Documentation

HoTTLean.ForMathlib.CategoryTheory.NatTrans

def CategoryTheory.NatTrans.isoOfCodGroupoid {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F G : Functor A B} (h : NatTrans F G) :
F G
Equations
Instances For
    @[simp]
    theorem CategoryTheory.NatTrans.isoOfCodGroupoid_inv_app {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F G : Functor A B} (h : NatTrans F G) (a : A) :
    @[simp]
    def CategoryTheory.NatTrans.inv {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F G : Functor A B} (h : NatTrans F G) :
    G F
    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.NatTrans.inv_vcomp {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F G : Functor A B} (h : NatTrans F G) :
      @[simp]
      theorem CategoryTheory.NatTrans.vcomp_inv {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F G : Functor A B} (h : NatTrans F G) :
      theorem CategoryTheory.NatTrans.hext {A : Type u} [Category.{v, u} A] {B : Type u₁} [Groupoid B] {F F' G G' : Functor A B} (α : F G) (β : F' G') (hF : F = F') (hG : G = G') (happ : ∀ (x : A), α.app x β.app x) :
      α β
      Equations
      • One or more equations did not get rendered due to their size.