → 𝑎1 to (id𝑥, 𝑓) ∶ (𝑥, 𝑎0) → (𝑥, 𝑎1)

𝐴(𝑥) ⋅ 𝐵 ∘ 𝑥𝐴 Γ.𝐴.𝐵 •

𝐴(𝑥) Γ.𝐴 grpd

• Γ grpd

disp𝐵∘𝑥𝐴
disp𝐵

𝑥𝐴

!
⌟

𝐵

disp𝐴

⌟

𝑥 𝐴

Σ𝐴𝐵 acts on morphism 𝑓 ∶ 𝑥 → 𝑦 in Γ and (𝑎 ∈ 𝐴(𝑥), 𝑏 ∈ 𝐵(𝑥, 𝑎)) by

Σ𝐴𝐵 𝑓 (𝑎, 𝑏) ∶= (𝐴 𝑓 𝑎,𝐵 (𝑓, id𝐴𝑓 𝑎) 𝑏)
and for morphism (𝛼 ∶ 𝑎0 → 𝑎1 ∈ 𝐴(𝑥), 𝛽 ∶ 𝐵 (id𝑥, 𝛼) 𝑏0 → 𝑏1 ∈ 𝐵(𝑥, 𝑎1)) in Σ𝐴𝐵𝑥

Σ𝐴𝐵 𝑓 (𝛼, 𝛽) ∶= (𝐴 𝑓 𝛼,𝐵 (𝑓, id𝐴𝑓 𝑎1
) 𝛽)

Let us also define the natural transformation fst ∶ Σ𝐴𝐵 → 𝐴 by

fst𝑥 ∶ (𝑎, 𝑏) ↦ 𝑎

Proposition 0.2.12 (Fibrations are closed under composition). The corresponding
fact about fibrations is that the composition of two fibrations is a fibration.

Ξ

Δ Γ

We can compare the two fibrations

disp𝐵 ∘ disp𝐴 and dispΣ𝐴(𝐵)

An object in the composition would look like ((𝑥, 𝑎), 𝑏) for 𝑥 ∈ Γ, 𝑎 ∈ 𝐴(𝑥) and
𝑏 ∈ 𝐵(𝑥, 𝑎), whereas an object in Γ ⋅ Σ𝐴(𝐵) would instead be (𝑥, (𝑎, 𝑏)).

Proposition 0.2.13 (Strict Beck-Chevalley for Σ). Let 𝜎 ∶ Δ → Γ, 𝐴 ∶ Γ → grpd
and 𝐵 ∶ Γ ⋅ 𝐴 → grpd. Then

(Σ𝐴𝐵) ∘ 𝜎 = Σ𝐴∘𝜎(𝐵 ∘ 𝜎𝐴)
where 𝜎𝐴 is uniquely determined by the pullback in

Δ ⋅ 𝐴𝜎 ⋅ 𝐵 ∘ 𝜎𝐴 Γ.𝐴.𝐵

Δ ⋅ 𝐴𝜎 Γ.𝐴 grpd

grpd Δ Γ grpd

𝜎𝐴⋅𝐵

disp𝐵∘𝜎𝐴
disp𝐵

𝜎𝐴

disp𝐴𝜎

⌟
𝐵

disp𝐴

⌟

(Σ𝐴𝐵)∘𝜎

Σ𝐴∘𝜎(𝐵∘𝜎𝐴) 𝜎 𝐴
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Proof. By checking pointwise at 𝑥 ∈ Δ, this boils down to showing

(𝜎𝑥)𝐴 = 𝜎𝐴 ∘ 𝑥𝐴∘𝜎 ∶ 𝐴(𝜎𝑥) → Γ ⋅ 𝐴

𝐴(𝜎𝑥) Δ ⋅ 𝐴𝜎 Γ.𝐴 grpd

• Δ Γ grpd

𝑥𝐴𝜎

(𝜎𝑥)𝐴

!
⌟ 𝜎𝐴

disp𝐴𝜎

⌟
𝐵

disp𝐴

⌟

𝑥 𝜎 𝐴

which holds because of the universal property of pullback.

Definition 0.2.14 (Π-former operation). Given 𝐴 ∶ Γ → grpd and 𝐵 ∶ Γ ⋅ 𝐴 →
grpd we will define Π𝐴𝐵 ∶ Γ → grpd such that for any 𝐶 ∶ Γ → grpd we have an
isomorphism

[Γ ⋅ 𝐴,grpd](disp𝐴 ∘ 𝐶,𝐵) ≅ [Γ,grpd](𝐶,Π𝐴𝐵)
natural in both 𝐵 and 𝐶.

Proof. Π𝐴𝐵 acts on objects by taking fiberwise sections

Π𝐴𝐵(𝑥) ∶= {𝑠 ∈ [𝐴(𝑥), Σ𝐴𝐵(𝑥)] | fst𝑥 ∘ 𝑠 = id𝐴(𝑥)}

Where we have taken the full subcategory of the functor category [𝐴(𝑥), Σ𝐴𝐵(𝑥)].
This is a groupoid since any natural transformation of functors into groupoids are
natural isomorphisms.

Π𝐴𝐵 acts on morphisms via conjugation

𝑥 Π𝐴𝐵(𝑥) 𝐴(𝑥) Σ𝐴𝐵(𝑥)

𝑦 Π𝐴𝐵(𝑦) 𝐴(𝑦) Σ𝐴𝐵(𝑦)

𝑓 Σ𝐴𝐵(𝑓)∘−∘𝐴(𝑓−1)

𝑠

Σ𝐴𝐵(𝑓)
Π𝐴𝐵

𝐴(𝑓−1)

Π𝐴𝐵(𝑓)(𝑠)

Note that conjugation is functorial and invertible.

Corollary 0.2.15 (Fibrations are closed under pushforward). Stated in terms of
fibrations, we have

Ξ Γ!𝜎∗𝜏

Δ Γ
𝜏 𝜎∗𝜏

𝜎

with the universal property of pushforward

FibΔ(𝜎∗𝜌, 𝜏) ≅ FibΓ(𝜌, 𝜎∗𝜏)

natural in both 𝜏 and 𝜌.
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Proposition 0.2.16 (Strict Beck-Chevalley for Π). Let 𝜎 ∶ Δ → Γ, 𝐴 ∶ Γ → grpd
and 𝐵 ∶ Γ ⋅ 𝐴 → grpd. Then

(Π𝐴𝐵) ∘ 𝜎 = Π𝐴∘𝜎(𝐵 ∘ 𝜎𝐴)

where 𝜎𝐴 is uniquely determined by the pullback in

Δ ⋅ 𝐴𝜎 ⋅ 𝐵 ∘ 𝜎𝐴 Γ.𝐴.𝐵

Δ ⋅ 𝐴𝜎 Γ.𝐴 grpd

grpd Δ Γ grpd

𝜎𝐴⋅𝐵

disp𝐵∘𝜎𝐴
disp𝐵

𝜎𝐴

disp𝐴𝜎

⌟
𝐵

disp𝐴

⌟

Π𝐴𝐵∘𝜎

Π𝐴∘𝜎(𝐵∘𝜎𝐴) 𝜎 𝐴

Proof. By checking pointwise, this boils down to Beck-Chevalley for Σ.

Proposition 0.2.17 (All objects are fibrant). Let • denote the terminal groupoid,
namely that with a single object and morphism. Then the unique map Γ → • is a
fibration.

Definition 0.2.18 (Interval). Let the interval groupoid 𝕀 be the small groupoid
with two objects and a single non-identity isomorphism. There are two distinct
morphisms 𝛿0, 𝛿1 ∶ • → 𝕀 and a natural isomorphism 𝑖 ∶ 𝛿0 ⇒ 𝛿1. Note that 𝛿0 and
𝛿1 both form adjoint equivalences with the unique map ! ∶ 𝕀 → •.

Denote by • + • the small groupoid with two objects and only identity morphisms.
Then let 𝜕 ∶ • + • → 𝕀 be the unique map factoring 𝛿0 and 𝛿1.

•

• • + •

𝕀

𝛿1

𝛿0

𝜕

Proposition 0.2.19 (Path object fibration). Let 𝐴 be a small groupoid. Recall
that grpd is Cartesian closed, so we can take the image of the above diagram under
the functor 𝐴−.

