Documentation
Init
.
Data
.
Int
.
DivModLemmas
Search
return to top
source
Imports
Init.RCases
Init.Data.Int.DivMod
Init.Data.Int.Order
Init.Data.Nat.Dvd
Imported by
Int
.
dvd_def
Int
.
dvd_zero
Int
.
dvd_refl
Int
.
one_dvd
Int
.
dvd_trans
Int
.
ofNat_dvd
Int
.
dvd_antisymm
Int
.
zero_dvd
Int
.
dvd_mul_right
Int
.
dvd_mul_left
Int
.
neg_dvd
Int
.
dvd_neg
Int
.
natAbs_dvd_natAbs
Int
.
ofNat_dvd_left
Int
.
dvd_add
Int
.
dvd_sub
Int
.
dvd_add_left
Int
.
dvd_add_right
Int
.
dvd_iff_dvd_of_dvd_sub
Int
.
dvd_iff_dvd_of_dvd_add
Int
.
le_of_dvd
Int
.
natAbs_dvd
Int
.
dvd_natAbs
Int
.
natAbs_dvd_self
Int
.
dvd_natAbs_self
Int
.
ofNat_dvd_right
Int
.
eq_one_of_dvd_one
Int
.
eq_one_of_mul_eq_one_right
Int
.
eq_one_of_mul_eq_one_left
Int
.
zero_ediv
Int
.
ediv_zero
Int
.
zero_tdiv
Int
.
tdiv_zero
Int
.
zero_fdiv
Int
.
fdiv_zero
Int
.
tdiv_eq_ediv
Int
.
fdiv_eq_ediv
Int
.
fdiv_eq_tdiv
Int
.
zero_emod
Int
.
emod_zero
Int
.
zero_tmod
Int
.
tmod_zero
Int
.
zero_fmod
Int
.
fmod_zero
Int
.
ofNat_emod
Int
.
emod_add_ediv
Int
.
emod_add_ediv
.
aux
Int
.
emod_add_ediv'
Int
.
ediv_add_emod
Int
.
ediv_add_emod'
Int
.
emod_def
Int
.
tmod_add_tdiv
Int
.
tdiv_add_tmod
Int
.
tmod_add_tdiv'
Int
.
tdiv_add_tmod'
Int
.
tmod_def
Int
.
fmod_add_fdiv
Int
.
fdiv_add_fmod
Int
.
fmod_def
Int
.
fmod_eq_emod
Int
.
tmod_eq_emod
Int
.
fmod_eq_tmod
Int
.
ediv_neg
Int
.
ediv_neg'
Int
.
div_def
Int
.
negSucc_ediv
Int
.
ediv_nonneg
Int
.
ediv_nonneg_of_nonpos_of_nonpos
Int
.
ediv_nonpos
Int
.
add_mul_ediv_right
Int
.
add_ediv_of_dvd_right
Int
.
add_ediv_of_dvd_left
Int
.
mul_ediv_cancel
Int
.
mul_ediv_cancel_left
Int
.
div_nonneg_iff_of_pos
Int
.
ediv_eq_zero_of_lt
Int
.
add_mul_ediv_left
Int
.
mul_ediv_mul_of_pos
Int
.
mul_ediv_mul_of_pos_left
Int
.
ediv_eq_of_eq_mul_right
Int
.
eq_ediv_of_mul_eq_right
Int
.
ediv_eq_of_eq_mul_left
Int
.
mod_def'
Int
.
negSucc_emod
Int
.
emod_negSucc
Int
.
ofNat_mod_ofNat
Int
.
emod_nonneg
Int
.
emod_lt_of_pos
Int
.
mul_ediv_self_le
Int
.
lt_mul_ediv_self_add
Int
.
add_mul_emod_self
Int
.
add_mul_emod_self_left
Int
.
add_neg_mul_emod_self
Int
.
add_neg_mul_emod_self_left
Int
.
add_emod_self
Int
.
add_emod_self_left
Int
.
neg_emod
Int
.
emod_neg
Int
.
emod_add_emod
Int
.
add_emod_emod
Int
.
add_emod
Int
.
add_emod_eq_add_emod_right
Int
.
emod_add_cancel_right
Int
.
mul_emod_left
Int
.
mul_emod_right
Int
.
mul_emod
Int
.
emod_self
Int
.
neg_emod_self
Int
.
emod_emod_of_dvd
Int
.
emod_emod
Int
.
emod_sub_emod
Int
.
sub_emod_emod
Int
.
sub_emod
Int
.
emod_eq_of_lt
Int
.
emod_self_add_one
Int
.
mul_ediv_cancel_of_emod_eq_zero
Int
.
ediv_mul_cancel_of_emod_eq_zero
Int
.
emod_two_eq
Int
.
add_emod_eq_add_emod_left
Int
.
emod_add_cancel_left
Int
.
emod_sub_cancel_right
Int
.
emod_eq_emod_iff_emod_sub_eq_zero
Int
.
ediv_emod_unique
Int
.
mul_emod_mul_of_pos
Int
.
lt_ediv_add_one_mul_self
Int
.
natAbs_div_le_natAbs
Int
.
natAbs_div_le_natAbs
.
aux
Int
.
ediv_le_self
Int
.
dvd_of_emod_eq_zero
Int
.
dvd_emod_sub_self
Int
.
emod_eq_zero_of_dvd
Int
.
dvd_iff_emod_eq_zero
Int
.
neg_mul_emod_left
Int
.
neg_mul_emod_right
Int
.
decidableDvd
Int
.
emod_pos_of_not_dvd
Int
.
mul_ediv_assoc
Int
.
mul_ediv_assoc'
Int
.
neg_ediv_of_dvd
Int
.
neg_mul_ediv_cancel
Int
.
neg_mul_ediv_cancel_left
Int
.
sub_ediv_of_dvd
Int
.
ediv_one
Int
.
emod_one
Int
.
ediv_self
Int
.
neg_ediv_self
Int
.
emod_sub_cancel
Int
.
add_neg_emod_self
Int
.
neg_add_emod_self
Int
.
dvd_sub_of_emod_eq
Int
.
ediv_mul_cancel
Int
.
mul_ediv_cancel'
Int
.
eq_mul_of_ediv_eq_right
Int
.
