Documentation

GroupoidModel.ForMathlib.CategoryTheory.RepPullbackCone

This file builds API for showing that a presheaf diagram is a pullback by its universal property among representable cones.

structure CategoryTheory.Limits.RepCone {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] (F : Functor J (Functor Cᵒᵖ (Type v₃))) :
Type (max (max u₁ u₃) v₃)

A c : RepCone F is:

  • an object c.pt and
  • a natural transformation c.π : yoneda.obj c.pt ⟶ F from the constant yoneda.obj c.pt functor to F.
Instances For
    @[reducible]
    Equations
    Instances For
      structure CategoryTheory.Limits.RepIsLimit {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} (t : Cone F) :
      Type (max (max u₁ u₃) v₃)
      Instances For
        def CategoryTheory.Limits.repConeOfConeMap {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} (s : Cone F) (c : C) (x' : yoneda.obj c s.pt) :
        Equations
        Instances For
          def CategoryTheory.Limits.RepIsLimit.lift' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} {t : Cone F} (P : RepIsLimit t) {s : Cone F} (c : C) (x' : yoneda.obj c s.pt) :
          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.RepIsLimit.lift'_naturality {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} {t : Cone F} (P : RepIsLimit t) {s : Cone F} {c d : C} (f : c d) (x' : yoneda.obj d s.pt) :
            def CategoryTheory.Limits.RepIsLimit.lift'' {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} {t : Cone F} (P : RepIsLimit t) (s : Cone F) :
            s.pt t.pt
            Equations
            Instances For
              theorem CategoryTheory.Limits.RepIsLimit.fac_ext {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} {t : Cone F} (P : RepIsLimit t) (s : Cone F) (j : J) (c : C) (x : s.pt.obj (Opposite.op c)) :
              theorem CategoryTheory.Limits.RepIsLimit.uniq_ext {J : Type u₁} [Category.{v₁, u₁} J] {C : Type u₃} [Category.{v₃, u₃} C] {F : Functor J (Functor Cᵒᵖ (Type v₃))} {t : Cone F} (P : RepIsLimit t) (s : Cone F) (m : s.pt t.pt) (hm : ∀ (j : J), CategoryStruct.comp m (t.π.app j) = s.π.app j) (c : C) (x : s.pt.obj (Opposite.op c)) :
              m.app (Opposite.op c) x = (P.lift'' s).app (Opposite.op c) x
              Equations
              Instances For
                @[reducible, inline]
                abbrev CategoryTheory.Limits.RepPullbackCone {C : Type u₃} [Category.{v₃, u₃} C] {X Y Z : Functor Cᵒᵖ (Type v₃)} (f : X Z) (g : Y Z) :
                Type (max u₃ v₃)
                Equations
                Instances For
                  def CategoryTheory.Limits.RepPullbackCone.mk {C : Type u₃} [Category.{v₃, u₃} C] {X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} (W : C) (fst : yoneda.obj W X) (snd : yoneda.obj W Y) (h : CategoryStruct.comp fst f = CategoryStruct.comp snd g) :
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev CategoryTheory.Limits.RepPullbackCone.fst {C : Type u₃} [Category.{v₃, u₃} C] {X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} (t : RepPullbackCone f g) :

                      The first projection of a pullback cone.

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev CategoryTheory.Limits.RepPullbackCone.snd {C : Type u₃} [Category.{v₃, u₃} C] {X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} (t : RepPullbackCone f g) :

                        The second projection of a pullback cone.

                        Equations
                        Instances For
                          def CategoryTheory.Limits.RepPullbackCone.repIsLimitAux {C : Type u₃} [Category.{v₃, u₃} C] {X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} (t : PullbackCone f g) (lift : (s : RepPullbackCone f g) → yoneda.obj s.pt t.pt) (fac_left : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) t.fst = s.fst) (fac_right : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) t.snd = s.snd) (uniq : ∀ (s : RepPullbackCone f g) (m : yoneda.obj s.pt t.pt), (∀ (j : WalkingCospan), CategoryStruct.comp m (t.π.app j) = s.π.app j)m = lift s) :
                          Equations
                          Instances For
                            def CategoryTheory.Limits.RepPullbackCone.RepIsLimit.mk {C : Type u₃} [Category.{v₃, u₃} C] {W X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} {fst : W X} {snd : W Y} (eq : CategoryStruct.comp fst f = CategoryStruct.comp snd g) (lift : (s : RepPullbackCone f g) → yoneda.obj s.pt W) (fac_left : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) fst = s.fst) (fac_right : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) snd = s.snd) (uniq : ∀ (s : RepPullbackCone f g) (m : yoneda.obj s.pt W), CategoryStruct.comp m fst = s.fstCategoryStruct.comp m snd = s.sndm = lift s) :

                            To show that a PullbackCone in a presheaf category constructed using PullbackCone.mk is a limit cone, it suffices to show its universal property among representable cones.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              theorem CategoryTheory.Limits.RepPullbackCone.is_pullback {C : Type u₃} [Category.{v₃, u₃} C] {W X Y Z : Functor Cᵒᵖ (Type v₃)} {f : X Z} {g : Y Z} {fst : W X} {snd : W Y} (eq : CategoryStruct.comp fst f = CategoryStruct.comp snd g) (lift : (s : RepPullbackCone f g) → yoneda.obj s.pt W) (fac_left : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) fst = s.fst) (fac_right : ∀ (s : RepPullbackCone f g), CategoryStruct.comp (lift s) snd = s.snd) (uniq : ∀ (s : RepPullbackCone f g) (m : yoneda.obj s.pt W), CategoryStruct.comp m fst = s.fstCategoryStruct.comp m snd = s.sndm = lift s) :
                              IsPullback fst snd f g