𝐴𝕀

𝐴×𝐴 𝐴

𝐴

𝐴𝜕

𝐴𝛿1

𝐴𝛿0

Then the indicated morphisms are fibrations, and 𝐴𝛿0 , 𝐴𝛿1 form adjoint equivalences
with 𝐴! ∶ 𝐴 → 𝐴𝕀.
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We can use this to justify the interpretation of the identity type later, where we
will have the strictified versions (as in strictly stable under substitution) of the
above

𝐴 • ⋅ 𝐴 grpd• grpd•

𝐴𝕀 • ⋅ 𝐴 ⋅ 𝐴 ⋅ Id 𝐼′ grpd

𝐴×𝐴 • ⋅ 𝐴 ⋅ 𝐴 𝑈 ×grpd 𝑈 grpd•

𝐴 • ⋅ 𝐴 grpd• grpd

• grpd

≅
var𝐴

𝐴∗𝜌′
⌟

𝜌′ 𝑈

≅

𝐴𝜕 dispId′∘𝑈∗var𝐴

⌟
⌟

≅

fst disp𝑈∘var𝐴

⌟

Id′

snd

fst
⌟

𝑈

≅ var𝐴

disp𝐴

⌟ 𝑈
𝑈

𝐴

In general, we will want to build a pathspace for a type in any context, which
requires us to pull back the interval along the context, and rebuild the required
fibration by exponentiation in the slice.

0.2.3 Classifying type dependency
Proposition 0.2.20 (𝑃tp classifies type dependency). Specialized to tp ∶ Tm → Ty
in Psh(grpd), the characterizing property of polynomial endofunctors proposi-
tion 0.3.2 says that a map from a representable Γ → 𝑃tp𝑋 corresponds to the
data of

𝐴 ∶ Γ → Ty and 𝐵 ∶ Γ ⋅ 𝐴 → 𝑋
The special case of when 𝑋 is also Ty gives us a classifier for dependent types; by
Yoneda the above corresponds to the data in Cat of

𝐴 ∶ Γ → grpd and 𝐵 ∶ Γ ⋅ 𝐴 → grpd

Furthermore, precomposition by a substitution 𝜎 ∶ Δ → Γ acts on such a pair by

Δ

Γ 𝑃tp𝑋
𝜎

(𝐴∘𝜎,𝐵∘tp∗𝜎)

(𝐴,𝐵)

where tp∗𝜎 is given by

Δ ⋅ 𝐴 ∘ 𝜎 Γ ⋅ 𝐴 grpd•

Δ Γ grpd

tp∗𝜎

𝜎 𝐴

0.2.4 Pi and Sigma structure

Lemma 0.2.21. 𝑋 ∈ Psh(grpd) be a presheaf. Let 𝐹 be an operation that takes
a groupoid Γ, a functor 𝐴 ∶ Γ → grpd and 𝐵 ∶ Γ ⋅ 𝐴 → 𝑋 and returns a natural
transformation 𝐹𝐴𝐵 ∶ Γ → 𝑋.
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Then using Yoneda to define ̃𝐹 ∶ 𝑃tp𝑋 → 𝑋 pointwise as

̃𝐹Γ ∶ Psh(grpd)(Γ, 𝑃tp𝑋) → Psh(grpd)(Γ,𝑋)
(𝐴,𝐵) ↦ 𝐹𝐴𝐵

gives us a natural transformation if and only if 𝐹 satisfies the strict Beck-Chevalley
condition

(𝐹𝐴𝐵) ∘ 𝜎 = 𝐹𝐴∘𝜎(𝐵 ∘ tp∗𝜎)
for every 𝜎 ∶ Δ → Γ in grpd.

Proof. Using proposition 0.2.20

(𝐴,𝐵) 𝐹𝐴𝐵

Psh(grpd)(Γ, 𝑃tp𝑋) Psh(grpd)(Γ,𝑋)

Psh(grpd)(Δ, 𝑃tp𝑋) Psh(grpd)(Δ,𝑋)

(𝐴 ∘ 𝜎,𝐵 ∘ tp∗𝜎) 𝐹𝐴∘𝜎𝐵 ∘ tp∗𝜎 (𝐹𝐴𝐵) ∘ 𝜎

̃𝐹Γ

−∘𝜎 −∘𝜎

̃𝐹Δ

Definition 0.2.22 (Interpretation of Π types). We define the natural transforma-
tion Π ∶ 𝑃tpTy → Ty as that which is induced (lemma 0.2.21) by the Π-former
operation (definition 0.2.14).

Then we define the natural transformation 𝜆 ∶ 𝑃tpTy → Ty as the natural transfor-
mation induced by the following operation: given 𝐴 ∶ Γ → grpd and 𝛽 ∶ Γ ⋅ 𝐴 →
grpd•, 𝜆𝐴𝛽 ∶ Γ → grpd• will be the functor such that on objects 𝑥 ∈ Γ

𝜆𝐴𝛽 (𝑥) ∶= (Π𝐴𝐵 (𝑥), 𝑎 ↦ (𝑎, 𝑏(𝑥, 𝑎)))

where 𝐵 ∶= 𝑈 ∘ 𝛽 ∶ Γ ⋅ 𝐴 → grpd and 𝑏(𝑥, 𝑎) is the point in 𝛽(𝑥, 𝑎). On morphisms
𝑓 ∶ 𝑥 → 𝑦 in Γ we have

𝜆𝐴𝛽 (𝑓) ∶= (Π𝐴𝐵 (𝑓), 𝜂)
where 𝜂 ∶ Π𝐴𝐵 𝑓 𝑠𝑥 → 𝑠𝑦 is a natural isomorphism between functors 𝐴𝑦 → Σ𝐴𝐵𝑦
given on objects 𝑎 ∈ 𝐴𝑦 by

𝜂𝑎 ∶= (id𝑎, id𝑏(𝑦,𝑎))

These combine to give us a pullback square

𝑃tpTm Tm

𝑃tpTy Ty

𝜆

𝑃tptp
⌟

tp

Π

Proof. We should check that the 𝜆 operation satisfied Beck-Chevalley. This follows
from the Π satisfying Beck-Chevalley and extensionality results for functors.
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The square commutes and is a pullback if and only it pointwise commutes and
pointwise gives pullbacks, i.e. for each groupoid Γ

(𝐴, 𝛽) 𝜆𝐴𝛽

Psh(grpd)(Γ, 𝑃tpTm) [Γ,grpd•]

Psh(grpd)(Γ, 𝑃tpTy) [Γ,grpd]

(𝐴, 𝑈 ∘ 𝛽) ΠΓ𝑈 ∘ 𝛽 𝑈 ∘ 𝜆𝐴𝛽

𝜆Γ

Psh(grpd)(Γ,𝑃tptp)
⌟

𝑈∘−

ΠΓ

where we have used proposition 0.2.20. That this commutes follows from the defi-
nitions of Π and 𝜆.

To show it is pullback it suffices to note that for any 𝑓 ∶ Γ → grpd• and (𝐴,𝐵) ∶
Γ → 𝑃tpTy such that 𝑈 ∘ 𝑓 = Π𝐴𝐵, there exists a unique (𝐴, 𝛽) ∶ Γ → 𝑃tpTm such
that 𝑈 ∘ 𝛽 = 𝐵 and 𝜆𝐴𝛽 = 𝑓 . Indeed 𝛽 is fully determined by the above conditions
to be

𝛽 ∶ Γ ⋅ 𝐴 → grpd•
(𝑥, 𝑎) ↦ (𝐵(𝑥, 𝑎), 𝑓 𝑥 𝑎)

Lemma 0.2.23. This is a specialization of lemma 0.3.3. Use 𝑅 to denote the fiber
product

𝑅 𝑃tpTy

Tm Ty

𝜌𝑃

tp∗tp∗Tm∗Ty=𝜌Tm

⌟
tp∗Tm∗Ty

tp

By the universal property of pullbacks, The data of a map from a representable 𝜀 ∶
Γ → 𝑅 corresponds to the data of 𝛼 ∶ Γ → Tm and (𝑈 ∘𝛼,𝐵) ∶ Γ → 𝑃tpTy. Then by
proposition 0.2.20 this corresponds to the data of 𝛼 ∶ Γ → Tm and 𝐵 ∶ Γ⋅𝑈 ∘𝛼 → Ty.

Γ

𝑅 𝑃tpTy

Tm Ty

(𝛼,𝐵)

(𝑈∘𝛼,𝐵)

𝛼

𝜌𝑃

𝜌Tm

⌟
tp∗Tm∗Ty

tp

Precomposition by a substitution 𝜎 ∶ Δ → Γ then acts on such a pair by

Δ

Γ 𝑅
𝜎 (𝛼∘𝜎,𝐵∘tp∗𝜎)

(𝛼,𝐵)
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Definition 0.2.24 (Evaluation). Define the operation of evaluation ev𝛼 𝐵 to take
𝛼 ∶ Γ → grpd• and 𝐵 ∶ Γ ⋅ 𝑈 ∘ 𝛼 → grpd and return ev𝛼 𝐵 ∶ Γ → grpd, described
below.