ediv_eq_iff_eq_mul_right
Int
.
ediv_eq_iff_eq_mul_left
Int
.
eq_mul_of_ediv_eq_left
Int
.
eq_zero_of_ediv_eq_zero
Int
.
sub_ediv_of_dvd_sub
Int
.
ediv_left_inj
Int
.
ediv_sign
Int
.
ediv_mul_le
Int
.
le_of_mul_le_mul_left
Int
.
le_of_mul_le_mul_right
Int
.
ediv_le_of_le_mul
Int
.
mul_lt_of_lt_ediv
Int
.
mul_le_of_le_ediv
Int
.
ediv_lt_of_lt_mul
Int
.
lt_of_mul_lt_mul_left
Int
.
lt_of_mul_lt_mul_right
Int
.
le_ediv_of_mul_le
Int
.
le_ediv_iff_mul_le
Int
.
ediv_le_ediv
Int
.
lt_mul_of_ediv_lt
Int
.
ediv_lt_iff_lt_mul
Int
.
le_mul_of_ediv_le
Int
.
lt_ediv_of_mul_lt
Int
.
lt_ediv_iff_mul_lt
Int
.
ediv_pos_of_pos_of_dvd
Int
.
ediv_eq_ediv_of_mul_eq_mul
Int
.
tdiv_one
Int
.
tdiv_neg
Int
.
neg_tdiv
Int
.
neg_tdiv_neg
Int
.
tdiv_nonneg
Int
.
tdiv_nonpos
Int
.
tdiv_eq_zero_of_lt
Int
.
mul_tdiv_cancel
Int
.
mul_tdiv_cancel_left
Int
.
tdiv_self
Int
.
mul_tdiv_cancel_of_tmod_eq_zero
Int
.
tdiv_mul_cancel_of_tmod_eq_zero
Int
.
dvd_of_tmod_eq_zero
Int
.
mul_tdiv_assoc
Int
.
mul_tdiv_assoc'
Int
.
tdiv_dvd_tdiv
Int
.
natAbs_tdiv
Int
.
tdiv_eq_of_eq_mul_right
Int
.
eq_tdiv_of_mul_eq_right
Int
.
ofNat_tmod
Int
.
tmod_one
Int
.
tmod_eq_of_lt
Int
.
tmod_lt_of_pos
Int
.
tmod_nonneg
Int
.
tmod_neg
Int
.
mul_tmod_left
Int
.
mul_tmod_right
Int
.
tmod_eq_zero_of_dvd
Int
.
dvd_iff_tmod_eq_zero
Int
.
neg_mul_tmod_right
Int
.
neg_mul_tmod_left
Int
.
tdiv_mul_cancel
Int
.
mul_tdiv_cancel'
Int
.
eq_mul_of_tdiv_eq_right
Int
.
tmod_self
Int
.
neg_tmod_self
Int
.
lt_tdiv_add_one_mul_self
Int
.
tdiv_eq_iff_eq_mul_right
Int
.
tdiv_eq_iff_eq_mul_left
Int
.
eq_mul_of_tdiv_eq_left
Int
.
tdiv_eq_of_eq_mul_left
Int
.
eq_zero_of_tdiv_eq_zero
Int
.
tdiv_left_inj
Int
.
tdiv_sign
Int
.
sign_eq_tdiv_abs
Int
.
fdiv_nonneg
Int
.
fdiv_nonpos
Int
.
fdiv_neg'
Int
.
fdiv_one
Int
.
mul_fdiv_cancel
Int
.
mul_fdiv_cancel_left
Int
.
fdiv_self
Int
.
lt_fdiv_add_one_mul_self
Int
.
ofNat_fmod
Int
.
fmod_one
Int
.
fmod_eq_of_lt
Int
.
fmod_nonneg
Int
.
fmod_nonneg'
Int
.
fmod_lt_of_pos
Int
.
mul_fmod_left
Int
.
mul_fmod_right
Int
.
fmod_self
Int
.
tdiv_eq_ediv_of_dvd
Int
.
fdiv_eq_ediv_of_dvd
Int
.
bmod_emod
Int
.
emod_bmod_congr
Int
.
bmod_def
Int
.
bdiv_add_bmod
Int
.
bmod_add_bdiv
Int
.
bdiv_add_bmod'
Int
.
bmod_add_bdiv'
Int
.
bmod_eq_self_sub_mul_bdiv
Int
.
bmod_eq_self_sub_bdiv_mul
Int
.
bmod_pos
Int
.
bmod_neg
Int
.
bmod_one_is_zero
Int
.
bmod_add_cancel
Int
.
bmod_add_mul_cancel
Int
.
bmod_sub_cancel
Int
.
emod_add_bmod_congr
Int
.
emod_sub_bmod_congr
Int
.
sub_emod_bmod_congr
Int
.
emod_mul_bmod_congr
Int
.
bmod_add_bmod_congr
Int
.
bmod_sub_bmod_congr
Int
.
add_bmod_eq_add_bmod_right
Int
.
bmod_add_cancel_right
Int
.
add_bmod_bmod
Int
.
sub_bmod_bmod
Int
.
bmod_mul_bmod
Int
.
mul_bmod_bmod
Int
.
add_bmod
Int
.
emod_bmod
Int
.
bmod_bmod
Int
.
bmod_zero
Int
.
dvd_bmod_sub_self
Int
.
le_bmod
Int
.
bmod_lt
Int
.
bmod_le
Int
.
bmod_natAbs_plus_one
Int
.
bmod_neg_bmod
Lemmas about integer division needed to bootstrap
omega
.
