Documentation

Poly.ForMathlib.CategoryTheory.LocallyCartesianClosed.BeckChevalley

Beck-Chevalley natural transformations and natural isomorphisms #

We construct the so-called Beck-Chevalley natural transformations and isomorphisms through the repeated applications of the mate construction in the vertical and horizontal directions.

Main declarations #

Implementation notes #

The lax naturality squares are constructed by the mate equivalence mateEquiv and the natural iso-squares are constructed by the more special conjugation equivalence conjugateIsoEquiv.

References #

The methodology and the notation of the successive mate constructions to obtain the Beck-Chevalley natural transformations and isomorphisms are based on the following paper:

theorem CategoryTheory.Over.map_square_eq {C : Type u} [Category.{v, u} C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (sq : CommSq h f g k := by aesop) :
(map h).comp (map g) = (map f).comp (map k)
def CategoryTheory.Over.mapIsoSquare {C : Type u} [Category.{v, u} C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (sq : CommSq h f g k := by aesop) :
(map h).comp (map g) (map f).comp (map k)

Promoting the equality mapSquare_eq of functors to an isomorphism.

        Over X -- .map h -> Over Z
           |                  |
   .map f  |         ≅        | .map g
           ↓                  ↓
        Over Y -- .map k -> Over W

The Beck Chevalley transformations are iterated mates of this isomorphism in the horizontal and vertical directions.

Equations
Instances For
    def CategoryTheory.Over.pullbackMapTwoSquare {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} (h : X Z) (f : X Y) (g : Z W) (k : Y W) (sq : CommSq h f g k) :

    The Beck-Chevalley natural transformation pullback f ⋙ map h ⟶ map k ⋙ pullback g constructed as a mate of mapIsoSquare:

        Over Y - pullback f → Over X
          |                     |
    map k |          ↙          | map h
          ↓                     ↓
        Over W - pullback g → Over Z
    
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The natural transformation pullback f ⋙ forget X ⟶ forget Y ⋙ 𝟭 C as the mate of the isomorphism mapForget f:

             Over Y - pullback f → Over X
               |                     |
      forget Y |          ↙          | forget X
               ↓                     ↓
               C ======== 𝟭 ======== C
      
      Equations
      Instances For

        The natural transformation pullback f ⋙ forget X ⟶ forget Y, a variant of pullbackForgetTwoSquare.

        Equations
        Instances For
          def CategoryTheory.Over.pullbackMapTriangle {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z : C} (h : X Z) (f : X Y) (h' : Y Z) (w : CategoryStruct.comp f h' = h) :
          (pullback f).comp (map h) map h'

          The natural transformation pullback f ⋙ map h ⟶ map h' for a triangle f : h ⟶ h'.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.Over.pullbackIsoSquare {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} (h : X Z) (f : X Y) (g : Z W) (k : Y W) (sq : CommSq h f g k) :

            The isomorphism between the pullbacks along a commutative square. This is constructed as the conjugate of the mapIsoSquare.

                      Over X ←--.pullback h-- Over Z
                         ↑                       ↑
            .pullback f  |          ≅            | .pullback g
                         |                       |
                      Over Y ←--.pullback k-- Over W
            
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The Beck-Chevalley natural transformation pushforward g ⋙ pullback k ⟶ pullback h ⋙ pushforward f constructed as a mate of pullbackMapTwoSquare.

                       Over Z - pushforward g → Over W
                         |                        |
              pullback h |           ↙            | pullback k
                         ↓                        ↓
                       Over X - pushforward f → Over Y
              
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                A variant of pushforwardTwoSquare involving star instead of pullback.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The conjugate isomorphism between the pushforwards along a commutative square.

