Documentation

Init.Data.Bool

@[reducible, inline]
abbrev Bool.xor :
BoolBoolBool

Boolean exclusive or

Equations
Instances For

    Boolean exclusive or

    Equations
    Instances For
      instance Bool.instDecidableForallOfDecidablePred (p : BoolProp) [inst : DecidablePred p] :
      Decidable (∀ (x : Bool), p x)
      Equations
      Equations
      instance Bool.instLE :
      Equations
      instance Bool.instLT :
      Equations
      Equations
      Equations

      and #

      @[simp]
      theorem Bool.and_self_left (a b : Bool) :
      @[simp]
      theorem Bool.and_self_right (a b : Bool) :
      (a && b && b) = (a && b)
      @[simp]
      theorem Bool.not_and_self (x : Bool) :
      (!x && x) = false
      @[simp]
      theorem Bool.and_not_self (x : Bool) :
      theorem Bool.and_comm (x y : Bool) :
      (x && y) = (y && x)
      theorem Bool.and_left_comm (x y z : Bool) :
      theorem Bool.and_right_comm (x y z : Bool) :
      (x && y && z) = (x && z && y)
      @[simp]
      @[simp]
      @[simp]
      theorem Bool.iff_self_and {a b : Bool} :
      @[simp]
      theorem Bool.iff_and_self {a b : Bool} :
      @[simp]
      theorem Bool.not_and_iff_left_iff_imp {a b : Bool} :
      (!a && b) = a (!a) = true (!b) = true
      @[simp]
      @[simp]
      theorem Bool.iff_not_self_and {a b : Bool} :
      a = (!a && b) (!a) = true (!b) = true
      @[simp]

      or #

      @[simp]
      theorem Bool.or_self_left (a b : Bool) :
      @[simp]
      theorem Bool.or_self_right (a b : Bool) :
      (a || b || b) = (a || b)
      @[simp]
      theorem Bool.not_or_self (x : Bool) :
      (!x || x) = true
      @[simp]
      theorem Bool.or_not_self (x : Bool) :
      @[simp]
      theorem Bool.or_iff_left_iff_imp {a b : Bool} :
      @[simp]
      @[simp]
      theorem Bool.iff_self_or {a b : Bool} :
      @[simp]
      theorem Bool.iff_or_self {a b : Bool} :
      @[simp]
      theorem Bool.or_comm (x y : Bool) :
      (x || y) = (y || x)
      theorem Bool.or_left_comm (x y z : Bool) :
      theorem Bool.or_right_comm (x y z : Bool) :
      (x || y || z) = (x || z || y)

      distributivity #

      theorem Bool.and_or_distrib_right (x y z : Bool) :
      ((x || y) && z) = (x && z || y && z)
      theorem Bool.or_and_distrib_right (x y z : Bool) :
      (x && y || z) = ((x || z) && (y || z))
      @[simp]
      theorem Bool.not_and (x y : Bool) :
      (!(x && y)) = (!x || !y)

      De Morgan's law for boolean and

      @[simp]
      theorem Bool.not_or (x y : Bool) :
      (!(x || y)) = (!x && !y)

      De Morgan's law for boolean or

      @[simp]

      eq/beq/bne #

      @[simp]

      These two rules follow trivially by simp, but are needed to avoid non-termination in false_eq and true_eq.