#
dvd
#
source
theorem
Int
.
dvd_def
(a b :
Int
)
:
(
a
∣
b
)
=
∃
(
c
:
Int
)
,
b
=
a
*
c
source
theorem
Int
.
dvd_zero
(n :
Int
)
:
n
∣
0
source
theorem
Int
.
dvd_refl
(n :
Int
)
:
n
∣
n
source
theorem
Int
.
one_dvd
(n :
Int
)
:
1
∣
n
source
theorem
Int
.
dvd_trans
{a b c :
Int
}
:
a
∣
b
→
b
∣
c
→
a
∣
c
source
theorem
Int
.
ofNat_dvd
{m n :
Nat
}
:
↑
m
∣
↑
n
↔
m
∣
n
source
theorem
Int
.
dvd_antisymm
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
0
≤
b
)
:
a
∣
b
→
b
∣
a
→
a
=
b
source
@[simp]
theorem
Int
.
zero_dvd
{n :
Int
}
:
0
∣
n
↔
n
=
0
source
theorem
Int
.
dvd_mul_right
(a b :
Int
)
:
a
∣
a
*
b
source
theorem
Int
.
dvd_mul_left
(a b :
Int
)
:
b
∣
a
*
b
source
@[simp]
theorem
Int
.
neg_dvd
{a b :
Int
}
:
-
a
∣
b
↔
a
∣
b
source
theorem
Int
.
dvd_neg
{a b :
Int
}
:
a
∣
-
b
↔
a
∣
b
source
@[simp]
theorem
Int
.
natAbs_dvd_natAbs
{a b :
Int
}
:
a
.
natAbs
∣
b
.
natAbs
↔
a
∣
b
source
theorem
Int
.
ofNat_dvd_left
{n :
Nat
}
{z :
Int
}
:
↑
n
∣
z
↔
n
∣
z
.
natAbs
source
theorem
Int
.
dvd_add
{a b c :
Int
}
:
a
∣
b
→
a
∣
c
→
a
∣
b
+
c
source
theorem
Int
.
dvd_sub
{a b c :
Int
}
:
a
∣
b
→
a
∣
c
→
a
∣
b
-
c
source
theorem
Int
.
dvd_add_left
{a b c :
Int
}
(H :
a
∣
c
)
:
a
∣
b
+
c
↔
a
∣
b
source
theorem
Int
.
dvd_add_right
{a b c :
Int
}
(H :
a
∣
b
)
:
a
∣
b
+
c
↔
a
∣
c
source
theorem
Int
.
dvd_iff_dvd_of_dvd_sub
{a b c :
Int
}
(H :
a
∣
b
-
c
)
:
a
∣
b
↔
a
∣
c
source
theorem
Int
.
dvd_iff_dvd_of_dvd_add
{a b c :
Int
}
(H :
a
∣
b
+
c
)
:
a
∣
b
↔
a
∣
c
source
theorem
Int
.
le_of_dvd
{a b :
Int
}
(bpos :
0
<
b
)
(H :
a
∣
b
)
:
a
≤
b
source
theorem
Int
.
natAbs_dvd
{a b :
Int
}
:
↑
a
.
natAbs
∣
b
↔
a
∣
b
source
theorem
Int
.
dvd_natAbs
{a b :
Int
}
:
a
∣
↑
b
.
natAbs
↔
a
∣
b
source
theorem
Int
.
natAbs_dvd_self
{a :
Int
}
:
↑
a
.
natAbs
∣
a
source
theorem
Int
.
dvd_natAbs_self
{a :
Int
}
:
a
∣
↑
a
.
natAbs
source
theorem
Int
.
ofNat_dvd_right
{n :
Nat
}
{z :
Int
}
:
z
∣
↑
n
↔
z
.
natAbs
∣
n
source
theorem
Int
.
eq_one_of_dvd_one
{a :
Int
}
(H :
0
≤
a
)
(H' :
a
∣
1
)
:
a
=
1
source
theorem
Int
.
eq_one_of_mul_eq_one_right
{a b :
Int
}
(H :
0
≤
a
)
(H' :
a
*
b
=
1
)
:
a
=
1
source
theorem
Int
.
eq_one_of_mul_eq_one_left
{a b :
Int
}
(H :
0
≤
b
)
(H' :
a
*
b
=
1
)
:
b
=
1
*div zero
#
source
@[simp]
theorem
Int
.
zero_ediv
(b :
Int
)
:
0
/
b
=
0
source
@[simp]
theorem
Int
.
ediv_zero
(a :
Int
)
:
a
/
0
=
0
source
@[simp]
theorem
Int
.
zero_tdiv
(b :
Int
)
:
tdiv
0
b
=
0
source
@[simp]
theorem
Int
.
tdiv_zero
(a :
Int
)
:
a
.
tdiv
0
=
0
source
@[simp]
theorem
Int
.
zero_fdiv
(b :
Int
)
:
fdiv
0
b
=
0
source
@[simp]
theorem
Int
.
fdiv_zero
(a :
Int
)
:
a
.
fdiv
0
=
0
div equivalences
#
source
theorem
Int
.
tdiv_eq_ediv
{a b :
Int
}
:
0
≤
a
→
0
≤
b
→
a
.
tdiv
b
=
a
/
b
source
theorem
Int
.
fdiv_eq_ediv
(a :
Int
)
{b :
Int
}
:
0
≤
b
→
a
.
fdiv
b
=
a
/
b
source
theorem
Int
.
fdiv_eq_tdiv
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
0
≤
b
)
:
a
.
fdiv
b
=
a
.
tdiv
b
mod zero
#
source
@[simp]
theorem
Int
.
zero_emod
(b :
Int
)
:
0
%
b
=
0
source
@[simp]
theorem
Int
.
emod_zero
(a :
Int
)
:
a
%
0
=
a
source
@[simp]
theorem
Int
.
zero_tmod
(b :
Int
)
:
tmod
0
b
=
0
source
@[simp]
theorem
Int
.
tmod_zero
(a :
Int
)
:
a
.
tmod
0
=
a
source
@[simp]
theorem
Int
.
zero_fmod
(b :
Int
)
:
fmod
0
b
=
0
source
@[simp]
theorem
Int
.
fmod_zero
(a :
Int
)
:
a
.
fmod
0
=
a
ofNat mod
#
source
@[simp]
theorem
Int
.
ofNat_emod
(m n :
Nat
)
:
↑
(
m
%
n
)
=
↑
m
%
↑
n
mod definitions
#
source
theorem
Int
.
emod_add_ediv
(a b :
Int
)
:
a
%
b
+
b
*
(
a
/
b
)
=
a
source
theorem
Int
.
emod_add_ediv
.
aux
(m n :
Nat
)
:
↑
n
-
(
↑
m
%
↑
n
+
1
)
-
(
↑
n
*
(
↑
m
/
↑
n
)
+
↑
n
)
=
negSucc
m
source
theorem
Int
.