                              Over X --.pushforward h -→ Over Z
                                 |                        |
                  .pushforward f |           ≅            | .pushforward g
                                 ↓                        ↓
                              Over Y --.pushforward k -→ Over W
                  
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem CategoryTheory.IsPullback.left_face_of_comm_cube {C : Type u} [Category.{v, u} C] {P W X Y Q Z S T : C} (p₁ : P W) (p₂ : P X) (f₁ : W S) (f₂ : X S) (q₁ : Q Y) (q₂ : Q Z) (g₁ : Y T) (g₂ : Z T) (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (i₄ : P Q) (sq_top : CommSq p₂ i₄ i₂ q₂) (sq_bot : CommSq f₁ i₁ i₃ g₁) (sq_left : CommSq i₄ p₁ q₁ i₁) (pb_back : IsPullback p₂ p₁ f₂ f₁) (pb_front : IsPullback q₂ q₁ g₂ g₁) (pb_right : IsPullback i₂ f₂ g₂ i₃) :
                    IsPullback i₄ p₁ q₁ i₁

                    In a commutative cube diagram if the front, back and the right face are pullback squares then the the left face is also a pullback square.

                              P ---p₂------  X
                             /|             /|
                        i₄  / |       i₂   / |
                           /  |           /  | f₂
                          Q ----q₂-----  Z   |
                          |   |          |   |
                          |   W -f₁----- | - S
                      q₁  |  /           |  /
                          | / i₁         | / i₃
                          |/             |/
                          Y ----g₁------ T
                    
                    theorem CategoryTheory.IsPullback.back_face_of_comm_cube {C : Type u} [Category.{v, u} C] {P W X Y Q Z S T : C} (p₁ : P W) (p₂ : P X) (f₁ : W S) (f₂ : X S) (q₁ : Q Y) (q₂ : Q Z) (g₁ : Y T) (g₂ : Z T) (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (i₄ : P Q) (sq_top : CommSq p₂ i₄ i₂ q₂) (sq_bot : CommSq f₁ i₁ i₃ g₁) (sq_back : CommSq p₂ p₁ f₂ f₁) (pb_front : IsPullback q₂ q₁ g₂ g₁) (pb_left : IsPullback i₄ p₁ q₁ i₁) (pb_right : IsPullback i₂ f₂ g₂ i₃) :
                    IsPullback p₂ p₁ f₂ f₁

                    In a commutative cube diagram if the front, the left and the right face are pullback squares then the the back face is also a pullback square.

                              P ---p₂------  X
                             /|             /|
                        i₄  / |       i₂   / |
                           /  |           /  | f₂
                          Q ----q₂-----  Z   |
                          |   |          |   |
                          |   W -f₁----- | - S
                      q₁  |  /           |  /
                          | / i₁         | / i₃
                          |/             |/
                          Y ----g₁------ T
                    
                    theorem CategoryTheory.IsPullback.pullback.map_isIso_of_pullback_right_of_comm_cube {C : Type u} [Category.{v, u} C] {W X Y Z S T : C} (f₁ : W S) (f₂ : X S) [Limits.HasPullback f₁ f₂] (g₁ : Y T) (g₂ : Z T) [Limits.HasPullback g₁ g₂] (i₁ : W Y) (i₂ : X Z) (i₃ : S T) (sq_bot : CommSq f₁ i₁ i₃ g₁) [IsIso i₁] (pb_right : IsPullback i₂ f₂ g₂ i₃) :
                    IsIso (Limits.pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ )

                    The pullback comparison map pullback.map f₁ f₂ g₁ g₂ i₁ i₂ i₃ between two pullback squares is an isomorphism if i₁ is an isomorphism and one of the connecting morphisms is an isomorphism.

                    @[simp]
                    theorem CategoryTheory.pullbackMapTwoSquare_app {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (sq : CommSq h f g k) (A : Over Y) :
                    theorem CategoryTheory.forget_map_pullbackMapTwoSquare {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (sq : CommSq h f g k) (A : Over Y) :
                    theorem CategoryTheory.isIso_forgetMappullbackMapTwoSquare_of_isPullback {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (A : Over Y) (pb : IsPullback h f g k) :
                    instance CategoryTheory.pullbackMapTwoSquare_of_isPullback_isIso {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (pb : IsPullback h f g k) :

                    The pullback Beck-Chevalley natural transformation of a pullback square is an isomorphism.

                    def CategoryTheory.pullbackMapIsoSquare {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] {X Y Z W : C} {h : X Z} {f : X Y} {g : Z W} {k : Y W} (pb : IsPullback h f g k) :

                    The pullback-map exchange isomorphism.

                    Equations
                    Instances For

                      The functor Beck-Chevalley natural transformation of a pullback square is an isomorphism.