Equations
- Fin.coeToNat = { coe := fun (v : Fin n) => ↑v }
From the empty type Fin 0
, any desired result α
can be derived. This is similar to Empty.elim
.
Equations
Instances For
Remark: land/lor can be defined without using (% n), but we are trying to minimize the number of Nat theorems needed to bootstrap Lean.
Equations
Instances For
Equations
- Fin.instShiftLeft = { shiftLeft := Fin.shiftLeft }
Equations
- Fin.instShiftRight = { shiftRight := Fin.shiftRight }
Equations
- Fin.instOfNat = { ofNat := Fin.ofNat' n i }
Equations
- Fin.instInhabited = { default := 0 }
@[inline]
castAdd m i
embeds i : Fin n
in Fin (n+m)
. See also Fin.natAdd
and Fin.addNat
.