emod_add_ediv'
(a b :
Int
)
:
a
%
b
+
a
/
b
*
b
=
a
source
theorem
Int
.
ediv_add_emod
(a b :
Int
)
:
b
*
(
a
/
b
)
+
a
%
b
=
a
source
theorem
Int
.
ediv_add_emod'
(a b :
Int
)
:
a
/
b
*
b
+
a
%
b
=
a
source
theorem
Int
.
emod_def
(a b :
Int
)
:
a
%
b
=
a
-
b
*
(
a
/
b
)
source
theorem
Int
.
tmod_add_tdiv
(a b :
Int
)
:
a
.
tmod
b
+
b
*
a
.
tdiv
b
=
a
source
theorem
Int
.
tdiv_add_tmod
(a b :
Int
)
:
b
*
a
.
tdiv
b
+
a
.
tmod
b
=
a
source
theorem
Int
.
tmod_add_tdiv'
(m k :
Int
)
:
m
.
tmod
k
+
m
.
tdiv
k
*
k
=
m
source
theorem
Int
.
tdiv_add_tmod'
(m k :
Int
)
:
m
.
tdiv
k
*
k
+
m
.
tmod
k
=
m
source
theorem
Int
.
tmod_def
(a b :
Int
)
:
a
.
tmod
b
=
a
-
b
*
a
.
tdiv
b
source
theorem
Int
.
fmod_add_fdiv
(a b :
Int
)
:
a
.
fmod
b
+
b
*
a
.
fdiv
b
=
a
source
theorem
Int
.
fdiv_add_fmod
(a b :
Int
)
:
b
*
a
.
fdiv
b
+
a
.
fmod
b
=
a
source
theorem
Int
.
fmod_def
(a b :
Int
)
:
a
.
fmod
b
=
a
-
b
*
a
.
fdiv
b
mod equivalences
#
source
theorem
Int
.
fmod_eq_emod
(a :
Int
)
{b :
Int
}
(hb :
0
≤
b
)
:
a
.
fmod
b
=
a
%
b
source
theorem
Int
.
tmod_eq_emod
{a b :
Int
}
(ha :
0
≤
a
)
(hb :
0
≤
b
)
:
a
.
tmod
b
=
a
%
b
source
theorem
Int
.
fmod_eq_tmod
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
0
≤
b
)
:
a
.
fmod
b
=
a
.
tmod
b
/
ediv
#
source
@[simp]
theorem
Int
.
ediv_neg
(a b :
Int
)
:
a
/
-
b
=
-
(
a
/
b
)
source
theorem
Int
.
ediv_neg'
{a b :
Int
}
(Ha :
a
<
0
)
(Hb :
0
<
b
)
:
a
/
b
<
0
source
theorem
Int
.
div_def
(a b :
Int
)
:
a
/
b
=
a
.
ediv
b
source
theorem
Int
.
negSucc_ediv
(m :
Nat
)
{b :
Int
}
(H :
0
<
b
)
:
negSucc
m
/
b
=
-
(
(↑
m
)
.
ediv
b
+
1
)
source
theorem
Int
.
ediv_nonneg
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
0
≤
b
)
:
0
≤
a
/
b
source
theorem
Int
.
ediv_nonneg_of_nonpos_of_nonpos
{a b :
Int
}
(Ha :
a
≤
0
)
(Hb :
b
≤
0
)
:
0
≤
a
/
b
source
theorem
Int
.
ediv_nonpos
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
b
≤
0
)
:
a
/
b
≤
0
source
theorem
Int
.
add_mul_ediv_right
(a b :
Int
)
{c :
Int
}
(H :
c
≠
0
)
:
(
a
+
b
*
c
)
/
c
=
a
/
c
+
b
source
theorem
Int
.
add_ediv_of_dvd_right
{a b c :
Int
}
(H :
c
∣
b
)
:
(
a
+
b
)
/
c
=
a
/
c
+
b
/
c
source
theorem
Int
.
add_ediv_of_dvd_left
{a b c :
Int
}
(H :
c
∣
a
)
:
(
a
+
b
)
/
c
=
a
/
c
+
b
/
c
source
@[simp]
theorem
Int
.
mul_ediv_cancel
(a :
Int
)
{b :
Int
}
(H :
b
≠
0
)
:
a
*
b
/
b
=
a
source
@[simp]
theorem
Int
.
mul_ediv_cancel_left
{a :
Int
}
(b :
Int
)
(H :
a
≠
0
)
:
a
*
b
/
a
=
b
source
theorem
Int
.
div_nonneg_iff_of_pos
{a b :
Int
}
(h :
0
<
b
)
:
a
/
b
≥
0
↔
a
≥
0
source
theorem
Int
.
ediv_eq_zero_of_lt
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
a
<
b
)
:
a
/
b
=
0
source
theorem
Int
.
add_mul_ediv_left
(a :
Int
)
{b :
Int
}
(c :
Int
)
(H :
b
≠
0
)
:
(
a
+
b
*
c
)
/
b
=
a
/
b
+
c
source
@[simp]
theorem
Int
.
mul_ediv_mul_of_pos
{a :
Int
}
(b c :
Int
)
(H :
0
<
a
)
:
a
*
b
/
(
a
*
c
)
=
b
/
c
source
@[simp]
theorem
Int
.
mul_ediv_mul_of_pos_left
(a :
Int
)
{b :
Int
}
(c :
Int
)
(H :
0
<
b
)
:
a
*
b
/
(
c
*
b
)
=
a
/
c
source
theorem
Int
.
ediv_eq_of_eq_mul_right
{a b c :
Int
}
(H1 :
b
≠
0
)
(H2 :
a
=
b
*
c
)
:
a
/
b
=
c
source
theorem
Int
.
eq_ediv_of_mul_eq_right
{a b c :
Int
}
(H1 :
a
≠
0
)
(H2 :
a
*
b
=
c
)
:
b
=
c
/
a
source
theorem
Int
.
ediv_eq_of_eq_mul_left
{a b c :
Int
}
(H1 :
b
≠
0
)
(H2 :
a
=
c
*
b
)
:
a
/
b
=
c
emod
#
source
theorem
Int
.
mod_def'
(m n :
Int
)
:
m
%
n
=
m
.
emod
n
source
theorem
Int
.