      @[simp]
      theorem Bool.false_eq (b : Bool) :
      @[simp]
      theorem Bool.true_eq (b : Bool) :
      @[simp]
      theorem Bool.true_beq (b : Bool) :
      (true == b) = b
      @[simp]
      theorem Bool.false_beq (b : Bool) :
      (false == b) = !b
      @[simp]
      theorem Bool.true_bne (b : Bool) :
      (true != b) = !b
      @[simp]
      theorem Bool.false_bne (b : Bool) :
      (false != b) = b
      @[simp]
      theorem Bool.bne_true (b : Bool) :
      @[simp]
      theorem Bool.bne_false (b : Bool) :
      @[simp]
      theorem Bool.not_beq_self (x : Bool) :
      ((!x) == x) = false
      @[simp]
      theorem Bool.beq_not_self (x : Bool) :
      @[simp]
      theorem Bool.not_bne (a b : Bool) :
      ((!a) != b) = !a != b
      @[simp]
      theorem Bool.bne_not (a b : Bool) :
      theorem Bool.not_bne_self (x : Bool) :
      ((!x) != x) = true
      @[simp]
      @[simp]
      theorem Bool.beq_self_left (a b : Bool) :
      (a == (a == b)) = b
      @[simp]
      theorem Bool.beq_self_right (a b : Bool) :
      ((a == b) == b) = a
      @[simp]
      theorem Bool.bne_self_left (a b : Bool) :
      (a != (a != b)) = b
      @[simp]
      theorem Bool.bne_self_right (a b : Bool) :
      ((a != b) != b) = a
      theorem Bool.not_bne_not (x y : Bool) :
      ((!x) != !y) = (x != y)
      @[simp]
      theorem Bool.bne_assoc (x y z : Bool) :
      ((x != y) != z) = (x != (y != z))
      @[simp]
      theorem Bool.bne_right_inj {x y z : Bool} :
      (x != y) = (x != z) y = z
      @[simp]
      theorem Bool.bne_left_inj {x y z : Bool} :
      (x != z) = (y != z) x = y
      theorem Bool.eq_not_of_ne {x y : Bool} :
      x yx = !y
      theorem Bool.beq_eq_decide_eq {α : Type u_1} [BEq α] [LawfulBEq α] [DecidableEq α] (a b : α) :
      theorem Bool.eq_not {a b : Bool} :
      theorem Bool.not_eq {a b : Bool} :
      (!a) = b a b
      @[simp]
      @[simp]

      beq properties #

      theorem Bool.beq_comm {α : Type u_1} [BEq α] [LawfulBEq α] {a b : α} :
      (a == b) = (b == a)

      xor #

      theorem Bool.false_xor (x : Bool) :
      (false ^^ x) = x
      theorem Bool.true_xor (x : Bool) :
      (true ^^ x) = !x
      theorem Bool.not_xor_self (x : Bool) :
      (!x ^^ x) = true
      theorem Bool.not_xor (x y : Bool) :
      (!x ^^ y) = !(x ^^ y)
      theorem Bool.xor_not (x y : Bool) :
      theorem Bool.not_xor_not (x y : Bool) :
      (!x ^^ !y) = (x ^^ y)
      theorem Bool.xor_comm (x y : Bool) :
      (x ^^ y) = (y ^^ x)
      theorem Bool.xor_left_comm (x y z : Bool) :
      theorem Bool.xor_right_comm (x y z : Bool) :
      (x ^^ y ^^ z) = (x ^^ z ^^ y)
      theorem Bool.xor_assoc (x y z : Bool) :
      (x ^^ y ^^ z) = (x ^^ (y ^^ z))
      theorem Bool.xor_right_inj {x y z : Bool} :
      (x ^^ y) = (x ^^ z) y = z
      theorem Bool.xor_left_inj {x y z : Bool} :
      (x ^^ z) = (y ^^ z) x = y

      le/lt #

      @[simp]
      theorem Bool.le_true (x : Bool) :
      @[simp]
      theorem Bool.false_le (x : Bool) :
      @[simp]
      theorem Bool.le_refl (x : Bool) :
      @[simp]
      theorem Bool.lt_irrefl (x : Bool) :
      theorem Bool.le_trans {x y z : Bool} :
      x yy zx z
      theorem Bool.le_antisymm {x y : Bool} :
      x yy xx = y
      theorem Bool.le_total (x y : Bool) :
      theorem Bool.lt_asymm {x y : Bool} :
      x < y¬y < x
      theorem Bool.lt_trans {x y z : Bool} :
      x < yy < zx < z
      theorem Bool.lt_of_le_of_lt {x y z : Bool} :
      x yy < zx < z
      theorem Bool.lt_of_lt_of_le {x y z : Bool} :
      x < yy zx < z
      theorem Bool.le_of_lt {x y : Bool} :
      x < yx y
      theorem Bool.le_of_eq {x y : Bool} :
      x = yx y
      theorem Bool.ne_of_lt {x y : Bool} :
      x < yx y
      theorem Bool.lt_of_le_of_ne {x y : Bool} :
      x yx yx < y
      theorem Bool.le_of_lt_or_eq {x y : Bool} :
      x < y x = yx y

      min/max #

      @[simp]
      @[simp]

      injectivity lemmas #

      theorem Bool.not_inj {x y : Bool} :
      (!x) = !yx = y
      theorem Bool.not_inj_iff {x y : Bool} :
      (!x) = !y x = y
      theorem Bool.and_or_inj_right {m x y : Bool} :
      (x && m) = (y && m) → (x || m) = (y || m) → x = y
      theorem Bool.and_or_inj_left {m x y : Bool} :
      (m && x) = (m && y) → (m || x) = (m || y) → x = y

