A HoTT0 expression with axioms indexed by χ
.
- ax
{χ : Type u}
(c : χ)
(A : Expr χ)
: Expr χ
An axiom (i.e., a closed term constant in the theory) of the given type.
- bvar
{χ : Type u}
(i : Nat)
: Expr χ
De Bruijn index.
- pi
{χ : Type u}
(l l' : Nat)
(A B : Expr χ)
: Expr χ
Dependent product.
- lam
{χ : Type u}
(l l' : Nat)
(A b : Expr χ)
: Expr χ
Lambda with the specified argument type.
- app
{χ : Type u}
(l l' : Nat)
(B fn arg : Expr χ)
: Expr χ
Application at the specified output type family
B
. - sigma
{χ : Type u}
(l l' : Nat)
(A B : Expr χ)
: Expr χ
Dependent sum.
- pair
{χ : Type u}
(l l' : Nat)
(B t u : Expr χ)
: Expr χ
Pair formation.
- fst
{χ : Type u}
(l l' : Nat)
(A B p : Expr χ)
: Expr χ
First component of a pair.
- snd
{χ : Type u}
(l l' : Nat)
(A B p : Expr χ)
: Expr χ
Second component of a pair.
- Id
{χ : Type u}
(l : Nat)
(A t u : Expr χ)
: Expr χ
Identity type.
- refl
{χ : Type u}
(l : Nat)
(t : Expr χ)
: Expr χ
A reflexive identity.
- idRec
{χ : Type u}
(l l' : Nat)
(t M r u h : Expr χ)
: Expr χ
Eliminates an identity.
- univ
{χ : Type u}
(l : Nat)
: Expr χ
A type universe.
- el
{χ : Type u}
(a : Expr χ)
: Expr χ
Type from a code.
- code
{χ : Type u}
(A : Expr χ)
: Expr χ
Code from a type.
Instances For
instance
instToExprExprOfToLevel
{χ✝ : Type u}
[Lean.ToExpr χ✝]
[Lean.ToLevel]
:
Lean.ToExpr (Expr χ✝)
Equations
- instToExprExprOfToLevel = { toExpr := toExprExpr✝ inst✝, toTypeExpr := (Lean.Expr.const `Expr [Lean.toLevel]).app (Lean.toTypeExpr χ✝) }
Simplification procedure
Equations
- One or more equations did not get rendered due to their size.
Instances For
A convergent rewriting system for the HoTT0 σ-calculus.
Equations
- One or more equations did not get rendered due to their size.