Γ

𝑅 𝑃tpTy

Ty × Tm Tm Ty

Ty •

(𝛼,𝐵)

(𝐴,𝐵)

(ev𝛼 𝐵,𝛼)

𝛼

ev𝛼 𝐵 counit

⌟
tp∗Tm∗Ty

⌟ tp

where we write 𝐴 ∶= 𝑈 ∘𝛼 and treat a map Γ → grpd as the same as a map Γ → Ty.

More concisely, evaluation is a natural transformation ev ∶ 𝑅 → Ty, given by

ev = 𝜋Ty ∘ counit

Lemma 0.2.25. The functor ev𝛼 𝐵 ∶ Γ → grpd can be computed as

ev𝛼 𝐵 = 𝐵 ∘ 𝑎

where
Γ

Γ ⋅ 𝐴 grpd•

Γ grpd

𝑎

𝛼

disp𝐴

𝐴

⌟

Proof. This is a specialization of lemma 0.3.4 with liberal applications of Yoneda.

Definition 0.2.26 (Classifier for dependent pairs). Recall the following definition
of composition of polynomial endofunctors, specialized to our situation

𝑄 𝑅 𝑅 𝑃tpTy

Tm × Tm Ty × Tm Tm Ty

Tm Ty •

tp◁tp

⌟
counit

⌟
tp∗Tm∗Ty

⌟ ⌟ tp

tp

By the universal property of pullbacks, the data of a map with representable domain
𝜀 ∶ Γ → 𝑄 corresponds to the data of a triple of maps 𝛼, 𝛽 ∶ Γ → Tm and (𝐴,𝐵) ∶
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Γ → 𝑃tpTy such that tp ∘ 𝛽 = 𝜋Ty ∘ counit ∘ (𝛼,𝐵) and 𝐴 = tp ∘ 𝛼.

Γ

𝑄 𝑅 𝑅 𝑃tpTy

Tm × Tm Ty × Tm Tm Ty

Tm Ty •

⌟
counit

⌟
tp∗Tm∗Ty

⌟ ⌟ tp

tp

𝜀

(𝐴,𝐵)

𝛼

𝛽

(𝛼,𝐵)

This in turn corresponds to three functors 𝛼, 𝛽 ∶ Γ → grpd• and 𝐵 ∶ Γ⋅𝑈∘𝛼 → grpd,
such that 𝑈 ∘ 𝛽 = ev𝛼 𝐵. So we will write

𝜀 = (𝛽, 𝛼,𝐵)

Type theoretically 𝛼 = (𝐴, 𝑎 ∶ 𝐴) and ev𝛼 𝐵 = 𝐵𝑎 and 𝛽 = (𝐵𝑎, 𝑏 ∶ 𝐵𝑎). Then
composing 𝜀 with tp◁ tp returns 𝛾, which consists of (𝐴,𝐵). It is in this sense that
𝑄 classifies pairs of dependent terms, and tp ◁ tp extracts the underlying types.

Precomposition with a substitution 𝜎 ∶ Δ → Γ acts on this triple by

Δ

Γ 𝑄
𝜎 (𝛽∘𝜎,𝛼∘𝜎,𝐵∘tp∗𝜎)

(𝛽,𝛼,𝐵)

Definition 0.2.27 (Interpretation of Σ). We define the natural transformation

Σ ∶ 𝑃tpTy → Ty

as that which is induced (lemma 0.2.21) by the Σ-former operation (definition 0.2.14).

To define pair ∶ 𝑄 → Tm, let Γ be a groupoid and (𝛽, 𝛼,𝐵) ∶ Γ → 𝑄 (such that
𝑈 ∘ 𝛽 = ev𝛼 𝛽). We define a functor pairΓ(𝛽, 𝛼,𝐵) ∶ Γ → grpd• such that on
objects 𝑥 ∈ Γ, the functor returns (Σ𝐴𝐵𝑥, (𝑎𝑥, 𝑏𝑎𝑥

)), where (using lemma 0.2.25
𝑈 ∘ 𝛽𝑥 = ev𝛼 𝐵𝑥 = 𝐵(𝑥, 𝑎𝑥))

𝛼𝑥 = (𝐴𝑥, 𝑎𝑥) and 𝛽 𝑥 = (𝐵(𝑥, 𝑎𝑥), 𝑏𝑎𝑥
)

and on morphisms 𝑓 ∶ 𝑥 → 𝑦, the functor returns (Σ𝐴𝐵 𝑓, (𝜙𝑓 , 𝜓𝑓)), where (using
lemma 0.2.25 𝑈 ∘ 𝛽𝑓 = ev𝛼 𝐵𝑓 = 𝐵(𝑓, 𝜙𝑓))

𝛼𝑓 = (𝐴𝑓, 𝜙𝑓 ∶ 𝐴 𝑓 𝑎𝑥 → 𝑎𝑦) and 𝛽 𝑓 = (𝐵(𝑓, 𝜙𝑓), 𝜓𝑓 ∶ 𝐵(𝑓, 𝜙𝑓) 𝑏𝑎𝑥
→ 𝑏𝑎𝑦

)

Σ and pair combine to give us a pullback square

𝑄 Tm

𝑃tpTy Ty

pair

tp◁tp
⌟

tp

Σ
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Proof. To show naturality of pair, suppose 𝜎 ∶ Δ → Γ is a functor between groupoids.

Psh(grpd)(Δ,𝑄) [Δ,grpd•]

(𝛽 ∘ 𝜎, 𝛼 ∘ 𝜎,𝐵 ∘ tp∗𝜎) ?

(𝛽, 𝛼,𝐵) pairΓ(𝛽, 𝛼,𝐵)

Psh(grpd)(Γ,𝑄) [Γ,grpd•]

pairΔ

∘𝜎

pairΓ

∘𝜎

So we check that for any 𝑥 ∈ Γ,

pairΔ(𝛽 ∘ 𝜎, 𝛼 ∘ 𝜎,𝐵 ∘ 𝜎𝐴) 𝑥
= (Σ𝐴∘𝜎𝐵 ∘ 𝜎𝐴 𝑥, (𝑎𝑥, 𝑏𝑎𝑥

))
= ((Σ𝐴𝐵) ∘ 𝜎 𝑥, (𝑎𝑥, 𝑏𝑎𝑥

))
= pairΓ(𝛽, 𝛼,𝐵) ∘ 𝜎 𝑥

where
𝛼 ∘ 𝜎 𝑥 = (𝐴 ∘ 𝜎𝑥, 𝑎𝑥) and 𝛽 ∘ 𝜎 𝑥 = (ev𝛼 𝐵 ∘ 𝜎 𝑥, 𝑏𝑎𝑥

)
and so on.

It follows from the definition of pair that the square commutes. To show that it is
pullback, it suffices to show that for each Γ,

Psh(grpd)(Γ,𝑄) [Γ,grpd•]

Psh(grpd)(Γ, 𝑃tpTy) [Γ,grpd]

pairΓ

tp◁tp∘− 𝑈∘−

ΣΓ

is a pullback. Since we are in Set, it suffices to just show the universal property
applied to a point: so for any 𝐴 ∶ Γ → grpd, any 𝐵 ∶ Γ ⋅ 𝐴 → grpd, and any
𝑝 ∶ Γ → grpd•, such that

𝑈 ∘ 𝑝 = ΣΓ(𝐴,𝐵)
there exists a unique (𝛽, 𝛼,𝐵) ∶ Γ → 𝑄 such that

pairΓ(𝛽, 𝛼,𝐵) = 𝑝 and tp ◁ tp ∘ (𝐵, 𝛼,𝐵) = (𝐴,𝐵)

Indeed if we write

𝑝 𝑥 = (Σ𝐴𝐵𝑥, (𝑎𝑥∈ 𝐴𝑥, 𝑏𝑥∈ 𝐵(𝑥, 𝑎𝑥)))

this uniquely determines 𝛼 and 𝛽 as

𝛼𝑥 = (𝐴𝑥, 𝑎𝑥) and 𝛽 𝑥 = (ev𝛼 𝐵𝑥, 𝑏𝑥)
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0.2.5 Identity types
Definition 0.2.28 (Identity formation and introduction). To define the commuta-
tive square in Psh(grpd)

Tm Tm

tp ×Ty tp Ty

refl

𝛿 tp

Id

We first note that both 𝛿 and tp in the are in the essential image of the composition
from definition 0.2.2

Cat Psh(Cat) Psh(grpd)y res

since the composition preserves pullbacks. So we first define in Cat

grpd• grpd•

𝑈 ×grpd 𝑈 grpd

refl′

𝛿 𝑈

Id′

(0.2.1)

Then obtain Id and refl in Psh(grpd) by applying res ∘ y to this diagram.

