Documentation

GroupoidModel.NaturalModel

P : UvPoly C is a polynomial functors in a single variable

Instances For
    def UvPoly.equiv' {𝒞 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒞] [CategoryTheory.Limits.HasTerminal 𝒞] [CategoryTheory.Limits.HasPullbacks 𝒞] {E : 𝒞} {B : 𝒞} (P : UvPoly E B) (Γ : 𝒞) (X : 𝒞) :
    (Γ P.functor.obj X) (b : Γ B) × (CategoryTheory.Limits.pullback P.p b X)

    Universal property of the polynomial functor.

    Equations
    Instances For
      def UvPoly.comp {𝒞 : Type u_1} [CategoryTheory.Category.{u_2, u_1} 𝒞] [CategoryTheory.Limits.HasFiniteWidePullbacks 𝒞] [CategoryTheory.Limits.HasTerminal 𝒞] {E : 𝒞} {B : 𝒞} {D : 𝒞} {C : 𝒞} (P1 : UvPoly E B) (P2 : UvPoly D C) :
      UvPoly (P2.functor.obj E) (P1.functor.obj C)
      Equations
      • P1.comp P2 = { p := sorry, exp := sorry }
      Instances For

        Natural Models #

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Instances
            theorem CategoryTheory.NaturalModel.NaturalModelBase.disp_pullback {Ctx : Type u} :
            ∀ {inst : CategoryTheory.SmallCategory Ctx} [self : CategoryTheory.NaturalModel.NaturalModelBase Ctx] {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ CategoryTheory.NaturalModel.Ty), CategoryTheory.IsPullback (CategoryTheory.NaturalModel.var Γ A) (CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp Γ A)) CategoryTheory.NaturalModel.tp A
            Equations
            • CategoryTheory.NaturalModel.instLCCPsh_groupoidModel = LCCC.mkOfOverCC
            Equations
            Instances For
              Instances
                theorem CategoryTheory.NaturalModel.NaturalModelPi.Pi_pullback {Ctx : Type u} :
                ∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} [self : CategoryTheory.NaturalModel.NaturalModelPi Ctx], CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelPi.lam ((CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).map CategoryTheory.NaturalModel.tp) CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelPi.Pi
                Instances
                  theorem CategoryTheory.NaturalModel.NaturalModelSigma.Sig_pullback {Ctx : Type u} :
                  ∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} [self : CategoryTheory.NaturalModel.NaturalModelSigma Ctx], CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelSigma.pair ((CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp).comp (CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp)).p CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelSigma.Sig
                  def CategoryTheory.NaturalModel.δ {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] :
                  CategoryTheory.NaturalModel.Tm CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp
                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    • Eq : CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.Ty
                    • refl : CategoryTheory.NaturalModel.Tm CategoryTheory.NaturalModel.Tm
                    • Eq_pullback : CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelEq.refl CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelEq.Eq
                    Instances
                      theorem CategoryTheory.NaturalModel.NaturalModelEq.Eq_pullback {Ctx : Type u} :
                      ∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} [self : CategoryTheory.NaturalModel.NaturalModelEq Ctx], CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelEq.refl CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelEq.Eq
                      Instances
                        theorem CategoryTheory.NaturalModel.NaturalModelIdBase.Id_commute {Ctx : Type u} :
                        ∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} [self : CategoryTheory.NaturalModel.NaturalModelIdBase Ctx], CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.NaturalModelIdBase.Id = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelIdBase.i CategoryTheory.NaturalModel.tp
                        Equations
                        Instances For
                          def CategoryTheory.NaturalModel.q {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelIdBase Ctx] :
                          CategoryTheory.NaturalModel.I CategoryTheory.NaturalModel.Ty
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            Equations
                            Instances For
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  def CategoryTheory.NaturalModel.ε {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelIdBase Ctx] :
                                  (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm CategoryTheory.NaturalModel.pb2
                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem CategoryTheory.NaturalModel.NaturalModelIdData_def (Ctx : Type u_1) [CategoryTheory.SmallCategory Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelIdBase Ctx] :
                                    CategoryTheory.NaturalModel.NaturalModelIdData Ctx = { J : CategoryTheory.NaturalModel.pb2 (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm // CategoryTheory.CategoryStruct.comp J CategoryTheory.NaturalModel.ε = CategoryTheory.CategoryStruct.id CategoryTheory.NaturalModel.pb2 }
                                    Instances
                                      def CategoryTheory.NaturalModel.NaturalModelId.J {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelId Ctx] :
                                      CategoryTheory.NaturalModel.pb2 (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm
                                      Equations
                                      • CategoryTheory.NaturalModel.NaturalModelId.J = (.mp CategoryTheory.NaturalModel.NaturalModelId.data)
                                      Instances For
                                        Instances
                                          def CategoryTheory.NaturalModel.toPiArgs {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.Limits.HasTerminal Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelU Ctx] [CategoryTheory.NaturalModel.NaturalModelPi Ctx] :
                                          (CategoryTheory.NaturalModel.P (CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U) CategoryTheory.NaturalModel.El))).obj (CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)) (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty
                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            Instances
                                              theorem CategoryTheory.NaturalModel.NaturalModelSmallPi.SmallPi_eq {Ctx : Type u} :
                                              ∀ {inst : CategoryTheory.SmallCategory Ctx} {inst_1 : CategoryTheory.Limits.HasTerminal Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} {inst_2 : CategoryTheory.NaturalModel.NaturalModelU Ctx} {inst_3 : CategoryTheory.NaturalModel.NaturalModelPi Ctx} [self : CategoryTheory.NaturalModel.NaturalModelSmallPi Ctx], CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelSmallPi.SmallPi CategoryTheory.NaturalModel.El = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.toPiArgs CategoryTheory.NaturalModel.NaturalModelPi.Pi
                                              Equations
                                              • CategoryTheory.NaturalModel.NaturalModelSmallPi.lambda = sorry
                                              Instances For
                                                theorem CategoryTheory.NaturalModel.NaturalModelSmallPi.pullback {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.Limits.HasTerminal Ctx] [M : CategoryTheory.NaturalModel.NaturalModelBase Ctx] [CategoryTheory.NaturalModel.NaturalModelU Ctx] [CategoryTheory.NaturalModel.NaturalModelPi Ctx] :
                                                CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelSmallPi.lambda ((CategoryTheory.NaturalModel.P (CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U) CategoryTheory.NaturalModel.El))).map CategoryTheory.NaturalModel.tp) CategoryTheory.NaturalModel.tp (CategoryTheory.CategoryStruct.comp ((CategoryTheory.NaturalModel.P_naturality { e := CategoryTheory.NaturalModel.var (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U) CategoryTheory.NaturalModel.El, b := CategoryTheory.NaturalModel.El, is_pullback := }).app CategoryTheory.NaturalModel.Ty) CategoryTheory.NaturalModel.NaturalModelPi.Pi)