Here we define the Grothendieck construction for groupoids
def
CategoryTheory.toCat
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
(G : CategoryTheory.Functor C CategoryTheory.Grpd)
:
Equations
Instances For
@[simp]
theorem
CategoryTheory.toCat_obj_α
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
(G : CategoryTheory.Functor C CategoryTheory.Grpd)
(X : C)
:
↑((CategoryTheory.toCat G).obj X) = ↑(G.obj X)
@[simp]
theorem
CategoryTheory.toCat_map
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
(G : CategoryTheory.Functor C CategoryTheory.Grpd)
:
∀ {X Y : C} (f : X ⟶ Y), (CategoryTheory.toCat G).map f = CategoryTheory.Grpd.forgetToCat.map (G.map f)
@[simp]
theorem
CategoryTheory.toCat_obj_str
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
(G : CategoryTheory.Functor C CategoryTheory.Grpd)
(X : C)
:
((CategoryTheory.toCat G).obj X).str = CategoryTheory.Groupoid.toCategory
def
CategoryTheory.Grothendieck.mkIso
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
{G : CategoryTheory.Functor C CategoryTheory.Cat}
{X : CategoryTheory.Grothendieck G}
{Y : CategoryTheory.Grothendieck G}
(s : X.base ≅ Y.base)
(t : (G.map s.hom).obj X.fiber ≅ Y.fiber)
:
X ≅ Y
A morphism in the Grothendieck construction is an isomorphism if
- the morphism in the base is an isomorphism; and
- the fiber morphism is an isomorphism.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.GroupoidalGrothendieck
{C : Type u₁}
[CategoryTheory.Groupoid C]
(F : CategoryTheory.Functor C CategoryTheory.Grpd)
:
Type (max u₁ u₂)
In Mathlib.CategoryTheory.Grothendieck we find the Grothendieck construction
for the functors F : C ⥤ Cat
. Given a functor F : G ⥤ Grpd
, we show that
the Grothendieck construction of the composite F ⋙ Grpd.forgetToCat
, where
forgetToCat : Grpd ⥤ Cat
is the embedding of groupoids into categories, is a groupoid.
Equations
Instances For
instance
CategoryTheory.GroupoidalGrothendieck.instCategory
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.GroupoidalGrothendieck.instGroupoidαCategoryObjCatToCat
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
(X : C)
:
CategoryTheory.Groupoid ↑((CategoryTheory.toCat F).obj X)
Equations
- One or more equations did not get rendered due to their size.
def
CategoryTheory.GroupoidalGrothendieck.isoMk
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
{X : CategoryTheory.GroupoidalGrothendieck F}
{Y : CategoryTheory.GroupoidalGrothendieck F}
(f : X ⟶ Y)
:
X ≅ Y
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.GroupoidalGrothendieck.inv
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
{X : CategoryTheory.GroupoidalGrothendieck F}
{Y : CategoryTheory.GroupoidalGrothendieck F}
(f : X ⟶ Y)
:
Y ⟶ X
Equations
Instances For
instance
CategoryTheory.GroupoidalGrothendieck.groupoid
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
:
Equations
- CategoryTheory.GroupoidalGrothendieck.groupoid = CategoryTheory.Groupoid.mk (fun {X Y : CategoryTheory.GroupoidalGrothendieck F} (f : X ⟶ Y) => CategoryTheory.GroupoidalGrothendieck.inv f) ⋯ ⋯
def
CategoryTheory.GroupoidalGrothendieck.forget
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
:
Equations
- CategoryTheory.GroupoidalGrothendieck.forget = CategoryTheory.Grothendieck.forget (F.comp CategoryTheory.Grpd.forgetToCat)
Instances For
def
CategoryTheory.GroupoidalGrothendieck.ToGrpd
{C : Type u₁}
[CategoryTheory.Groupoid C]
{F : CategoryTheory.Functor C CategoryTheory.Grpd}
:
Equations
- CategoryTheory.GroupoidalGrothendieck.ToGrpd = CategoryTheory.GroupoidalGrothendieck.forget.comp F
Instances For
def
CategoryTheory.GroupoidalGrothendieck.functorial
{C : CategoryTheory.Grpd}
{D : CategoryTheory.Grpd}
(F : C ⟶ D)
(G : CategoryTheory.Functor (↑D) CategoryTheory.Grpd)
:
Equations
- One or more equations did not get rendered due to their size.