To this end, let Id′ ∶ 𝑈 ×grpd 𝑈 → grpd act on objects by taking the set - the
discrete groupoid - of isomorphisms

(𝐴, 𝑎0, 𝑎1) ↦ 𝐴(𝑎0, 𝑎1)

and on morphisms (𝑓, 𝜙0, 𝜙1) ∶ (𝐴, 𝑎0, 𝑎1) → (𝐵, 𝑏0, 𝑏1) by

(𝑓 ∶ 𝐴 → 𝐵,𝜙0 ∶ 𝑓𝑎0 → 𝑏0, 𝜙1 ∶ 𝑓𝑎1 → 𝑏1) ↦ 𝜙1 ∘ 𝑓(−) ∘ 𝜙−1
0

Let refl′ ∶ grpd• → grpd• act on objects by

(𝐴, 𝑎) ↦ (𝐴(𝑎, 𝑎), id𝑎)

and on morphisms (𝑓, 𝜙) ∶ (𝐴, 𝑎) → (𝐵, 𝑏) by

(𝑓 ∶ 𝐴 → 𝐵,𝜙 ∶ (𝐴, 𝑎) → (𝐵, 𝑏)) ↦ (𝜙 ∘ 𝑓(−) ∘ 𝜙−1, 𝜙 ∘ 𝑓(id𝑎) ∘ 𝜙−1 = id𝑏)

where the second component has to be the identity on the object id𝑑, since 𝐵(𝑏, 𝑏)
is a discrete groupoid. So we need a merely propositional proof that the two maps
are equal, which in this case is clear.

Proof. Since 𝛿(𝐴, 𝑎) = (𝐴, 𝑎, 𝑎), it follows that the square in eq. (0.2.1) commutes.

Lemma 0.2.29. We can then construct the pullback 𝐼′

grpd•

𝐼′ grpd•

𝑈 ×grpd 𝑈 grpd

𝜌′

refl′

𝛿
⌟

𝑈

Id′
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as the groupoid with objects (𝐴, 𝑎0, 𝑎1, ℎ) where 𝐴 is a groupoid with 𝑎0, 𝑎1 ∈ 𝐴 and
ℎ ∶ 𝑎0 → 𝑎1, and morphisms

(𝑓, 𝜙0, 𝜙1, 𝐴ℎ = 𝑘) ∶ (𝐴, 𝑎0, 𝑎1, ℎ ∶ 𝑎0 → 𝑎1) → (𝐵, 𝑏0, 𝑏1, 𝑘 ∶ 𝑏0 → 𝑏1)
where 𝑓 ∶ 𝐴 → 𝐵, 𝜙𝑖 ∶ 𝑓𝑎𝑖 → 𝑏𝑖 and 𝐴ℎ = 𝑘 represents a merely propositional proof
of equality. Then we can also compute

𝜌′(𝐴, 𝑎) = (𝐴, 𝑎, 𝑎, id𝑎)

Lemma 0.2.30. Specialized to 𝑞 ∶ 𝐼 → Ty in Psh(grpd), the characterizing prop-
erty of polynomial endofunctors proposition 0.3.2 says that a map from a repre-
sentable 𝜀 ∶ Γ → 𝑃𝑞𝑋 corresponds to the data of

𝐴 ∶ Γ → Ty and 𝐶 ∶ Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id → 𝑋
where 𝐴 = 𝑞 ∘ 𝜀 and

𝑋 Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id 𝐼′ grpd•

Γ ⋅ 𝐴 ⋅ 𝐴 𝑈 ×grpd 𝑈 grpd

Γ ⋅ 𝐴 grpd•

Γ grpd

𝐶
⌟ ⌟

𝑈

⌟ Id′

fst

⌟
𝑈

𝐴

Lemma 0.2.31. The data of a map (𝐴,𝐶, 𝛾refl) ∶ Γ → 𝑇 corresponds to the data of

𝐴 ∶ Γ → grpd
𝐶 ∶ Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id → grpd

𝛾refl ∶ Γ ⋅ 𝐴 → grpd•
such that 𝐶 ∘ 𝐴∗𝜌′ = 𝑈 ∘ 𝛾refl

grpd• Γ ⋅ 𝐴 grpd• grpd•

grpd Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id 𝐼′ grpd

Γ ⋅ 𝐴 ⋅ 𝐴 𝑈 ×grpd 𝑈 grpd•

Γ ⋅ 𝐴 grpd• grpd

Γ grpd

𝑈

𝛾refl
var𝐴

𝐴∗𝜌′
⌟

𝜌′ 𝑈

𝐶
dispId′∘𝑈∗var𝐴

⌟
⌟

disp𝑈∘var𝐴

⌟

Id′

snd

fst
⌟

𝑈

var𝐴

disp𝐴

⌟ 𝑈
𝑈

𝐴
Then precomposition with 𝜎 ∶ Δ → Γ acts on such a triple via

Δ

Γ 𝑇
𝜎 (𝐴∘𝜎,𝐶∘𝑞∗𝜎,𝛾refl∘tp∗𝜎)

(𝐴,𝐶,𝛾refl)
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Proof.

Γ

𝑇 𝑃tpTm

𝑃𝑞Ty 𝑃tpTm

(𝐴,𝛾refl)

(𝐴,𝐶)
⌟

𝑃tptp

𝜌⋆
Ty

By the universal property of pullbacks, The data of a map from a respresentable
Γ → 𝑇 corresponds to the data of (𝐴,𝐶) ∶ Γ → 𝑃𝑞Ty and (𝐴′, 𝛾refl) ∶ Γ → 𝑃tpTm
such that

𝜌⋆Ty ∘ (𝐴,𝐶) = 𝑃tptp ∘ (𝐴′, 𝛾refl)
By definition 0.3.6 and proposition 0.3.2 this says

(𝐴,𝐶 ∘ 𝐴∗𝜌) = (𝐴′, tp ∘ 𝛾refl)
so the above is equivalent to having 𝐴 = 𝐴′, 𝐶, 𝛾refl such that

𝐶 ∘ 𝐴∗𝜌 = tp ∘ 𝛾refl in Psh(grpd)
By Yoneda this is equivalent to requiring

𝐶 ∘ 𝐴∗𝜌′ = 𝑈 ∘ 𝛾refl in Cat

Proposition 0.2.32. We can compute 𝜀 ∶ 𝑃𝑞Tm → 𝑇 via

𝜀Γ ∶Psh(grpd)(Γ, 𝑃𝑞Tm) → Psh(grpd)(Γ, 𝑇 )
(𝐴, 𝛾) ↦ (𝐴,𝑈 ∘ 𝛾, 𝛾 ∘ 𝐴∗𝜌′)

Proof. This follows from the computation for 𝑇 lemma 0.2.31, the polynomial action
on slice morphisms definition 0.3.6, and proposition 0.3.2.

Definition 0.2.33 (Identity elimination). We want to define 𝐽 ∶ 𝑇 → 𝑃𝑞Tm

𝐽Γ ∶ Psh(grpd)(Γ, 𝑇 ) →Psh(grpd)(Γ, 𝑃𝑞Tm)
(𝐴,𝐶, 𝛾refl) ↦ (𝐴, 𝛾)

for some 𝛾 ∶ Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id → grpd• which we will define below. We first use 𝑇
lemma 0.2.31 to describe the given data:

grpd• Γ ⋅ 𝐴 grpd• grpd•

grpd Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id 𝐼′ grpd

Γ ⋅ 𝐴 ⋅ 𝐴 𝑈 ×grpd 𝑈 grpd•

Γ ⋅ 𝐴 grpd• grpd

Γ grpd

𝑈

𝛾refl
var𝐴

𝐴∗𝜌′
⌟

𝜌′ 𝑈𝛾

𝐶
dispId′∘𝑈∗var𝐴

⌟
⌟

disp𝑈∘var𝐴

⌟

Id′

snd

fst
⌟

𝑈

var𝐴

disp𝐴

⌟ 𝑈
𝑈

𝐴
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Let us name the fibers over the diagonal

𝐶refl ∶= 𝑈 ∘ 𝛾refl = 𝐶 ∘ 𝐴∗𝜌′ ∶ Γ ⋅ 𝐴 → grpd

and its given points
𝛾refl = (𝐶refl, 𝑐refl)

