structure
CategoryTheory.UvPoly'
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasFiniteWidePullbacks C]
(E : C)
(B : C)
:
Type (max u_1 u_2)
P : UvPoly C
is a polynomial functors in a single variable
- p : E ⟶ B
- exp : CartesianExponentiable self.p
Instances For
def
UvPoly.equiv'
{𝒞 : Type u_1}
[CategoryTheory.Category.{u_2, u_1} 𝒞]
[CategoryTheory.Limits.HasTerminal 𝒞]
[CategoryTheory.Limits.HasPullbacks 𝒞]
{E : 𝒞}
{B : 𝒞}
(P : UvPoly E B)
(Γ : 𝒞)
(X : 𝒞)
:
(Γ ⟶ P.functor.obj X) ≃ (b : Γ ⟶ B) × (CategoryTheory.Limits.pullback P.p b ⟶ X)
Universal property of the polynomial functor.
Equations
- P.equiv' Γ X = (P.equiv Γ X).trans (Equiv.sigmaCongrRight fun (x : Γ ⟶ B) => ((CategoryTheory.yoneda.obj X).mapIso (CategoryTheory.Limits.pullbackSymmetry P.p x).op).toEquiv)
Instances For
def
UvPoly.comp
{𝒞 : Type u_1}
[CategoryTheory.Category.{u_2, u_1} 𝒞]
[CategoryTheory.Limits.HasFiniteWidePullbacks 𝒞]
[CategoryTheory.Limits.HasTerminal 𝒞]
{E : 𝒞}
{B : 𝒞}
{D : 𝒞}
{C : 𝒞}
(P1 : UvPoly E B)
(P2 : UvPoly D C)
:
UvPoly (P2.functor.obj E) (P1.functor.obj C)
Equations
- P1.comp P2 = { p := sorry, exp := sorry }
Instances For
Natural Models #
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
CategoryTheory.NaturalModel.NaturalModelBase
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
:
Type (u + 1)
- Tm : CategoryTheory.Psh Ctx
- Ty : CategoryTheory.Psh Ctx
- tp : CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Ty
- ext : (Γ : Ctx) → (CategoryTheory.yoneda.obj Γ ⟶ CategoryTheory.NaturalModel.Ty) → Ctx
- disp : (Γ : Ctx) → (A : CategoryTheory.yoneda.obj Γ ⟶ CategoryTheory.NaturalModel.Ty) → CategoryTheory.NaturalModel.ext Γ A ⟶ Γ
- var : (Γ : Ctx) → (A : CategoryTheory.yoneda.obj Γ ⟶ CategoryTheory.NaturalModel.Ty) → CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext Γ A) ⟶ CategoryTheory.NaturalModel.Tm
- disp_pullback : ∀ {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ ⟶ CategoryTheory.NaturalModel.Ty), CategoryTheory.IsPullback (CategoryTheory.NaturalModel.var Γ A) (CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp Γ A)) CategoryTheory.NaturalModel.tp A
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelBase.disp_pullback
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} [self : CategoryTheory.NaturalModel.NaturalModelBase Ctx] {Γ : Ctx}
(A : CategoryTheory.yoneda.obj Γ ⟶ CategoryTheory.NaturalModel.Ty),
CategoryTheory.IsPullback (CategoryTheory.NaturalModel.var Γ A)
(CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp Γ A)) CategoryTheory.NaturalModel.tp A
instance
CategoryTheory.NaturalModel.instHasFiniteWidePullbacksPsh_groupoidModel
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
:
Equations
- ⋯ = ⋯
instance
CategoryTheory.NaturalModel.instLCCPsh_groupoidModel
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
:
LCC (CategoryTheory.Psh Ctx)
Equations
- CategoryTheory.NaturalModel.instLCCPsh_groupoidModel = LCCC.mkOfOverCC
instance
CategoryTheory.NaturalModel.instCartesianExponentiablePsh_groupoidModel
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{Tm : CategoryTheory.Psh Ctx}
{Ty : CategoryTheory.Psh Ctx}
(tp : Tm ⟶ Ty)
:
Equations
- CategoryTheory.NaturalModel.instCartesianExponentiablePsh_groupoidModel tp = { functor := LCC.pushforward tp, adj := LCC.adj tp }
def
CategoryTheory.NaturalModel.uvPoly
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{Tm : CategoryTheory.Psh Ctx}
{Ty : CategoryTheory.Psh Ctx}
(tp : Tm ⟶ Ty)
:
UvPoly Tm Ty
Equations
- CategoryTheory.NaturalModel.uvPoly tp = { p := tp, exp := inferInstance }
Instances For
def
CategoryTheory.NaturalModel.uvPolyT
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{Tm : CategoryTheory.Psh Ctx}
{Ty : CategoryTheory.Psh Ctx}
(tp : Tm ⟶ Ty)
:
Equations
- CategoryTheory.NaturalModel.uvPolyT tp = { E := Tm, B := Ty, poly := CategoryTheory.NaturalModel.uvPoly tp }
Instances For
