Documentation

GroupoidModel.Groupoids.PointedCat

Here we define pointed categories and pointed groupoids as well as prove some basic lemmas.

A typeclass for pointed categories.

    Instances

      A constructor that makes a pointed category from a category and a point.

      Equations
      Instances For
        structure CategoryTheory.PointedFunctor (C : Type u_1) (D : Type u_2) [cp : CategoryTheory.PointedCategory C] [dp : CategoryTheory.PointedCategory D] extends CategoryTheory.Functor , Prefunctor :
        Type (max (max (max u_1 u_2) u_3) u_4)

        The structure of a functor from C to D along with a morphism from the image of the point of C to the point of D.

          Instances For

            The identity PointedFunctor whose underlying functor is the identity functor

            Equations
            Instances For

              Composition of PointedFunctor composes the underlying functors and the point morphisms.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.PointedFunctor.comp_map {C : Type u_1} {D : Type u_2} {E : Type u_3} [cp : CategoryTheory.PointedCategory C] [CategoryTheory.PointedCategory D] [CategoryTheory.PointedCategory E] (F : CategoryTheory.PointedFunctor C D) (G : CategoryTheory.PointedFunctor D E) :
                ∀ {X Y : C} (f : X Y), (F.comp G).map f = G.map (F.map f)
                theorem CategoryTheory.PointedFunctor.ext {C : Type u_1} {D : Type u_2} [cp : CategoryTheory.PointedCategory C] [CategoryTheory.PointedCategory D] (F : CategoryTheory.PointedFunctor C D) (G : CategoryTheory.PointedFunctor C D) (h_func : F.toFunctor = G.toFunctor) (h_point : F.point = CategoryTheory.CategoryStruct.comp (CategoryTheory.eqToHom ) G.point) :
                F = G

                The extensionality principle for pointed functors

                def CategoryTheory.PCat :
                Type (max (z + 1) (w + 1) z)

                The category of pointed categorys and pointed functors

                Equations
                Instances For

                  Construct a bundled PCat from the underlying type and the typeclass.

                  Equations
                  Instances For

                    The functor that takes PCat to Cat by forgetting the points

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem CategoryTheory.PCat.id_map {C : CategoryTheory.PCat} {X : C} {Y : C} (f : X Y) :
                      @[simp]
                      theorem CategoryTheory.PCat.comp_obj {C : CategoryTheory.PCat} {D : CategoryTheory.PCat} {E : CategoryTheory.PCat} (F : C D) (G : D E) (X : C) :
                      (CategoryTheory.CategoryStruct.comp F G).obj X = G.obj (F.obj X)
                      @[simp]
                      theorem CategoryTheory.PCat.comp_map {C : CategoryTheory.PCat} {D : CategoryTheory.PCat} {E : CategoryTheory.PCat} (F : C D) (G : D E) {X : C} {Y : C} (f : X Y) :
                      (CategoryTheory.CategoryStruct.comp F G).map f = G.map (F.map f)
                      @[simp]
                      theorem CategoryTheory.PCat.comp_toFunctor {C : CategoryTheory.PCat} {D : CategoryTheory.PCat} {E : CategoryTheory.PCat} (F : C D) (G : D E) :
                      (CategoryTheory.CategoryStruct.comp F G).toFunctor = F.comp G.toFunctor

                      A constructor that makes a pointed groupoid from a groupoid and a point.

                      Equations
                      Instances For
                        def CategoryTheory.PGrpd :
                        Type (max (z + 1) (w + 1) z)

                        The category of pointed groupoids and pointed functors

                        Equations
                        Instances For

                          Construct a bundled PGrpd from the underlying type and the typeclass.

                          Equations
                          Instances For

                            Construct a bundled PGrpd from a Grpd and a point

                            Equations
                            Instances For

                              The functor that takes PGrpd to Grpd by forgetting the points

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                This takes PGrpd to PCat

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.PGrpd.id_map {C : CategoryTheory.PGrpd} {X : C} {Y : C} (f : X Y) :
                                  @[simp]
                                  theorem CategoryTheory.PGrpd.comp_obj {C : CategoryTheory.PGrpd} {D : CategoryTheory.PGrpd} {E : CategoryTheory.PGrpd} (F : C D) (G : D E) (X : C) :
                                  (CategoryTheory.CategoryStruct.comp F G).obj X = G.obj (F.obj X)
                                  @[simp]
                                  theorem CategoryTheory.PGrpd.comp_map {C : CategoryTheory.PGrpd} {D : CategoryTheory.PGrpd} {E : CategoryTheory.PGrpd} (F : C D) (G : D E) {X : C} {Y : C} (f : X Y) :
                                  (CategoryTheory.CategoryStruct.comp F G).map f = G.map (F.map f)
                                  @[simp]