(Note that 𝑐refl is not a functor, but will give us an object per object (𝑥, 𝑎), and
morphism 𝑐refl(𝑓, 𝜙) ∶ 𝐶refl(𝑓, 𝜙)𝑐refl(𝑥, 𝑎) → 𝑐refl(𝑦, 𝑏) per morphism (𝑓, 𝜙).) Then 𝛾
will be defined by using 𝐶 to lift the path

(id𝑥, id𝑎0
, ℎ,_) ∶ (𝑥, 𝑎0, 𝑎0, id𝑎) → (𝑥, 𝑎0, 𝑎1, ℎ) ∈ Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id

that starts on the diagonal, to give us a point in any fiber, using 𝑐refl. Note that
we unfolded Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id as the domain of the nested display maps so that 𝑥 ∈ Γ,
𝑎0 ∈ 𝐴𝑥,

𝑎1 ∈ 𝑈 ∘ var𝐴(𝑥, 𝑎0) = 𝑈(𝐴𝑥, 𝑎0) = 𝐴𝑥
and

ℎ ∈ 𝐼𝑑′ ∘ 𝑈 ∗var𝐴(𝑥, 𝑎0, 𝑎1) = Id′(𝐴𝑥, 𝑎0, 𝑎1) = 𝐴𝑥(𝑎0, 𝑎1)
We also check (id𝑥, id𝑎0

, ℎ,_) is a path in Γ ⋅𝐴 ⋅𝐴 ⋅ Id by proving “_”, the ommited
equality

(Id′ ∘ 𝑈 ∗var𝐴(id𝑥, id𝑎0
, ℎ))id𝑎0

= (Id′(𝐴id𝑥, id𝑎0
, ℎ))id𝑎0

= ℎ ∘ 𝐴id𝑥id𝑎0
∘ id−1

𝑎0
= ℎ

So we define 𝛾 ∶ Γ ⋅ 𝐴 ⋅ 𝐴 ⋅ Id → grpd• on objects by

(𝑥, 𝑎0, 𝑎1, ℎ) ↦ (𝐶(𝑥, 𝑎0, 𝑎1, ℎ), 𝐶(id𝑥, id𝑎0
, ℎ,_) 𝑐refl(𝑥, 𝑎0))

noting that from the computation of 𝜌′ given in lemma 0.2.29 it follows that

𝑐refl(𝑥, 𝑎0) ∈ 𝐶 ∘ 𝐴∗𝜌′(𝑥, 𝑎0) = 𝐶(𝑥, 𝑎0, 𝑎1, ℎ)

Define 𝛾 on morphism (𝑓, 𝜙0, 𝜙1, 𝜙1 ∘ 𝐴𝑓ℎ ∘ 𝜙−1
0 = 𝑘) ∶ (𝑥, 𝑎0, 𝑎1, ℎ) → (𝑦, 𝑏0, 𝑏1, 𝑘)

by
(𝑓, 𝜙0, 𝜙1,_) ↦ (𝐶(𝑓, 𝜙0, 𝜙1,_), 𝐶(id𝑦, id𝑏0 , 𝑘,_) 𝑐refl(𝑓, 𝜙0))

We type check 𝐶(id𝑦, id𝑏0 , 𝑘,_) 𝑐refl(𝑓, 𝜙0)

𝐶(id𝑦, id𝑏0 , 𝑘,_)𝑐refl(𝑓, 𝜙0) ∶ 𝐶(𝑓, 𝜙0, 𝜙1,_) ∘ 𝐶(id𝑥, id𝑎0
, ℎ,_) 𝑐refl(𝑥, 𝑎0)

=𝐶(𝑓, 𝜙0, 𝜙1 ∘ 𝐴𝑓ℎ,_) 𝑐refl(𝑥, 𝑎0)
=𝐶(𝑓, 𝜙0, 𝑘 ∘ 𝜙0,_) 𝑐refl(𝑥, 𝑎0)
=𝐶(id𝑦, id𝑏0 , 𝑘,_) ∘ 𝐶(𝑓, 𝜙0, 𝜙0,_) 𝑐refl(𝑥, 𝑎0)
=𝐶(id𝑦, id𝑏0 , 𝑘,_) ∘ 𝐶refl(𝑓, 𝜙0) 𝑐refl(𝑥, 𝑎0)
→𝐶(id𝑦, id𝑏0 , 𝑘,_) 𝑐refl(𝑦, 𝑏0)

Proof. Functoriality of 𝛾 is routine. We show naturality of 𝐽 . Suppose 𝜎 ∶ Δ → Γ
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is representable

(𝐴 ∘ 𝜎,𝐶 ∘ 𝑞∗𝜎, 𝛾refl ∘ tp∗𝜎) (𝐴 ∘ 𝜎, 𝛾Δ)

(𝐴 ∘ 𝜎, 𝛾Γ ∘ 𝑞∗𝜎)

Psh(grpd)(Δ, 𝑇 ) Psh(grpd)(Δ, 𝑃𝑞Tm)

Psh(grpd)(Γ, 𝑇 ) Psh(grpd)(Γ, 𝑃𝑞Tm)

(𝐴,𝐶, 𝛾refl) (𝐴, 𝛾Γ)

𝐽Δ

−∘𝜎

𝐽Γ

−∘𝜎

So we want to show that on objects (𝑥, 𝑎0, 𝑎1, ℎ) ∈ Δ ⋅ 𝐴 ∘ 𝜎 ⋅ 𝐴 ∘ 𝜎 ⋅ Id

𝛾Δ (𝑥, 𝑎0, 𝑎1, ℎ) = 𝛾Γ ∘ 𝑞∗𝜎 (𝑥, 𝑎0, 𝑎1, ℎ)

Let us denote 𝑞∗𝜎(𝑥, 𝑎0, 𝑎1, ℎ) = (𝜎𝑥, 𝑎′0, 𝑎′1, ℎ′). Then

𝛾Δ (𝑥, 𝑎0, 𝑎1, ℎ)
= (𝐶 ∘ 𝑞∗𝜎 (𝑥, 𝑎0, 𝑎1, ℎ), (𝐶 ∘ 𝑞∗𝜎 (id𝑥, id𝑎0

, ℎ,_))(𝑐refl(tp∗𝜎(𝑥, 𝑎0))))
= (𝐶 (𝜎𝑥, 𝑎′0, 𝑎′1, ℎ′), (𝐶 (id𝜎𝑥, id𝑎′

0
, ℎ′,_))(𝑐refl (𝜎𝑥, 𝑎′0)))

= 𝛾Γ(𝜎𝑥, 𝑎′0, 𝑎′1, ℎ′)
= 𝛾Γ ∘ 𝑞∗𝜎 (𝑥, 𝑎0, 𝑎1, ℎ)

and similarly for morphisms.

Proposition 0.2.34. 𝐽 ∶ 𝑇 → 𝑃𝑞Tm, as defined above is a section of 𝜀.

Proof. Let (𝐴,𝐶, 𝛾refl) ∶ Γ → 𝑇 be a map from a representable. Then using the
definition of 𝐽 and the computation of 𝜀 proposition 0.2.32

𝜀Γ ∘ 𝐽Γ (𝐴,𝐶, 𝛾refl) = 𝜀Γ(𝐴, 𝛾) = (𝐴,𝑈 ∘ 𝛾, 𝛾 ∘ 𝐴∗𝜌′)

By definition of 𝛾 from 𝐽 we can see that 𝑈 ∘ 𝛾 = 𝐶, so it suffices to show that
𝛾 ∘ 𝐴∗𝜌′ = 𝛾refl. On an object (𝑥, 𝑎0)

𝛾 ∘ 𝐴∗𝜌′(𝑥, 𝑎0)
= 𝛾(𝑥, 𝑎0, 𝑎0, id𝑎0

)
= (𝐶(𝑥, 𝑎0, 𝑎0, id𝑎0

), 𝐶(id𝑥, id𝑎0
, id𝑎0

) 𝑐refl)
= (𝐶refl(𝑥, 𝑎0), 𝑐refl(𝑥, 𝑎0))
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0.2.6 Universe of Discrete Groupoids
In this section we assume three different universe sizes, which we will distinguish
by all lowercase (small), capitalized first letter (large), and all-caps (extra large),
respectively. For example, the three categories of sets will be nested as follows

set ↪ Set ↪ SET

We shift all of our previous work up by one universe level, so that we are working
in the category PSH(Grpd) of extra large presheaves, indexed by the (extra large,
locally large) category of large groupoids. We would then have Ty = [−,Grpd] and
Tm = [−,Grpd•].

