Documentation

DisplayedCategories.Fiber

Fibers of a functor #

This files define the type Fiber of a functor at a given object in the base category.

We provide the category instance on the fibers of a functor. We show that for a functor P, the fiber of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

Notation #

We provide the following notations:

def CategoryTheory.Fiber {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] (P : Functor E C) (I : C) :
Type u_2

The fiber of a functor at a given object in the codomain category.

Equations
Instances For
    structure CategoryTheory.EFiber {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] (P : Functor E C) (I : C) :
    Type (max u_2 u_3)

    The essential fiber of a functor at a given object in the codomain category.

    Instances For
      structure CategoryTheory.LaxFiber {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] (P : Functor E C) (I : C) :
      Type (max u_2 u_3)

      The lax fiber of a functor at a given object in the codomain category.

      Instances For
        theorem CategoryTheory.Fiber.ext {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X Y : P ⁻¹ I) (h : X = Y) :
        X = Y
        theorem CategoryTheory.Fiber.ext_iff {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X Y : P ⁻¹ I} :
        X = Y X = Y
        instance CategoryTheory.Fiber.instCoeOut {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} :
        CoeOut (P ⁻¹ I) E

        Coercion from the fiber to the domain.

        Equations
        theorem CategoryTheory.Fiber.coe_mk {C : Type u_1} {E : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} E] {P : Functor E C} {I : C} {X : E} (h : P.obj X = I) :
        X, h = X
        theorem CategoryTheory.Fiber.mk_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X : P ⁻¹ I} :
        X, = X
        theorem CategoryTheory.Fiber.coe_inj {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X Y : P ⁻¹ I) :
        X = Y X = Y
        theorem CategoryTheory.Fiber.over {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X : P ⁻¹ I) :
        P.obj X = I
        theorem CategoryTheory.Fiber.over_eq {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X Y : P ⁻¹ I) :
        P.obj X = P.obj Y
        def CategoryTheory.Fiber.tauto {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (X : E) :
        P ⁻¹ P.obj X

        A tautological construction of an element in the fiber of the image of a domain element.

        Equations
        Instances For
          instance CategoryTheory.Fiber.instTautoFib {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (X : E) :
          CoeDep E X (P ⁻¹ P.obj X)

          Regarding an element of the domain as an element in the Fiber of its image.

          Equations
          theorem CategoryTheory.Fiber.tauto_over {C : Type u_1} {E : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} E] {P : Functor E C} (X : E) :
          (tauto X) = X
          structure CategoryTheory.Fiber.Total {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} :
          Type (max u_1 u_2)

          The total space of a map.

          • base : C

            The base object in C

          • fiber : P ⁻¹ self.base

            The object in the fiber of the base object.

          Instances For
            theorem CategoryTheory.Fiber.Total.ext_iff {C : Type u_1} {E : Type u_2} {inst✝ : Category.{u_3, u_1} C} {inst✝¹ : Category.{u_4, u_2} E} {P : Functor E C} {x y : Total} :
            x = y x.base = y.base HEq x.fiber y.fiber
            theorem CategoryTheory.Fiber.Total.ext {C : Type u_1} {E : Type u_2} {inst✝ : Category.{u_3, u_1} C} {inst✝¹ : Category.{u_4, u_2} E} {P : Functor E C} {x y : Total} (base : x.base = y.base) (fiber : HEq x.fiber y.fiber) :
            x = y

            The category structure on the fibers of a functor.

            Equations
            • One or more equations did not get rendered due to their size.
            theorem CategoryTheory.Fiber.id_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X : P ⁻¹ I) :
            theorem CategoryTheory.Fiber.comp_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {c : C} {X Y Z : P ⁻¹ c} (f : X Y) (g : Y Z) :
            @[simp]
            theorem CategoryTheory.Fiber.fiber_hom_over {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X Y : P ⁻¹ I) (g : X Y) :
            P.map g = eqToHom
            def CategoryTheory.Fiber.forget {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} :
            Functor (P ⁻¹ I) E

            The forgetful functor from a fiber to the domain category.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.Fiber.forget_map {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (x y : P ⁻¹ I) (f : x y) :
              forget.map f = f
              @[simp]
              theorem CategoryTheory.Fiber.forget_obj {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (x : P ⁻¹ I) :
              forget.obj x = x
              theorem CategoryTheory.Fiber.fiber_comp_obj {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {c : C} (X Y Z : P ⁻¹ c) (f : X Y) (g : Y Z) :
              @[simp]
              theorem CategoryTheory.Fiber.fiber_comp_obj_eq {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {c : C} {X Y Z : P ⁻¹ c} {f : X Y} {g : Y Z} {h : X Z} :
              @[simp]
              theorem CategoryTheory.Fiber.fiber_id_obj {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X : P ⁻¹ I) :
              theorem CategoryTheory.Fiber.hom_ext {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X Y : P ⁻¹ I} {f g : X Y} (h : f = g) :
              f = g
              theorem CategoryTheory.Fiber.is_iso {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X Y : P ⁻¹ I} (f : X Y) :
              IsIso f IsIso f
              instance CategoryTheory.EFiber.instCoeOut {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} :

              Coercion from the fiber to the domain.

              Equations
              def CategoryTheory.EFiber.tauto {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (X : E) :

              A tautological construction of an element in the fiber of the image of a domain element.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.EFiber.tauto_obj {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (X : E) :
                (tauto X).obj = X
                @[simp]
                @[simp]
                instance CategoryTheory.EFiber.instTautoFib {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (X : E) :
                CoeDep E X (P ⁻¹ᵉ P.obj X)

                Regarding an element of the domain as an element in the essential fiber of its image.

                Equations

                The category structure on the essential fibers of a functor.

                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                theorem CategoryTheory.Fiber.Op.obj_over {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} (X : P.op ⁻¹ Opposite.op I) :
                P.obj (Opposite.unop X) = I

                The Fibers of the opposite functor P.op are in bijection with the the Fibers of P.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Fiber.Op.equiv_apply_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (I : C) (X : P.op ⁻¹ Opposite.op I) :
                  ((equiv I) X) = Opposite.unop X
                  @[simp]
                  theorem CategoryTheory.Fiber.Op.equiv_symm_apply_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (I : C) (X : P ⁻¹ I) :
                  ((equiv I).symm X) = Opposite.op X
                  def CategoryTheory.Fiber.Op.iso {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (I : C) :

                  The Fibers of the opposite functor P.op are isomorphic to the the Fibers of P.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.Fiber.Op.iso_inv_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (I : C) (X : P ⁻¹ I) :
                    ((iso I).inv X) = Opposite.op X
                    @[simp]
                    theorem CategoryTheory.Fiber.Op.iso_hom_coe {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} (I : C) (X : P.op ⁻¹ Opposite.op I) :
                    ((iso I).hom X) = Opposite.unop X
                    theorem CategoryTheory.Fiber.Op.unop_op_map {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X Y : P.op ⁻¹ Opposite.op I} (f : X Y) :
                    Opposite.unop (P.op.map f) = P.map (↑f).unop
                    theorem CategoryTheory.Fiber.Op.op_map_unop {C : Type u_1} {E : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} E] {P : Functor E C} {I : C} {X Y : (P ⁻¹ I)ᵒᵖ} (f : X Y) :
                    P.op.map (↑f.unop).op = (P.map f.unop).op

                    The fiber categories of the opposite functor P.op are isomorphic to the opposites of the fiber categories of P.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For