@[simp]
@[simp]
theorem
CategoryTheory.Over.homMk_comp'
{T : Type u₁}
[Category.{v₁, u₁} T]
{X Y Z W : T}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(h : Z ⟶ W)
(fgh_comp :
CategoryStruct.comp (CategoryStruct.comp f g) (mk h).hom = (mk (CategoryStruct.comp f (CategoryStruct.comp g h))).hom)
:
A variant of homMk_comp
that can trigger in simp
.
@[simp]
theorem
CategoryTheory.Over.homMk_comp'_assoc
{T : Type u₁}
[Category.{v₁, u₁} T]
{X Y Z W : T}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(h : Z ⟶ W)
(fgh_comp :
CategoryStruct.comp (CategoryStruct.comp f g) (mk h).hom = (mk (CategoryStruct.comp (CategoryStruct.comp f g) h)).hom)
:
@[simp]
theorem
CategoryTheory.Over.homMk_id
{T : Type u₁}
[Category.{v₁, u₁} T]
{X B : T}
(f : X ⟶ B)
(h : CategoryStruct.comp (CategoryStruct.id X) f = f)
:
@[simp]
theorem
CategoryTheory.Over.mkIdTerminal_from_left
{T : Type u₁}
[Category.{v₁, u₁} T]
{B : T}
(U : Over B)
:
@[reducible, inline]
abbrev
CategoryTheory.Over.Sigma
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
(Y : Over X)
(U : Over Y.left)
:
Over X
Over.Sigma Y U
is a shorthand for (Over.map Y.hom).obj U
.
This is a category-theoretic analogue of Sigma
for types.
Equations
- Y.Sigma U = (CategoryTheory.Over.map Y.hom).obj U
Instances For
theorem
CategoryTheory.Over.Sigma.hom
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
{Y : Over X}
(Z : Over Y.left)
:
def
CategoryTheory.Over.Sigma.map
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
{Y : Over X}
{Z Z' : Over Y.left}
(g : Z ⟶ Z')
:
Σ_
is functorial in the second argument.
Equations
Instances For
def
CategoryTheory.Over.Sigma.fst
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
{Y : Over X}
(Z : Over Y.left)
:
The first projection of the sigma object.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Over.Sigma.map_comp_fst
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
{Y : Over X}
{Z Z' : Over Y.left}
(g : Z ⟶ Z')
:
def
CategoryTheory.Over.Sigma.overHomMk
{T : Type u₁}
[Category.{v₁, u₁} T]
{X : T}
{Y : Over X}
{Z Z' : Over Y.left}
(g : Y.Sigma Z ⟶ Y.Sigma Z')
(w : CategoryStruct.comp g (fst Z') = fst Z := by aesop_cat)
:
Promoting a morphism g : Σ_Y Z ⟶ Σ_Y Z'
in Over X
with g ≫ fst Z' = fst Z
to a morphism Z ⟶ Z'
in Over (Y.left)
.