Definition 0.2.35 (Universe of discrete groupoids). Let U be the (large) groupoid
of small sets, i.e. let U have set as its objects and morphisms between two small
sets as all the bijections between them. This gives us ⌜U⌝ ∶ • → Ty.

Then we define El ∶ yU → Ty by defining El ∶ U → Grpd as the inclusion - any
small set can be regarded as a large discrete groupoid.

U grpd

Grpd
El

Then we take 𝜋 ∶= dispEl, giving us

E Tm

U Ty
𝜋

⌟
tp

El

We can compute the groupoid 𝐸 as that with objects that are pairs (𝑋, 𝑥) where
𝑥 ∈ 𝑋 ∈ set, and morphisms

𝐸((𝑋, 𝑥), (𝑌 , 𝑦)) = {𝑓 ∶ 𝑋 → 𝑌 | 𝑓 𝑥 = 𝑦}

Then 𝜋 ∶ 𝐸 → 𝑈 is the forgetful functor (𝑋, 𝑥) ↦ 𝑋.

Showing that this universe is closed under Π,Σ, Id formation depends on how we
formalize set ↪ Set. In both cases we need to check that discreteness is preserved
by the type formers, which is straightforward. If we are working with sets and
cardinality, i.e. taking set = Set<𝜆 ⊂ Set<𝜅 = Set for some inaccessible cardinals
𝜆 < 𝜅, then it is straightforward to check that the type formers do not make
“larger” types. If we are working with type theoretic universes with a lift operation
ULift ∶ set → Set then it may not be true that ULift commutes with our type
formers.

0.3 Polynomial Endofunctors
In this section we develop some of the definitions and lemmas related to polynomial
endofunctors that we will use in the rest of the notes.
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Definition 0.3.1 (Polynomial endofunctor). Let ℂ be a locally Cartesian closed
category (in our case, presheaves on the category of contexts). This means for each
morphism 𝑡 ∶ 𝐵 → 𝐴 we have an adjoint triple

ℂ/𝐵

ℂ/𝐴

𝑡∗𝑡! 𝑡∗⊣ ⊣

where 𝑡∗ is pullback, and 𝑡! is composition with 𝑡.
Let 𝑡 ∶ 𝐵 → 𝐴 be a morphism in ℂ. Then define 𝑃𝑡 ∶ ℂ → ℂ be the composition

𝑃𝑡 ∶= 𝐴! ∘ 𝑡∗ ∘ 𝐵∗ ℂ ℂ/𝐵 ℂ/𝐴 ℂ𝐵∗ 𝑡∗ 𝐴!

Proposition 0.3.2 (Characterising property of Polynomial Endofunctors). The
data of a map into the polynomial applied to an object in ℂ

Γ 𝑃𝑡𝑌

corresponds to
Γ 𝑃𝑡𝑌

𝐴

𝜙

𝛼 𝑡∗𝐵∗𝑌

Applying the adjunction 𝐴! ⊣ 𝐴∗, this corresponds to

𝛼 ∶ Γ → 𝐴 and
𝐵!𝑡∗𝛼 𝐵 × 𝑌

𝐵

̃𝜙

𝑡∗𝛼 𝐵∗𝑌

Applying the adjunction 𝑡∗ ⊣ 𝑡∗, this corresponds to

𝛼 ∶ Γ → 𝐴 and Γ ⋅ 𝛼 ∶= 𝐵!𝑡∗𝛼 𝑌𝛽

Henceforth we will write
(𝛼, 𝛽) ∶ Γ → 𝑃𝑡𝑌

for this map, since it is uniquely determined by this data. Furthermore, precompo-
sition by 𝜎 ∶ Δ → Γ, acts on such a pair by

Δ

Γ 𝑃𝑡𝑌
𝜎

(𝛼∘𝜎,𝛽∘𝑡∗𝜎)

(𝛼,𝛽)

and given a morphism 𝑓 ∶ 𝑋 → 𝑌 , the morphism 𝑃𝑡𝑓 acts on such a pair by

Γ 𝑃𝑡𝑋

𝑃𝑡𝑌

(𝛼,𝛽)

(𝛼,𝑓∘𝛽) 𝑃𝑡𝑓
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Lemma 0.3.3. Use 𝑅 to denote the fiber product

𝑅 𝑃𝑡𝑌

𝐵 𝐴

𝜌𝑃

𝑡∗𝑡∗𝐵∗𝑌=𝜌Tm

⌟
𝑡∗𝐵∗𝑌

𝑡

By the universal property of pullbacks and proposition 0.3.2, The data of a map
Γ → 𝑅 corresponds to the data of 𝛽 ∶ Γ → 𝐵 and (𝑡 ∘ 𝛽, 𝑦) ∶ Γ → 𝑃𝑡𝑌 , or just
𝛽 ∶ Γ → 𝐵 and 𝑦 ∶ Γ ⋅ 𝑡 ∘ 𝛽 → 𝑌

Γ

𝑅 𝑃𝑡𝑌

𝐵 𝐴

(𝛽,𝑦)

(𝑡∘𝛽,𝑦)

𝛽

𝜌𝑃

𝜌Tm

⌟
𝑡∗𝐵∗𝑌

𝑡

By uniqueness in the universal property of pullbacks and proposition 0.3.2, Precom-
position by a map 𝜎 ∶ Δ → Γ acts on such a pair by

Δ

Γ 𝑅
𝜎 (𝛽∘𝜎,𝑦∘𝑡∗𝜎)

(𝛽,𝑦)

Lemma 0.3.4 (Evaluation). Suppose (𝛽, 𝑦) ∶ Γ → 𝑅, as in lemma 0.3.3

𝛽 ∶ Γ → 𝐵 and 𝑦 ∶ Γ ⋅ 𝑡 ∘ 𝛽 → 𝑌

Then the evaluation of 𝑦 at 𝛽 can be described in the following two ways

𝑦 ∘ 𝑏 = 𝜋𝑌 ∘ counit ∘ (𝛽, 𝑦)

where
Γ

Γ ⋅ 𝑡 ∘ 𝛽 𝐵

Γ 𝐴

𝑏

𝛽

𝑣

𝑑 𝑡

𝑡∘𝛽

⌟

and
Γ

𝑅 𝑃𝑡𝑌

𝑌 𝑌 × 𝐵 𝐵 𝐴

(𝛽,𝑦)

(𝑡∘𝛽,𝑦)

𝑦∘𝑏
(𝑦∘𝑏,𝛽)

counit
⌟

𝑡∗𝐵∗𝑌

𝜋𝑌 𝜋𝐵 𝑡
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Proof. It suffices to show ( counit ∘ (𝛽, 𝑦)) = (𝑦 ∘ 𝑏, 𝛽) instead.

counit ∘ (𝛽, 𝑦)
= counit ∘ (𝑣 ∘ 𝑏, 𝑦 ∘ 𝑡∗𝑑 ∘ 𝑡∗𝑏) 𝑓𝑖𝑔. 1
= counit ∘ (𝑣, 𝑦 ∘ 𝑡∗𝑑) ∘ 𝑏 𝑙𝑒𝑚𝑚𝑎 0.3.3𝑎𝑛𝑑 𝑓𝑖𝑔. 2
= counit ∘ 𝑡∗(𝑡 ∘ 𝛽, 𝑦) ∘ 𝑏 𝑓𝑖𝑔. 3
= (𝑡 ∘ 𝛽, 𝑦) ∘ 𝑏 𝑓𝑖𝑔. 4
= (𝑦, 𝑣) ∘ 𝑏 𝑓𝑖𝑔. 5
= (𝑦 ∘ 𝑏, 𝑣 ∘ 𝑏)
= (𝑦 ∘ 𝑏, 𝛽)

Γ ⋅ 𝑡 ∘ 𝛽 Γ ⋅ 𝑡 ∘ 𝛽 ⋅ 𝑡 ∘ 𝛽 Γ ⋅ 𝑡 ∘ 𝛽 𝐵

Γ Γ ⋅ 𝑡 ∘ 𝛽 Γ 𝐴

𝑡∗𝑏

𝑑
⌟

𝑡∗𝑑
⌟

𝑣

𝑑
⌟

𝑡

𝑏 𝑑 𝑡∘𝛽

Figure 1: 𝑡∗𝑑 ∘ 𝑡∗𝑏 = idΓ⋅𝑡∘𝛽

Γ

Γ ⋅ 𝑡 ∘ 𝛽 𝑅
𝑏

(𝑣∘𝑏,𝑦∘𝑡∗𝑑∘𝑡∗𝑏)

(𝑣,𝑦∘𝑡∗𝑑)