      toNat #

      def Bool.toNat (b : Bool) :

      convert a Bool to a Nat, false -> 0, true -> 1

      Equations
      Instances For
        @[simp]
        @[simp]
        @[simp]

        toInt #

        def Bool.toInt (b : Bool) :

        convert a Bool to an Int, false -> 0, true -> 1

        Equations
        Instances For
          @[simp]
          @[simp]

          ite #

          @[simp]
          theorem Bool.if_true_left (p : Prop) [h : Decidable p] (f : Bool) :
          @[simp]
          theorem Bool.if_false_left (p : Prop) [h : Decidable p] (f : Bool) :
          @[simp]
          theorem Bool.if_true_right (p : Prop) [h : Decidable p] (t : Bool) :
          @[simp]
          theorem Bool.if_false_right (p : Prop) [h : Decidable p] (t : Bool) :
          @[simp]
          theorem Bool.ite_eq_true_distrib (p : Prop) [h : Decidable p] (t f : Bool) :
          @[simp]
          @[simp]
          theorem Bool.ite_eq_false {b : Bool} {p q : Prop} :

          forall #

          theorem Bool.forall_bool' {p : BoolProp} (b : Bool) :
          @[simp]

          exists #

          theorem Bool.exists_bool' {p : BoolProp} (b : Bool) :
          @[simp]
          theorem Bool.exists_bool {p : BoolProp} :

          cond #

          theorem Bool.cond_eq_ite {α : Type u_1} (b : Bool) (t e : α) :
          theorem Bool.cond_eq_if {b : Bool} {α✝ : Type u_1} {x y : α✝} :
          @[simp]
          theorem Bool.cond_not {α : Type u_1} (b : Bool) (t e : α) :
          (bif !b then t else e) = bif b then e else t
          @[simp]
          theorem Bool.cond_self {α : Type u_1} (c : Bool) (t : α) :
          @[simp]

          If the return values are propositions, there is no harm in simplifying a bif to an if.

          theorem Bool.cond_decide {α : Type u_1} (p : Prop) [Decidable p] (t e : α) :
          (bif decide p then t else e) = if p then t else e
          @[simp]
          theorem Bool.cond_eq_ite_iff {α : Type u_1} {a : Bool} {p : Prop} [h : Decidable p] {x y u v : α} :
          @[simp]
          theorem Bool.ite_eq_cond_iff {α : Type u_1} {p : Prop} {a : Bool} [h : Decidable p] {x y u v : α} :
          ((if p then x else y) = bif a then u else v) (if p then x else y) = if a = true then u else v
          theorem Bool.cond_true {α : Type u} {a b : α} :
          (bif true then a else b) = a
          theorem Bool.cond_false {α : Type u} {a b : α} :
          (bif false then a else b) = b
          @[simp]
          theorem Bool.cond_true_left (c f : Bool) :
          @[simp]
          theorem Bool.cond_false_left (c f : Bool) :
          (bif c then false else f) = (!c && f)
          @[simp]
          theorem Bool.cond_true_not_same (c b : Bool) :
          (bif c then !c else b) = (!c && b)
          theorem Bool.cond_pos {α : Type u_1} {b : Bool} {a a' : α} (h : b = true) :
          theorem Bool.cond_neg {α : Type u_1} {b : Bool} {a a' : α} (h : b = false) :
          theorem Bool.apply_cond {α : Type u_1} {β : Type u_2} (f : αβ) {b : Bool} {a a' : α} :
          f (bif b then a else a') = bif b then f a else f a'

          decidability #

          @[simp]
          theorem Bool.decide_and (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
          @[simp]
          theorem Bool.decide_or (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
          @[simp]
          theorem Bool.decide_iff_dist (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
          theorem Bool.and_eq_decide (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
          theorem Bool.or_eq_decide (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
          theorem Bool.decide_beq_decide (p q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :

          decide #

          @[simp]
          theorem false_eq_decide_iff {p : Prop} [h : Decidable p] :
          @[simp]
          theorem true_eq_decide_iff {p : Prop} [h : Decidable p] :

          coercions #

          def boolPredToPred {α : Sort u_1} :
          Coe (αBool) (αProp)

          This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

          Equations
          Instances For
            def boolRelToRel {α : Sort u_1} :
            Coe (ααBool) (ααProp)

            This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

            Equations
            Instances For

              subtypes #

              @[simp]
              theorem Subtype.beq_iff {α : Type u} [DecidableEq α] {p : αProp} {x y : { a : α // p a }} :