def
CategoryTheory.NaturalModel.P
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{Tm : CategoryTheory.Psh Ctx}
{Ty : CategoryTheory.Psh Ctx}
(tp : Tm ⟶ Ty)
:
Equations
- CategoryTheory.NaturalModel.P tp = (CategoryTheory.NaturalModel.uvPoly tp).functor
Instances For
def
CategoryTheory.NaturalModel.P_naturality
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{E : CategoryTheory.Psh Ctx}
{B : CategoryTheory.Psh Ctx}
{E' : CategoryTheory.Psh Ctx}
{B' : CategoryTheory.Psh Ctx}
{f : E ⟶ B}
{f' : E' ⟶ B'}
(α : CategoryTheory.NaturalModel.uvPolyT f ⟶ CategoryTheory.NaturalModel.uvPolyT f')
:
Equations
Instances For
def
CategoryTheory.NaturalModel.proj
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
{Tm : CategoryTheory.Psh Ctx}
{Ty : CategoryTheory.Psh Ctx}
(tp : Tm ⟶ Ty)
:
(CategoryTheory.NaturalModel.P tp).obj Ty ⟶ Ty
Equations
- CategoryTheory.NaturalModel.proj tp = (CategoryTheory.NaturalModel.uvPoly tp).proj Ty
Instances For
class
CategoryTheory.NaturalModel.NaturalModelPi
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
Type u
- Pi : (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty ⟶ CategoryTheory.NaturalModel.Ty
- lam : (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
- Pi_pullback : CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelPi.lam ((CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).map CategoryTheory.NaturalModel.tp) CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelPi.Pi
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelPi.Pi_pullback
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx}
[self : CategoryTheory.NaturalModel.NaturalModelPi Ctx],
CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelPi.lam
((CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).map CategoryTheory.NaturalModel.tp)
CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelPi.Pi
class
CategoryTheory.NaturalModel.NaturalModelSigma
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
Type u
- Sig : (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty ⟶ CategoryTheory.NaturalModel.Ty
- pair : (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
- Sig_pullback : CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelSigma.pair ((CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp).comp (CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp)).p CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelSigma.Sig
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelSigma.Sig_pullback
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx}
[self : CategoryTheory.NaturalModel.NaturalModelSigma Ctx],
CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelSigma.pair
((CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp).comp
(CategoryTheory.NaturalModel.uvPoly CategoryTheory.NaturalModel.tp)).p
CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelSigma.Sig
def
CategoryTheory.NaturalModel.δ
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
CategoryTheory.NaturalModel.NaturalModelEq
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
Type u
- Eq : CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp ⟶ CategoryTheory.NaturalModel.Ty
- refl : CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
- Eq_pullback : CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelEq.refl CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelEq.Eq
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelEq.Eq_pullback
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx}
[self : CategoryTheory.NaturalModel.NaturalModelEq Ctx],
CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelEq.refl CategoryTheory.NaturalModel.δ
CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.NaturalModelEq.Eq
class
CategoryTheory.NaturalModel.NaturalModelIdBase
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
Type u
