Documentation
GroupoidModel
.
Russell_PER_MS
.
Lemmas
Search
return to top
source
Imports
Init
GroupoidModel.Russell_PER_MS.Typing
Imported by
EqTp
.
le_univMax
EqTm
.
le_univMax
EqTp
.
wf_left
EqTp
.
wf_right
EqTm
.
wf_left
EqTm
.
wf_right
EqTm
.
wf_tp
Lookup
.
wf_tp
Lookup
.
wf_bvar
Basic syntactic metatheory.
source
theorem
EqTp
.
le_univMax
{Γ :
Ctx
}
{A B :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
A
≡
B
→
l
≤
univMax
source
theorem
EqTm
.
le_univMax
{Γ :
Ctx
}
{A t u :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
t
≡
u
:
A
→
l
≤
univMax
source
theorem
EqTp
.
wf_left
{Γ :
Ctx
}
{A B :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
A
≡
B
→
Γ
⊢[
l
]
A
source
theorem
EqTp
.
wf_right
{Γ :
Ctx
}
{A B :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
A
≡
B
→
Γ
⊢[
l
]
B
source
theorem
EqTm
.
wf_left
{Γ :
Ctx
}
{A t u :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
t
≡
u
:
A
→
Γ
⊢[
l
]
t
:
A
source
theorem
EqTm
.
wf_right
{Γ :
Ctx
}
{A t u :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
t
≡
u
:
A
→
Γ
⊢[
l
]
u
:
A
source
theorem
EqTm
.
wf_tp
{Γ :
Ctx
}
{A t u :
Expr
}
{l :
ℕ
}
:
Γ
⊢[
l
]
t
≡
u
:
A
→
Γ
⊢[
l
]
A
source
theorem
Lookup
.
wf_tp
{Γ :
Ctx
}
{i :
ℕ
}
{A :
Expr
}
{l :
ℕ
}
:
Lookup
Γ
i
A
l
→
Γ
⊢[
l
]
A
source
theorem
Lookup
.
wf_bvar
{Γ :
Ctx
}
{i :
ℕ
}
{A :
Expr
}
{l :
ℕ
}
:
Lookup
Γ
i
A
l
→
Γ
⊢[
l
]
Expr.bvar
i
:
A