In this module we compute the action of substitutions.
Lifting/weakening #
Write ↑ⁿ
for the n
-fold weakening substitution {n+i/i}
.
Write σ:k
for σ.vₖ₋₁.….v₁.v₀
.
The thinning substitution ↑ⁿ⁺ᵏ:k
,
i.e., {0/0,…,k-1/k-1, k+n/k,k+1+n/k+1,…}
,
arises by starting with ↑ⁿ
and traversing under k
binders:
for example, (ΠA. B)[↑¹] ≡ ΠA[↑¹]. B[↑².v₀] ≡ ΠA[↑¹]. B[↑¹⁺¹:1]
.
Applying ↑ⁿ⁺ᵏ:k
moves an expression into a context
with n
new binders inserted at index k
:
Γ.Bₙ.….B₁.Aₖ₋₁[↑ⁿ].….A₀[⋯] ⊢ ↑ⁿ⁺ᵏ:k : Γ.Aₖ₋₁.….A₀
.
(With k = 0
, the codomain is just Γ
.)
Substitute ↑ⁿ⁺ᵏ:k
in an expression.
Equations
- Expr.liftN n (Expr.bvar i) x✝ = Expr.bvar (liftVar n i x✝)
- Expr.liftN n (Expr.pi l l' A B) x✝ = Expr.pi l l' (Expr.liftN n A x✝) (Expr.liftN n B (x✝ + 1))
- Expr.liftN n (Expr.lam l l' A t) x✝ = Expr.lam l l' (Expr.liftN n A x✝) (Expr.liftN n t (x✝ + 1))
- Expr.liftN n (Expr.app l l' B fn arg) x✝ = Expr.app l l' (Expr.liftN n B (x✝ + 1)) (Expr.liftN n fn x✝) (Expr.liftN n arg x✝)
- Expr.liftN n (Expr.univ l) x✝ = Expr.univ l
- Expr.liftN n a.el x✝ = (Expr.liftN n a x✝).el
- Expr.liftN n A.code x✝ = (Expr.liftN n A x✝).code
Instances For
Instantiation #
The substitution ↑ᵏ.e[↑ᵏ]:k
,
i.e., {0/0,…,k-1/k-1, e[↑ᵏ]/k, k/k+1,k+2/k+3,…}
,
arises by starting with id.e
and traversing under k
binders:
for example (ΠA. B)[id.e] ≡ ΠA[id.e]. B[↑.e[↑].v₀] ≡ ΠA[id.e]. B[↑¹.e[↑¹]:1]
.
Applying ↑ᵏ.e[↑ᵏ]:k
moves an expression t
into a context
with the k
th binder removed:
Γ.Aₖ₋₁[id.e].….A₀[⋯] ⊢ ↑ᵏ.e[↑ᵏ]:k : Γ.B.Aₖ₋₁.….A₀
.
The substitution id.e
is used in β
-reduction:
(λa) b ↝ a[id.b]
.
Substitute ↑ᵏ.e[↑ᵏ]:k
in an expression.
Equations
- (Expr.bvar i).inst x✝¹ x✝ = instVar i x✝¹ x✝
- (Expr.pi l l' A B).inst x✝¹ x✝ = Expr.pi l l' (A.inst x✝¹ x✝) (B.inst x✝¹ (x✝ + 1))
- (Expr.lam l l' A t).inst x✝¹ x✝ = Expr.lam l l' (A.inst x✝¹ x✝) (t.inst x✝¹ (x✝ + 1))
- (Expr.app l l' B fn arg).inst x✝¹ x✝ = Expr.app l l' (B.inst x✝¹ (x✝ + 1)) (fn.inst x✝¹ x✝) (arg.inst x✝¹ x✝)
- (Expr.univ l).inst x✝¹ x✝ = Expr.univ l
- a.el.inst x✝¹ x✝ = (a.inst x✝¹ x✝).el
- A.code.inst x✝¹ x✝ = (A.inst x✝¹ x✝).code