- Id : CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp ⟶ CategoryTheory.NaturalModel.Ty
- i : CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
- Id_commute : CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.NaturalModelIdBase.Id = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelIdBase.i CategoryTheory.NaturalModel.tp
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelIdBase.Id_commute
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} {M : CategoryTheory.NaturalModel.NaturalModelBase Ctx}
[self : CategoryTheory.NaturalModel.NaturalModelIdBase Ctx],
CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.NaturalModelIdBase.Id = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelIdBase.i CategoryTheory.NaturalModel.tp
def
CategoryTheory.NaturalModel.I
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
Equations
- CategoryTheory.NaturalModel.I = CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.NaturalModelIdBase.Id CategoryTheory.NaturalModel.tp
Instances For
def
CategoryTheory.NaturalModel.q
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
CategoryTheory.NaturalModel.I ⟶ CategoryTheory.NaturalModel.Ty
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.NaturalModel.ρ
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.I
Equations
- CategoryTheory.NaturalModel.ρ = CategoryTheory.Limits.pullback.lift CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.NaturalModelIdBase.i ⋯
Instances For
def
CategoryTheory.NaturalModel.ρs
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q ⟶ CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.NaturalModel.pb2
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.NaturalModel.ε
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
(CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.pb2
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.NaturalModel.NaturalModelIdData_def
(Ctx : Type u_1)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
CategoryTheory.NaturalModel.NaturalModelIdData Ctx = { J :
CategoryTheory.NaturalModel.pb2 ⟶ (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm //
CategoryTheory.CategoryStruct.comp J CategoryTheory.NaturalModel.ε = CategoryTheory.CategoryStruct.id CategoryTheory.NaturalModel.pb2 }
@[irreducible]
def
CategoryTheory.NaturalModel.NaturalModelIdData
(Ctx : Type u_1)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelIdBase Ctx]
:
Type u_1
Instances For
class
CategoryTheory.NaturalModel.NaturalModelId
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
extends
CategoryTheory.NaturalModel.NaturalModelIdBase
:
Type u
- Id : CategoryTheory.Limits.pullback CategoryTheory.NaturalModel.tp CategoryTheory.NaturalModel.tp ⟶ CategoryTheory.NaturalModel.Ty
- i : CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
- Id_commute : CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.δ CategoryTheory.NaturalModel.NaturalModelIdBase.Id = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelIdBase.i CategoryTheory.NaturalModel.tp
Instances
def
CategoryTheory.NaturalModel.NaturalModelId.J
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelId Ctx]
:
CategoryTheory.NaturalModel.pb2 ⟶ (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.q).obj CategoryTheory.NaturalModel.Tm
Equations
- CategoryTheory.NaturalModel.NaturalModelId.J = ↑(⋯.mp CategoryTheory.NaturalModel.NaturalModelId.data)
Instances For
theorem
CategoryTheory.NaturalModel.NaturalModelId.J_section
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelId Ctx]
:
CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelId.J CategoryTheory.NaturalModel.ε = CategoryTheory.CategoryStruct.id CategoryTheory.NaturalModel.pb2
class
CategoryTheory.NaturalModel.NaturalModelU
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
:
Type u
- El : CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U) ⟶ CategoryTheory.NaturalModel.Ty
Instances
def