negSucc_emod
(m :
Nat
)
{b :
Int
}
(bpos :
0
<
b
)
:
negSucc
m
%
b
=
b
-
1
-
↑
m
%
b
source
theorem
Int
.
emod_negSucc
(m :
Nat
)
(n :
Int
)
:
negSucc
m
%
n
=
subNatNat
n
.
natAbs
(
m
%
n
.
natAbs
).
succ
source
theorem
Int
.
ofNat_mod_ofNat
(m n :
Nat
)
:
↑
m
%
↑
n
=
↑
(
m
%
n
)
source
theorem
Int
.
emod_nonneg
(a :
Int
)
{b :
Int
}
:
b
≠
0
→
0
≤
a
%
b
source
theorem
Int
.
emod_lt_of_pos
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
%
b
<
b
source
theorem
Int
.
mul_ediv_self_le
{x k :
Int
}
(h :
k
≠
0
)
:
k
*
(
x
/
k
)
≤
x
source
theorem
Int
.
lt_mul_ediv_self_add
{x k :
Int
}
(h :
0
<
k
)
:
x
<
k
*
(
x
/
k
)
+
k
source
@[simp]
theorem
Int
.
add_mul_emod_self
{a b c :
Int
}
:
(
a
+
b
*
c
)
%
c
=
a
%
c
source
@[simp]
theorem
Int
.
add_mul_emod_self_left
(a b c :
Int
)
:
(
a
+
b
*
c
)
%
b
=
a
%
b
source
@[simp]
theorem
Int
.
add_neg_mul_emod_self
{a b c :
Int
}
:
(
a
+
-
(
b
*
c
))
%
c
=
a
%
c
source
@[simp]
theorem
Int
.
add_neg_mul_emod_self_left
{a b c :
Int
}
:
(
a
+
-
(
b
*
c
))
%
b
=
a
%
b
source
@[simp]
theorem
Int
.
add_emod_self
{a b :
Int
}
:
(
a
+
b
)
%
b
=
a
%
b
source
@[simp]
theorem
Int
.
add_emod_self_left
{a b :
Int
}
:
(
a
+
b
)
%
a
=
b
%
a
source
theorem
Int
.
neg_emod
{a b :
Int
}
:
-
a
%
b
=
(
b
-
a
)
%
b
source
@[simp]
theorem
Int
.
emod_neg
(a b :
Int
)
:
a
%
-
b
=
a
%
b
source
@[simp]
theorem
Int
.
emod_add_emod
(m n k :
Int
)
:
(
m
%
n
+
k
)
%
n
=
(
m
+
k
)
%
n
source
@[simp]
theorem
Int
.
add_emod_emod
(m n k :
Int
)
:
(
m
+
n
%
k
)
%
k
=
(
m
+
n
)
%
k
source
theorem
Int
.
add_emod
(a b n :
Int
)
:
(
a
+
b
)
%
n
=
(
a
%
n
+
b
%
n
)
%
n
source
theorem
Int
.
add_emod_eq_add_emod_right
{m n k :
Int
}
(i :
Int
)
(H :
m
%
n
=
k
%
n
)
:
(
m
+
i
)
%
n
=
(
k
+
i
)
%
n
source
theorem
Int
.
emod_add_cancel_right
{m n k :
Int
}
(i :
Int
)
:
(
m
+
i
)
%
n
=
(
k
+
i
)
%
n
↔
m
%
n
=
k
%
n
source
@[simp]
theorem
Int
.
mul_emod_left
(a b :
Int
)
:
a
*
b
%
b
=
0
source
@[simp]
theorem
Int
.
mul_emod_right
(a b :
Int
)
:
a
*
b
%
a
=
0
source
theorem
Int
.
mul_emod
(a b n :
Int
)
:
a
*
b
%
n
=
a
%
n
*
(
b
%
n
)
%
n
source
@[simp]
theorem
Int
.
emod_self
{a :
Int
}
:
a
%
a
=
0
source
@[simp]
theorem
Int
.
neg_emod_self
(a :
Int
)
:
-
a
%
a
=
0
source
@[simp]
theorem
Int
.
emod_emod_of_dvd
(n :
Int
)
{m k :
Int
}
(h :
m
∣
k
)
:
n
%
k
%
m
=
n
%
m
source
@[simp]
theorem
Int
.
emod_emod
(a b :
Int
)
:
a
%
b
%
b
=
a
%
b
source
@[simp]
theorem
Int
.
emod_sub_emod
(m n k :
Int
)
:
(
m
%
n
-
k
)
%
n
=
(
m
-
k
)
%
n
source
@[simp]
theorem
Int
.
sub_emod_emod
(m n k :
Int
)
:
(
m
-
n
%
k
)
%
k
=
(
m
-
n
)
%
k
source
theorem
Int
.
sub_emod
(a b n :
Int
)
:
(
a
-
b
)
%
n
=
(
a
%
n
-
b
%
n
)
%
n
source
theorem
Int
.
emod_eq_of_lt
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
a
<
b
)
:
a
%
b
=
a
source
@[simp]
theorem
Int
.
emod_self_add_one
{x :
Int
}
(h :
0
≤
x
)
:
x
%
(
x
+
1
)
=
x
properties of
/
and
%
#
source
theorem
Int
.
mul_ediv_cancel_of_emod_eq_zero
{a b :
Int
}
(H :
a
%
b
=
0
)
:
b
*
(
a
/
b
)
=
a
source
theorem
Int
.
ediv_mul_cancel_of_emod_eq_zero
{a b :
Int
}
(H :
a
%
b
=
0
)
:
a
/
b
*
b
=
a
source
theorem
Int
.
emod_two_eq
(x :
Int
)
:
x
%
2
=
0
∨
x
%
2
=
1
source
theorem
Int
.
add_emod_eq_add_emod_left
{m n k :
Int
}
(i :
Int
)
(H :
m
%
n
=
k
%
n
)
:
(
i
+
m
)
%
n
=
(
i
+
k
)
%
n
source
theorem
Int
.
emod_add_cancel_left
{m n k i :
Int
}
:
(
i
+
m
)
%
n
=
(
i
+
k
)
%
n
↔
m
%
n
=
k
%
n
source
theorem
Int
.
