List Permutations #
This file introduces the List.Perm
relation, which is true if two lists are permutations of one
another.
Notation #
The notation ~
is used for permutation equivalence.
theorem
List.Subperm.filter
{α : Type u_1}
(p : α → Bool)
⦃l l' : List α⦄
(h : l.Subperm l')
:
(List.filter p l).Subperm (List.filter p l')
theorem
List.Subperm.countP_le
{α : Type u_1}
(p : α → Bool)
{l₁ l₂ : List α}
:
l₁.Subperm l₂ → countP p l₁ ≤ countP p l₂
theorem
List.Subperm.count_le
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(s : l₁.Subperm l₂)
(a : α)
:
theorem
List.Subperm.erase
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(a : α)
(h : l₁.Subperm l₂)
:
theorem
List.Perm.diff_right
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(t : List α)
(h : l₁.Perm l₂)
:
theorem
List.Perm.diff
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ t₁ t₂ : List α}
(hl : l₁.Perm l₂)
(ht : t₁.Perm t₂)
:
theorem
List.Subperm.diff_right
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(h : l₁.Subperm l₂)
(t : List α)
:
theorem
List.subperm_append_diff_self_of_count_le
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(h : ∀ (x : α), x ∈ l₁ → count x l₁ ≤ count x l₂)
:
The list version of add_tsub_cancel_of_le
for multisets.
The list version of Multiset.le_iff_count
.
instance
List.decidableSubperm
{α : Type u_1}
[DecidableEq α]
:
DecidableRel fun (x1 x2 : List α) => x1.Subperm x2
theorem
List.Subperm.cons_left
{α : Type u_1}
[DecidableEq α]
{l₁ l₂ : List α}
(h : l₁.Subperm l₂)
(x : α)
(hx : count x l₁ < count x l₂)
:
theorem
List.Perm.insertP
{α : Type u_1}
{l₁ l₂ : List α}
(p : α → Bool)
(a : α)
(h : l₁.Perm l₂)
:
(List.insertP p a l₁).Perm (List.insertP p a l₂)
@[deprecated List.merge_perm_append (since := "2025-01-04")]
Alias of List.merge_perm_append
.