Documentation

GroupoidModel.ForMathlib.CategoryTheory.WeakPullback

structure CategoryTheory.WeakPullback {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} (fst : P X) (snd : P Y) (f : X Z) (g : Y Z) extends CategoryTheory.CommSq fst snd f g :
Type (max u_1 u_2)
Instances For
    @[simp]
    theorem CategoryTheory.WeakPullback.lift_fst {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) :
    CategoryStruct.comp (wp.lift a b h) fst = a
    @[simp]
    theorem CategoryTheory.WeakPullback.lift_snd {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) :
    CategoryStruct.comp (wp.lift a b h) snd = b
    def CategoryTheory.WeakPullback.coherentLift {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) [Limits.HasPullbacks C] :
    W P
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.WeakPullback.coherentLift_fst {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) [Limits.HasPullbacks C] :
      @[simp]
      theorem CategoryTheory.WeakPullback.coherentLift_snd {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) [Limits.HasPullbacks C] :
      theorem CategoryTheory.WeakPullback.coherentLift_comp_left {C : Type u_1} [Category.{u_2, u_1} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (wp : WeakPullback fst snd f g) {W : C} (a : W X) (b : W Y) (h : CategoryStruct.comp a f = CategoryStruct.comp b g) [Limits.HasPullbacks C] {W' : C} (σ : W' W) :