Documentation

GroupoidModel.Russell_PER_MS.Substitution

In this module we compute the action of substitutions.

Lifting/weakening #

Write ↑ⁿ for the n-fold weakening substitution {n+i/i}. Write σ:k for σ.vₖ₋₁.….v₁.v₀.

The thinning substitution ↑ⁿ⁺ᵏ:k, i.e., {0/0,…,k-1/k-1, k+n/k,k+1+n/k+1,…}, arises by starting with ↑ⁿ and traversing under k binders: for example, (ΠA. B)[↑¹] ≡ ΠA[↑¹]. B[↑².v₀] ≡ ΠA[↑¹]. B[↑¹⁺¹:1]. Applying ↑ⁿ⁺ᵏ:k moves an expression into a context with n new binders inserted at index k: Γ.Bₙ.….B₁.Aₖ₋₁[↑ⁿ].….A₀[⋯] ⊢ ↑ⁿ⁺ᵏ:k : Γ.Aₖ₋₁.….A₀. (With k = 0, the codomain is just Γ.)

def liftVar (n i : Nat) (k : Nat := 0) :

Substitute ↑ⁿ⁺ᵏ:k in the de Bruijn index i.

Equations
Instances For
    def Expr.liftN (n : Nat) :
    Expr(k : optParam Nat 0) → Expr

    Substitute ↑ⁿ⁺ᵏ:k in an expression.

    Equations
    Instances For
      @[reducible, inline]
      abbrev Expr.lift :

      Substitute ↑¹ in an expression.

      Equations
      Instances For

        Instantiation #

        The substitution ↑ᵏ.e[↑ᵏ]:k, i.e., {0/0,…,k-1/k-1, e[↑ᵏ]/k, k/k+1,k+2/k+3,…}, arises by starting with id.e and traversing under k binders: for example (ΠA. B)[id.e] ≡ ΠA[id.e]. B[↑.e[↑].v₀] ≡ ΠA[id.e]. B[↑¹.e[↑¹]:1]. Applying ↑ᵏ.e[↑ᵏ]:k moves an expression t into a context with the kth binder removed: Γ.Aₖ₋₁[id.e].….A₀[⋯] ⊢ ↑ᵏ.e[↑ᵏ]:k : Γ.B.Aₖ₋₁.….A₀.

        The substitution id.e is used in β-reduction: (λa) b ↝ a[id.b].

        def instVar (i : Nat) (e : Expr) (k : Nat := 0) :

        Substitute ↑ᵏ.e[↑ᵏ]:k in the de Bruijn index i.

        Equations
        Instances For
          def Expr.inst :
          ExprExpr(k : optParam Nat 0) → Expr

          Substitute ↑ᵏ.e[↑ᵏ]:k in an expression.

          Equations
          Instances For

            Lemmas #

            @[simp]
            theorem liftVar_zero (i k : Nat) :
            liftVar 0 i k = i
            @[simp]
            theorem liftVar_zero' (n i : Nat) :
            liftVar n i = n + i
            @[simp]
            theorem Expr.lift_zero (t : Expr) (k : Nat) :
            liftN 0 t k = t