emod_sub_cancel_right
{m n k :
Int
}
(i :
Int
)
:
(
m
-
i
)
%
n
=
(
k
-
i
)
%
n
↔
m
%
n
=
k
%
n
source
theorem
Int
.
emod_eq_emod_iff_emod_sub_eq_zero
{m n k :
Int
}
:
m
%
n
=
k
%
n
↔
(
m
-
k
)
%
n
=
0
source
theorem
Int
.
ediv_emod_unique
{a b r q :
Int
}
(h :
0
<
b
)
:
a
/
b
=
q
∧
a
%
b
=
r
↔
r
+
b
*
q
=
a
∧
0
≤
r
∧
r
<
b
source
@[simp]
theorem
Int
.
mul_emod_mul_of_pos
{a :
Int
}
(b c :
Int
)
(H :
0
<
a
)
:
a
*
b
%
(
a
*
c
)
=
a
*
(
b
%
c
)
source
theorem
Int
.
lt_ediv_add_one_mul_self
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
<
(
a
/
b
+
1
)
*
b
source
theorem
Int
.
natAbs_div_le_natAbs
(a b :
Int
)
:
(
a
/
b
)
.
natAbs
≤
a
.
natAbs
source
theorem
Int
.
natAbs_div_le_natAbs
.
aux
(a :
Int
)
(n :
Nat
)
:
(
a
/
↑
n
)
.
natAbs
≤
a
.
natAbs
source
theorem
Int
.
ediv_le_self
{a :
Int
}
(b :
Int
)
(Ha :
0
≤
a
)
:
a
/
b
≤
a
source
theorem
Int
.
dvd_of_emod_eq_zero
{a b :
Int
}
(H :
b
%
a
=
0
)
:
a
∣
b
source
theorem
Int
.
dvd_emod_sub_self
{x :
Int
}
{m :
Nat
}
:
↑
m
∣
x
%
↑
m
-
x
source
theorem
Int
.
emod_eq_zero_of_dvd
{a b :
Int
}
:
a
∣
b
→
b
%
a
=
0
source
theorem
Int
.
dvd_iff_emod_eq_zero
{a b :
Int
}
:
a
∣
b
↔
b
%
a
=
0
source
@[simp]
theorem
Int
.
neg_mul_emod_left
(a b :
Int
)
:
-
(
a
*
b
)
%
b
=
0
source
@[simp]
theorem
Int
.
neg_mul_emod_right
(a b :
Int
)
:
-
(
a
*
b
)
%
a
=
0
source
instance
Int
.
decidableDvd
:
DecidableRel
fun (
x1
x2
:
Int
) =>
x1
∣
x2
Equations
x✝¹
.
decidableDvd
x✝
=
decidable_of_decidable_of_iff
⋯
source
theorem
Int
.
emod_pos_of_not_dvd
{a b :
Int
}
(h :
¬
a
∣
b
)
:
a
=
0
∨
0
<
b
%
a
source
theorem
Int
.
mul_ediv_assoc
(a :
Int
)
{b c :
Int
}
:
c
∣
b
→
a
*
b
/
c
=
a
*
(
b
/
c
)
source
theorem
Int
.
mul_ediv_assoc'
(b :
Int
)
{a c :
Int
}
(h :
c
∣
a
)
:
a
*
b
/
c
=
a
/
c
*
b
source
theorem
Int
.
neg_ediv_of_dvd
{a b :
Int
}
:
b
∣
a
→
-
a
/
b
=
-
(
a
/
b
)
source
@[simp]
theorem
Int
.
neg_mul_ediv_cancel
(a b :
Int
)
(h :
b
≠
0
)
:
-
(
a
*
b
)
/
b
=
-
a
source
@[simp]
theorem
Int
.
neg_mul_ediv_cancel_left
(a b :
Int
)
(h :
a
≠
0
)
:
-
(
a
*
b
)
/
a
=
-
b
source
theorem
Int
.
sub_ediv_of_dvd
(a :
Int
)
{b c :
Int
}
(hcb :
c
∣
b
)
:
(
a
-
b
)
/
c
=
a
/
c
-
b
/
c
source
@[simp]
theorem
Int
.
ediv_one
(a :
Int
)
:
a
/
1
=
a
source
@[simp]
theorem
Int
.
emod_one
(a :
Int
)
:
a
%
1
=
0
source
@[simp]
theorem
Int
.
ediv_self
{a :
Int
}
(H :
a
≠
0
)
:
a
/
a
=
1
source
@[simp]
theorem
Int
.
neg_ediv_self
(a :
Int
)
(h :
a
≠
0
)
:
-
a
/
a
=
-
1
source
@[simp]
theorem
Int
.
emod_sub_cancel
(x y :
Int
)
:
(
x
-
y
)
%
y
=
x
%
y
source
@[simp]
theorem
Int
.
add_neg_emod_self
(a b :
Int
)
:
(
a
+
-
b
)
%
b
=
a
%
b
source
@[simp]
theorem
Int
.
neg_add_emod_self
(a b :
Int
)
:
(
-
a
+
b
)
%
a
=
b
%
a
source
theorem
Int
.
dvd_sub_of_emod_eq
{a b c :
Int
}
(h :
a
%
b
=
c
)
:
b
∣
a
-
c
If
a % b = c
then
b
divides
a - c
.
source
theorem
Int
.
ediv_mul_cancel
{a b :
Int
}
(H :
b
∣
a
)
:
a
/
b
*
b
=
a
source
theorem
Int
.
mul_ediv_cancel'
{a b :
Int
}
(H :
a
∣
b
)
:
a
*
(
b
/
a
)
=
b
source
theorem
Int
.
eq_mul_of_ediv_eq_right
{a b c :
Int
}
(H1 :
b
∣
a
)
(H2 :
a
/
b
=
c
)
:
a
=
b
*
c
source
theorem
Int
.
ediv_eq_iff_eq_mul_right
{a b c :
Int
}
(H :
b
≠
0
)
(H' :
b
∣
a
)
:
a
/
b
=
c
↔
a
=
b
*
c
source
theorem
Int
.
ediv_eq_iff_eq_mul_left
{a b c :
Int
}
(H :
b
≠
0
)
(H' :
b
∣
a
)
:
a
/
b
=
c
↔
a
=
c
*
b
source
theorem
Int
.
