Documentation

GroupoidModel.Syntax.Basic

inductive Expr (χ : Type u) :

A HoTT0 expression with axioms indexed by χ.

  • ax {χ : Type u} (c : χ) (A : Expr χ) : Expr χ

    An axiom (i.e., a closed term constant in the theory) of the given type.

  • bvar {χ : Type u} (i : Nat) : Expr χ

    De Bruijn index.

  • pi {χ : Type u} (l l' : Nat) (A B : Expr χ) : Expr χ

    Dependent product.

  • lam {χ : Type u} (l l' : Nat) (A b : Expr χ) : Expr χ

    Lambda with the specified argument type.

  • app {χ : Type u} (l l' : Nat) (B fn arg : Expr χ) : Expr χ

    Application at the specified output type family B.

  • sigma {χ : Type u} (l l' : Nat) (A B : Expr χ) : Expr χ

    Dependent sum.

  • pair {χ : Type u} (l l' : Nat) (B t u : Expr χ) : Expr χ

    Pair formation.

  • fst {χ : Type u} (l l' : Nat) (A B p : Expr χ) : Expr χ

    First component of a pair.

  • snd {χ : Type u} (l l' : Nat) (A B p : Expr χ) : Expr χ

    Second component of a pair.

  • Id {χ : Type u} (l : Nat) (A t u : Expr χ) : Expr χ

    Identity type.

  • refl {χ : Type u} (l : Nat) (t : Expr χ) : Expr χ

    A reflexive identity.

  • idRec {χ : Type u} (l l' : Nat) (t M r u h : Expr χ) : Expr χ

    Eliminates an identity.

  • univ {χ : Type u} (l : Nat) : Expr χ

    A type universe.

  • el {χ : Type u} (a : Expr χ) : Expr χ

    Type from a code.

  • code {χ : Type u} (A : Expr χ) : Expr χ

    Code from a type.

Instances For
    instance instInhabitedExpr {a✝ : Type u_1} :
    Equations
    instance instReprExpr {χ✝ : Type u_1} [Repr χ✝] :
    Repr (Expr χ✝)
    Equations
    instance instToExprExprOfToLevel {χ✝ : Type u} [Lean.ToExpr χ✝] [Lean.ToLevel] :
    Equations
    @[simp]
    theorem Expr.sizeOf_pos {χ : Type u_1} (e : Expr χ) :
    0 < sizeOf e

    Simplification procedure

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A convergent rewriting system for the HoTT0 σ-calculus.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For