Figure 2: (𝑣, 𝑦 ∘ 𝑡∗𝑑) ∘ 𝑏 = (𝑣 ∘ 𝑏, 𝑦 ∘ 𝑡∗𝑑 ∘ 𝑡∗𝑏)

Γ ⋅ 𝑡 ∘ 𝛽 𝑅 𝐵

Γ 𝑃𝑡𝑌 𝐴

(𝑣,𝑦∘𝑡∗𝑑)

𝑣

𝑑
⌟ ⌟

𝑡

(𝑡∘𝛽,𝑦)

𝑡∘𝛽

𝑡∗𝐵∗𝑌

Γ ⋅ 𝑡 ∘ 𝛽

Γ 𝑃𝑡𝑌
𝑑

(𝑡∘𝛽∘𝑑,𝑦∘𝑡∗𝑑)

(𝑡∘𝛽,𝑦)

using proposition 0.3.2 and lemma 0.3.3

Figure 3: 𝑡∗(𝑡 ∘ 𝛽, 𝑦) = (𝑣, 𝑦 ∘ 𝑡∗𝑑)
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𝑡∗(𝑡 ∘ 𝛽) 𝑡 ∘ 𝛽

𝑡∗𝑡∗𝐵∗𝑌 𝐵∗𝑌 𝑡∗ ⊣ 𝑡∗ 𝑡∗𝐵∗𝑌 𝑡∗𝐵∗𝑌
𝑡∗(𝑡∘𝛽,𝑦)

(𝑡∘𝛽,𝑦) (𝑡∘𝛽,𝑦)
(𝑡∘𝛽,𝑦)

counit ̃counit

Figure 4: counit ∘ 𝑡∗(𝑡 ∘ 𝛽, 𝑦) = (𝑡 ∘ 𝛽, 𝑦)

Γ ⋅ 𝑡 ∘ 𝛽 𝑌 × 𝐵 Γ 𝑃𝑡𝑌

𝐵 𝑡∗ ⊣ 𝑡∗ 𝐴

(𝑦,𝑣)

𝑣=𝑡∗(𝑡∘𝛽)
𝐵∗𝑌

(𝑡∘𝛽,𝑦)

𝑡∘𝛽
𝑡∗𝐵∗𝑌

Figure 5: (𝑡 ∘ 𝛽, 𝑦) = (𝑦, 𝑣)

Definition 0.3.5. Suppose

𝐶 𝐵

𝐴

𝜌

𝑠 𝑡

Then we have a mate 𝜇! ∶ 𝜌! ∘ 𝑠∗ ⇒ 𝑡∗. This is given by the universal property of
pullbacks: given 𝑓 ∶ 𝑥 → 𝑦 in the slice ℂ/𝐴 we have

• • 𝑋

• • 𝑌

𝐶 𝐵 𝐴

𝜇!𝑥

𝑠∗𝑓
⌟

𝑡∗𝑓
⌟

𝑓

𝑥𝜇!𝑦
𝑠∗𝑦

⌟
𝑡∗𝑦

⌟
𝑦

𝜌 𝑡

𝜇!

By the calculus of mates we also have a reversed mate between the right adjoints
𝜇∗ ∶ 𝑡∗ → 𝑠∗ ∘ 𝜌∗. Explicitly 𝜇∗ is the composition

𝑡∗ 𝑠∗𝜌∗𝜌!𝑠∗𝑡∗ 𝑠∗𝜌∗𝑡∗𝑡∗ 𝑠∗𝜌∗
unit 𝑡∗ 𝑠∗𝜌∗𝜇!𝑡∗ 𝑠∗𝜌∗ counit

Definition 0.3.6 (Contravariant of 𝑃− on a slice). Let 𝑃− ∶ (ℂ/𝐴)op → [ℂ,ℂ] be
defined by taking 𝑠 ↦ 𝑃𝑠 on objects and act on a morphism by

𝐵 𝑃𝑡

𝐴

𝐶 𝑃𝑠

𝑡

𝜌⋆𝜌

𝑠

where
𝜌⋆ ∶= 𝐴!(𝑠∗𝜂 ∘ 𝜇𝐵∗) ∶ 𝑃𝑡 → 𝑃𝑠
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ℂ

ℂ/𝐶 ℂ/𝐵

ℂ/𝐴

ℂ

𝐶∗ 𝐵∗

𝑠∗

𝜌∗

𝑡∗

𝐴!

𝜂

𝜇
𝑃𝑠 𝑃𝑡

where 𝜇 = 𝜇∗ is the mate from definition 0.3.5, and 𝜂 is the natural isomorphism
given by pullback pasting.

Pointwise, this natural transformation acts on a pair (𝛼, 𝛽) ∶ Γ → 𝑃𝑡𝑋 by

Γ 𝑃𝑡𝑋

𝑃𝑠𝑋

(𝛼,𝛽)

(𝛼,𝛽∘𝛼∗𝜌) 𝜌⋆
𝑋

where 𝛼∗𝜌 is defined as
Γ ⋅𝑠 𝛼 𝐶

Γ ⋅𝑡 𝛼 𝐵

Γ 𝐴

𝑠∗𝛼

𝛼∗𝜌
⌟

𝜌

𝑡∗𝛼
⌟

𝑡

𝛼

We prove this now.

Proof. Firstly 𝜌⋆𝑋 = 𝐴!(𝑠∗𝜂𝑋 ∘ 𝜇𝐵∗𝑋), so the first component 𝛼 ∶ Γ → 𝐴 is preserved
by 𝜌⋆𝑋 and it suffices to show, in ℂ/𝐴

𝛼 𝑡∗𝐵∗𝑋

𝑠∗𝐶∗𝑋

(𝛼,𝛽)

(𝛼,𝛽∘𝛼∗𝜌) 𝑠∗𝜂𝑋∘𝜇𝐵∗𝑋

By the adjunction 𝑠∗ ⊣ 𝑠∗, it suffices to show, in ℂ/𝐶

𝑠∗𝛼 𝑠∗𝑡∗𝐵∗𝑋

𝐶∗𝑋

𝑠∗(𝛼,𝛽)

(𝛼,𝛽∘𝛼∗𝜌)
𝑠∗𝜂𝑋∘𝜇𝐵∗𝑋

Now we calculate 𝑠∗𝜂𝑋 ∘ 𝜇𝐵∗𝑋 = 𝜂𝑋 ∘ 𝜇𝐵∗𝑋. So that our goal is to show

𝑠∗𝛼 𝑠∗𝑡∗𝐵∗𝑋 𝜌∗𝐵∗𝑋

𝐶∗𝑋

𝑠∗(𝛼,𝛽)

(𝛼,𝛽∘𝛼∗𝜌)

𝜇𝐵∗𝑋

𝜂𝑋
∼
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Since 𝜂𝑋 is an isomorphism between two limits of the same diagram, namely 𝑋×𝐶 ≅
𝐶!𝐶∗𝑋 ≅ 𝐶!𝜌∗𝐵∗𝑋, it suffices to show that both 𝜇𝐵∗𝑋 ∘ 𝑠∗(𝛼, 𝛽) and (𝛼, 𝛽 ∘ 𝛼∗𝜌)
are uniquely determined by the same two maps into 𝑋 and 𝐶.

By the characterising property of polynomial endofunctors (proposition 0.3.2) we
calculate

(𝛼, 𝛽 ∘ 𝛼∗𝜌) = (𝛽 ∘ 𝛼∗𝜌, 𝑠∗𝛼)

𝛼 𝑠∗𝐶∗𝑋 𝑠∗𝛼 𝐶∗𝑋 𝐶!𝑠∗𝛼 𝑋(𝛼,𝛽∘𝛼∗𝜌) (𝛼,𝛽∘𝛼∗𝜌)
(𝛽∘𝛼∗𝜌,𝑠∗𝛼) 𝛽∘𝛼∗𝜌

More formally, this means 𝛽 ∘ 𝛼∗𝜌 ∶ 𝐶!𝑠∗𝛼 → 𝑋 and 𝑠∗𝛼 ∶ 𝐶!𝑠∗𝛼 → 𝐶 are the two
maps that uniquely determine the map 𝐶!𝛼, 𝛽 ∘ 𝛼∗𝜌 ∶ 𝐶!𝑠∗𝛼 → 𝑋 ×𝐶.