CategoryTheory.NaturalModel.toPiArgs
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelU Ctx]
[CategoryTheory.NaturalModel.NaturalModelPi Ctx]
:
(CategoryTheory.NaturalModel.P
(CategoryTheory.yoneda.map
(CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)
CategoryTheory.NaturalModel.El))).obj
(CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)) ⟶ (CategoryTheory.NaturalModel.P CategoryTheory.NaturalModel.tp).obj CategoryTheory.NaturalModel.Ty
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
CategoryTheory.NaturalModel.NaturalModelSmallPi
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelU Ctx]
[CategoryTheory.NaturalModel.NaturalModelPi Ctx]
:
Type u
- SmallPi : (CategoryTheory.NaturalModel.P (CategoryTheory.yoneda.map (CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U) CategoryTheory.NaturalModel.El))).obj (CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)) ⟶ CategoryTheory.yoneda.obj (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)
- SmallPi_eq : CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelSmallPi.SmallPi CategoryTheory.NaturalModel.El = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.toPiArgs CategoryTheory.NaturalModel.NaturalModelPi.Pi
Instances
theorem
CategoryTheory.NaturalModel.NaturalModelSmallPi.SmallPi_eq
{Ctx : Type u}
:
∀ {inst : CategoryTheory.SmallCategory Ctx} {inst_1 : CategoryTheory.Limits.HasTerminal Ctx}
{M : CategoryTheory.NaturalModel.NaturalModelBase Ctx} {inst_2 : CategoryTheory.NaturalModel.NaturalModelU Ctx}
{inst_3 : CategoryTheory.NaturalModel.NaturalModelPi Ctx}
[self : CategoryTheory.NaturalModel.NaturalModelSmallPi Ctx],
CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.NaturalModelSmallPi.SmallPi
CategoryTheory.NaturalModel.El = CategoryTheory.CategoryStruct.comp CategoryTheory.NaturalModel.toPiArgs
CategoryTheory.NaturalModel.NaturalModelPi.Pi
def
CategoryTheory.NaturalModel.NaturalModelSmallPi.lambda
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelU Ctx]
[CategoryTheory.NaturalModel.NaturalModelPi Ctx]
:
(CategoryTheory.NaturalModel.P
(CategoryTheory.yoneda.map
(CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)
CategoryTheory.NaturalModel.El))).obj
CategoryTheory.NaturalModel.Tm ⟶ CategoryTheory.NaturalModel.Tm
Equations
- CategoryTheory.NaturalModel.NaturalModelSmallPi.lambda = sorry
Instances For
theorem
CategoryTheory.NaturalModel.NaturalModelSmallPi.pullback
{Ctx : Type u}
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
[M : CategoryTheory.NaturalModel.NaturalModelBase Ctx]
[CategoryTheory.NaturalModel.NaturalModelU Ctx]
[CategoryTheory.NaturalModel.NaturalModelPi Ctx]
:
CategoryTheory.IsPullback CategoryTheory.NaturalModel.NaturalModelSmallPi.lambda
((CategoryTheory.NaturalModel.P
(CategoryTheory.yoneda.map
(CategoryTheory.NaturalModel.disp (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)
CategoryTheory.NaturalModel.El))).map
CategoryTheory.NaturalModel.tp)
CategoryTheory.NaturalModel.tp
(CategoryTheory.CategoryStruct.comp
((CategoryTheory.NaturalModel.P_naturality
{
e :=
CategoryTheory.NaturalModel.var (CategoryTheory.NaturalModel.ext (⊤_ Ctx) CategoryTheory.NaturalModel.U)
CategoryTheory.NaturalModel.El,
b := CategoryTheory.NaturalModel.El, is_pullback := ⋯ }).app
CategoryTheory.NaturalModel.Ty)
CategoryTheory.NaturalModel.NaturalModelPi.Pi)
Equations
Instances For
Equations
Instances For
Equations
Instances For
class
CategoryTheory.NaturalModel
(Ctx : Type u)
[CategoryTheory.SmallCategory Ctx]
[CategoryTheory.Limits.HasTerminal Ctx]
extends
CategoryTheory.NaturalModel.NaturalModelBase
,
CategoryTheory.NaturalModel.NaturalModelPi
,
CategoryTheory.NaturalModel.NaturalModelSigma
,
CategoryTheory.NaturalModel.NaturalModelId
,
CategoryTheory.NaturalModel.NaturalModelU
,
CategoryTheory.NaturalModel.NaturalModelSmallPi
,
CategoryTheory.NaturalModel.NaturalModelIdBase
:
Type (u + 1)