eq_mul_of_ediv_eq_left
{a b c :
Int
}
(H1 :
b
∣
a
)
(H2 :
a
/
b
=
c
)
:
a
=
c
*
b
source
theorem
Int
.
eq_zero_of_ediv_eq_zero
{d n :
Int
}
(h :
d
∣
n
)
(H :
n
/
d
=
0
)
:
n
=
0
source
theorem
Int
.
sub_ediv_of_dvd_sub
{a b c :
Int
}
(hcab :
c
∣
a
-
b
)
:
(
a
-
b
)
/
c
=
a
/
c
-
b
/
c
source
@[simp]
theorem
Int
.
ediv_left_inj
{a b d :
Int
}
(hda :
d
∣
a
)
(hdb :
d
∣
b
)
:
a
/
d
=
b
/
d
↔
a
=
b
source
theorem
Int
.
ediv_sign
(a b :
Int
)
:
a
/
b
.
sign
=
a
*
b
.
sign
/
and ordering
#
source
theorem
Int
.
ediv_mul_le
(a :
Int
)
{b :
Int
}
(H :
b
≠
0
)
:
a
/
b
*
b
≤
a
source
theorem
Int
.
le_of_mul_le_mul_left
{a b c :
Int
}
(w :
a
*
b
≤
a
*
c
)
(h :
0
<
a
)
:
b
≤
c
source
theorem
Int
.
le_of_mul_le_mul_right
{a b c :
Int
}
(w :
b
*
a
≤
c
*
a
)
(h :
0
<
a
)
:
b
≤
c
source
theorem
Int
.
ediv_le_of_le_mul
{a b c :
Int
}
(H :
0
<
c
)
(H' :
a
≤
b
*
c
)
:
a
/
c
≤
b
source
theorem
Int
.
mul_lt_of_lt_ediv
{a b c :
Int
}
(H :
0
<
c
)
(H3 :
a
<
b
/
c
)
:
a
*
c
<
b
source
theorem
Int
.
mul_le_of_le_ediv
{a b c :
Int
}
(H1 :
0
<
c
)
(H2 :
a
≤
b
/
c
)
:
a
*
c
≤
b
source
theorem
Int
.
ediv_lt_of_lt_mul
{a b c :
Int
}
(H :
0
<
c
)
(H' :
a
<
b
*
c
)
:
a
/
c
<
b
source
theorem
Int
.
lt_of_mul_lt_mul_left
{a b c :
Int
}
(w :
a
*
b
<
a
*
c
)
(h :
0
≤
a
)
:
b
<
c
source
theorem
Int
.
lt_of_mul_lt_mul_right
{a b c :
Int
}
(w :
b
*
a
<
c
*
a
)
(h :
0
≤
a
)
:
b
<
c
source
theorem
Int
.
le_ediv_of_mul_le
{a b c :
Int
}
(H1 :
0
<
c
)
(H2 :
a
*
c
≤
b
)
:
a
≤
b
/
c
source
theorem
Int
.
le_ediv_iff_mul_le
{a b c :
Int
}
(H :
0
<
c
)
:
a
≤
b
/
c
↔
a
*
c
≤
b
source
theorem
Int
.
ediv_le_ediv
{a b c :
Int
}
(H :
0
<
c
)
(H' :
a
≤
b
)
:
a
/
c
≤
b
/
c
source
theorem
Int
.
lt_mul_of_ediv_lt
{a b c :
Int
}
(H1 :
0
<
c
)
(H2 :
a
/
c
<
b
)
:
a
<
b
*
c
source
theorem
Int
.
ediv_lt_iff_lt_mul
{a b c :
Int
}
(H :
0
<
c
)
:
a
/
c
<
b
↔
a
<
b
*
c
source
theorem
Int
.
le_mul_of_ediv_le
{a b c :
Int
}
(H1 :
0
≤
b
)
(H2 :
b
∣
a
)
(H3 :
a
/
b
≤
c
)
:
a
≤
c
*
b
source
theorem
Int
.
lt_ediv_of_mul_lt
{a b c :
Int
}
(H1 :
0
≤
b
)
(H2 :
b
∣
c
)
(H3 :
a
*
b
<
c
)
:
a
<
c
/
b
source
theorem
Int
.
lt_ediv_iff_mul_lt
{a b c :
Int
}
(H :
0
<
c
)
(H' :
c
∣
b
)
:
a
<
b
/
c
↔
a
*
c
<
b
source
theorem
Int
.
ediv_pos_of_pos_of_dvd
{a b :
Int
}
(H1 :
0
<
a
)
(H2 :
0
≤
b
)
(H3 :
b
∣
a
)
:
0
<
a
/
b
source
theorem
Int
.
ediv_eq_ediv_of_mul_eq_mul
{a b c d :
Int
}
(H2 :
d
∣
c
)
(H3 :
b
≠
0
)
(H4 :
d
≠
0
)
(H5 :
a
*
d
=
b
*
c
)
:
a
/
b
=
c
/
d
tdiv
#
source
@[simp]
theorem
Int
.
tdiv_one
(a :
Int
)
:
a
.
tdiv
1
=
a
source
@[simp]
theorem
Int
.
tdiv_neg
(a b :
Int
)
:
a
.
tdiv
(
-
b
)
=
-
a
.
tdiv
b
source
@[simp]
theorem
Int
.
neg_tdiv
(a b :
Int
)
:
(
-
a
)
.
tdiv
b
=
-
a
.
tdiv
b
source
theorem
Int
.
neg_tdiv_neg
(a b :
Int
)
:
(
-
a
)
.
tdiv
(
-
b
)
=
a
.
tdiv
b
source
theorem
Int
.
tdiv_nonneg
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
0
≤
b
)
:
0
≤
a
.
tdiv
b
source
theorem
Int
.
tdiv_nonpos
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
b
≤
0
)
:
a
.
tdiv
b
≤
0
source
theorem
Int
.
tdiv_eq_zero_of_lt
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
a
<
b
)
:
a
.
tdiv
b
=
0
source
@[simp]
theorem
Int
.
mul_tdiv_cancel
(a :
Int
)
{b :
Int
}
(H :
b
≠
0
)
:
(
a
*
b
)
.
tdiv
b
=
a
source
@[simp]
theorem
Int
.