On the other hand,

𝛼 𝑡∗𝐵∗𝑋 𝑠∗𝜌∗𝜌!𝑠∗𝑡∗𝐵∗𝑋 𝑠∗𝜌∗𝑡∗𝑡∗𝐵∗𝑋 𝑠∗𝜌 ∗ 𝐵∗𝑋

𝑠∗ ⊣ 𝑠∗

𝑠∗𝛼 𝑠∗𝑡∗𝐵∗𝑋 𝜌∗𝜌!𝑠∗𝑡∗𝐵∗𝑋 𝜌∗𝑡∗𝑡∗𝐵∗𝑋 𝜌∗𝐵∗𝑋

𝜌! ⊣ 𝜌∗

𝜌!𝑠∗𝛼 𝜌!𝑠∗𝑡∗𝐵∗𝑋 𝜌!𝑠∗𝑡∗𝐵∗𝑋 𝑡∗𝑡∗𝐵∗𝑋 𝐵∗𝑋

Γ ⋅𝑠 𝛼 𝑆 𝑅 𝑋 ×𝐵

(𝛼,𝛽) unit 𝑡∗𝐵∗𝑋

𝜇𝐵∗𝑋

𝑠∗𝜌∗𝜇!𝑡∗𝐵∗𝑋 𝑠∗𝜌∗ counit 𝐵∗𝑋

𝑠∗(𝛼,𝛽) unit 𝑡∗𝐵∗𝑋

𝜇𝐵∗𝑋

𝜌∗𝜇!𝑡∗𝐵∗𝑋 𝜌∗ counit 𝐵∗𝑋

𝜌!𝑠∗(𝛼,𝛽)
unit 𝑡∗𝐵∗𝑋 𝜇!𝑡∗𝐵∗𝑋 counit 𝐵∗𝑋

The mate 𝜇! is calculated via the universal map into the pullback 𝑅 (dotted below).

Γ ⋅𝑠 𝛼 Γ ⋅𝑡 𝛼 Γ

𝑆 𝑅 𝑃𝑡𝑋

𝐶 𝐵 𝐴

𝑠∗(𝛼,𝛽)

𝑠∗𝛼

(𝛼,𝛽)

𝛼
𝜇!𝑡∗𝐵∗𝑋

𝑠∗𝑡∗𝐵∗𝑋 𝑡∗𝑡∗𝐵∗𝑋
⌟

𝑡∗𝐵∗𝑋

𝜌 𝑡

Using the characterization of maps into 𝑅 from lemma 0.3.3 we can calculate

𝜇!𝑡∗𝐵∗𝑋 ∘ 𝑠∗(𝛼, 𝛽) = (𝜌 ∘ 𝑠∗𝛼, 𝛽 ∘ 𝑡∗𝛼∗𝑠)
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since the first component is simply the map Γ ⋅𝑠 𝛼 → 𝐵 and the second component
is the second component of the map

(𝛼 ∘ 𝛼∗𝑠, 𝛽 ∘ 𝑡∗𝛼∗𝑠) = (𝛼, 𝛽) ∘ 𝛼∗𝑠 ∶ Γ ⋅𝑠 𝛼 → 𝑃𝑡𝑋

Then using lemma 0.3.4

𝜇𝐵∗𝑋 ∘ 𝑠∗(𝛼, 𝛽) (0.3.1)
= counit 𝐵∗𝑋 ∘ 𝜇!𝑡∗𝐵∗𝑋 ∘ 𝑠∗(𝛼, 𝛽) (0.3.2)
= counit 𝐵∗𝑋 ∘ (𝜌 ∘ 𝑠∗𝛼, 𝛽 ∘ 𝑡∗𝛼∗𝑠) (0.3.3)
=(𝛽 ∘ 𝑡∗𝛼∗𝑠 ∘ 𝑟, 𝜌 ∘ 𝑠∗𝛼) (0.3.4)
=(𝛽 ∘ 𝛼∗𝜌, 𝜌 ∘ 𝑠∗𝛼) (0.3.5)
∶ Γ ⋅𝑠 𝛼 → 𝑋 ×𝐵 (0.3.6)

where

Γ ⋅𝑠 𝛼

Γ ⋅𝑠 𝛼 ⋅𝑡 𝛼 ∘ 𝛼∗𝑠 𝐵

Γ ⋅𝑠 𝛼 𝐴

𝑟

𝜌∘𝑠∗𝛼

𝑡

𝛼∘𝛼∗𝑠

and
Γ ⋅𝑠 𝛼 Γ ⋅𝑠 𝛼 𝐶

Γ ⋅𝑠 𝛼 ⋅𝑡 𝛼 ∘ 𝛼∗𝑠 Γ ⋅𝑡 𝛼 𝐵

Γ ⋅𝑠 𝛼 Γ 𝐴

𝑟

𝑠

𝑠∗𝛼

𝛼∗𝜌 𝜌

𝑡∗𝛼∗𝑠
𝑡

𝛼∗𝑠 𝛼

⌟

⌟ ⌟

Moving back along the adjunction 𝜌! ⊣ 𝜌∗ eq. (0.3.1) tells us that

Γ ⋅𝑠 𝛼

𝑋 × 𝐶 𝐶

𝑋 ×𝐵 𝐵

𝑋 1

𝜇𝐵∗𝑋∘𝑠∗(𝛼,𝛽)

𝑠∗𝛼

𝜇𝐵∗𝑋∘𝑠∗(𝛼,𝛽)

𝛽∘𝛼∗𝜌

⌟
𝜌

⌟

So that, as required, 𝜇𝐵∗𝑋 ∘𝑠∗(𝛼, 𝛽) and (𝛼, 𝛽 ∘ 𝛼∗𝜌) are uniquely determined by the
same two maps into 𝑋 and 𝐶.

Definition 0.3.7 (Covariant of 𝑃− on a cartesian square). We can also view taking
polynomial endofunctors as a covariant functor on the category of arrows with
cartesian squares as morphisms

𝑃− ∶ CartArr(ℂ) → [ℂ, ℂ]
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where the action on a cartesian square is

𝐶 𝐷 𝑃𝑠

𝐴 𝐵 𝑃𝑡

𝜃

⌟
𝑠

𝜌 𝑃𝜅

𝑡

𝜅

given by the whiskered natural transformations

ℂ ℂ

ℂ/𝐷 ℂ/𝐵

ℂ/𝐶 ℂ/𝐴

ℂ ℂ

𝐶∗ 𝜂−1

𝑃𝑠

𝐵∗

𝑃𝑡𝑠∗ 𝜇∗−1

𝜌∗

𝑡∗

𝐶! 𝜇!

𝜃∗

𝐴!

Furthermore, the natural transformation 𝑃𝜅 is cartesian. meaning each naturality
square is a pullback square.

𝑃𝑠𝑋 𝑃𝑡𝑋

𝑃𝑠𝑌 𝑃𝑡𝑌

𝑃𝜅𝑌

𝑃𝑠𝑓
⌟

𝑃𝑠𝑓

𝑃𝜅𝑌

The natural tranformation 𝑃𝜅 computes in the following way

Γ ⋅𝑡 𝜃 ∘ 𝛼

Γ ⋅𝑠 𝛼 𝐷 𝐵 Γ

Γ 𝐶 𝐴 𝑃𝑠𝑋 𝑃𝑡𝑋

𝑖

⌟
𝜌

𝑠
⌟

𝑡 (𝛼,𝛽)
(𝜃∘𝛼,𝛽∘𝑖)

𝛼 𝜃 𝑃𝜅𝑋

using the fact that Γ ⋅𝑠 𝛼 and Γ ⋅𝑡 𝜃 ∘ 𝛼 are limits of the same diagram.

Proof. We can use the computation of 𝑃𝜅𝑋 and 𝑃𝑠𝑓 to show that the natural
transformation 𝑃𝜅 is cartesian. Essentially, the first component of a map Γ → 𝑃𝑠𝑋
is determined by its composition with 𝑃𝑠𝑓 and its second component is determined
by its composition with 𝑃𝜅𝑋.

Corollary 0.3.8. If we have

𝐷′ 𝐵′

𝐷 𝐵

𝐶 𝐴

𝜌1
⌟

𝑞′1

𝜌2

𝑞′2
𝑞1

⌟
𝑞2

𝜃
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then the two possible ways of obtaining composing the covariant and contravariant
actions of 𝑃− form a (strictly commuting) pullback square in [ℂ, ℂ].

𝑃𝑞1 𝑃𝑞2

𝑃𝑞′1 𝑃𝑞′2

𝑃𝜅

𝜌1
⋆

⌟
𝜌2

⋆

𝑃𝜅′

Proof. To check that it commutes and is a pullback, it suffices to do this pointwise,
for some 𝑋 ∈ ℂ. Then we simply unfold the computation for each of 𝑃𝜅 and 𝜌⋆.
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