mul_tdiv_cancel_left
{a :
Int
}
(b :
Int
)
(H :
a
≠
0
)
:
(
a
*
b
)
.
tdiv
a
=
b
source
@[simp]
theorem
Int
.
tdiv_self
{a :
Int
}
(H :
a
≠
0
)
:
a
.
tdiv
a
=
1
source
theorem
Int
.
mul_tdiv_cancel_of_tmod_eq_zero
{a b :
Int
}
(H :
a
.
tmod
b
=
0
)
:
b
*
a
.
tdiv
b
=
a
source
theorem
Int
.
tdiv_mul_cancel_of_tmod_eq_zero
{a b :
Int
}
(H :
a
.
tmod
b
=
0
)
:
a
.
tdiv
b
*
b
=
a
source
theorem
Int
.
dvd_of_tmod_eq_zero
{a b :
Int
}
(H :
b
.
tmod
a
=
0
)
:
a
∣
b
source
theorem
Int
.
mul_tdiv_assoc
(a :
Int
)
{b c :
Int
}
:
c
∣
b
→
(
a
*
b
)
.
tdiv
c
=
a
*
b
.
tdiv
c
source
theorem
Int
.
mul_tdiv_assoc'
(b :
Int
)
{a c :
Int
}
(h :
c
∣
a
)
:
(
a
*
b
)
.
tdiv
c
=
a
.
tdiv
c
*
b
source
theorem
Int
.
tdiv_dvd_tdiv
{a b c :
Int
}
:
a
∣
b
→
b
∣
c
→
b
.
tdiv
a
∣
c
.
tdiv
a
source
@[simp]
theorem
Int
.
natAbs_tdiv
(a b :
Int
)
:
(
a
.
tdiv
b
)
.
natAbs
=
a
.
natAbs
.
div
b
.
natAbs
source
theorem
Int
.
tdiv_eq_of_eq_mul_right
{a b c :
Int
}
(H1 :
b
≠
0
)
(H2 :
a
=
b
*
c
)
:
a
.
tdiv
b
=
c
source
theorem
Int
.
eq_tdiv_of_mul_eq_right
{a b c :
Int
}
(H1 :
a
≠
0
)
(H2 :
a
*
b
=
c
)
:
b
=
c
.
tdiv
a
(t-)mod
#
source
theorem
Int
.
ofNat_tmod
(m n :
Nat
)
:
↑
(
m
%
n
)
=
(↑
m
)
.
tmod
↑
n
source
@[simp]
theorem
Int
.
tmod_one
(a :
Int
)
:
a
.
tmod
1
=
0
source
theorem
Int
.
tmod_eq_of_lt
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
a
<
b
)
:
a
.
tmod
b
=
a
source
theorem
Int
.
tmod_lt_of_pos
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
.
tmod
b
<
b
source
theorem
Int
.
tmod_nonneg
{a :
Int
}
(b :
Int
)
:
0
≤
a
→
0
≤
a
.
tmod
b
source
@[simp]
theorem
Int
.
tmod_neg
(a b :
Int
)
:
a
.
tmod
(
-
b
)
=
a
.
tmod
b
source
@[simp]
theorem
Int
.
mul_tmod_left
(a b :
Int
)
:
(
a
*
b
)
.
tmod
b
=
0
source
@[simp]
theorem
Int
.
mul_tmod_right
(a b :
Int
)
:
(
a
*
b
)
.
tmod
a
=
0
source
theorem
Int
.
tmod_eq_zero_of_dvd
{a b :
Int
}
:
a
∣
b
→
b
.
tmod
a
=
0
source
theorem
Int
.
dvd_iff_tmod_eq_zero
{a b :
Int
}
:
a
∣
b
↔
b
.
tmod
a
=
0
source
@[simp]
theorem
Int
.
neg_mul_tmod_right
(a b :
Int
)
:
(
-
(
a
*
b
)
).
tmod
a
=
0
source
@[simp]
theorem
Int
.
neg_mul_tmod_left
(a b :
Int
)
:
(
-
(
a
*
b
)
).
tmod
b
=
0
source
theorem
Int
.
tdiv_mul_cancel
{a b :
Int
}
(H :
b
∣
a
)
:
a
.
tdiv
b
*
b
=
a
source
theorem
Int
.
mul_tdiv_cancel'
{a b :
Int
}
(H :
a
∣
b
)
:
a
*
b
.
tdiv
a
=
b
source
theorem
Int
.
eq_mul_of_tdiv_eq_right
{a b c :
Int
}
(H1 :
b
∣
a
)
(H2 :
a
.
tdiv
b
=
c
)
:
a
=
b
*
c
source
@[simp]
theorem
Int
.
tmod_self
{a :
Int
}
:
a
.
tmod
a
=
0
source
@[simp]
theorem
Int
.
neg_tmod_self
(a :
Int
)
:
(
-
a
)
.
tmod
a
=
0
source
theorem
Int
.
lt_tdiv_add_one_mul_self
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
<
(
a
.
tdiv
b
+
1
)
*
b
source
theorem
Int
.
tdiv_eq_iff_eq_mul_right
{a b c :
Int
}
(H :
b
≠
0
)
(H' :
b
∣
a
)
:
a
.
tdiv
b
=
c
↔
a
=
b
*
c
source
theorem
Int
.
tdiv_eq_iff_eq_mul_left
{a b c :
Int
}
(H :
b
≠
0
)
(H' :
b
∣
a
)
:
a
.
tdiv
b
=
c
↔
a
=
c
*
b
source
theorem
Int
.
eq_mul_of_tdiv_eq_left
{a b c :
Int
}
(H1 :
b
∣
a
)
(H2 :
a
.
tdiv
b
=
c
)
:
a
=
c
*
b
source
theorem
Int
.
tdiv_eq_of_eq_mul_left
{a b c :
Int
}
(H1 :
b
≠
0
)
(H2 :
a
=
c
*
b
)
:
a
.
tdiv
b
=
c
source
theorem
Int
.
eq_zero_of_tdiv_eq_zero
{d n :
Int
}
(h :
d
∣
n
)
(H :
n
.
tdiv
d
=
0
)
:
n
=
0
source
@[simp]
theorem
Int
.
tdiv_left_inj
{a b d :
Int
}
(hda :
d
∣
a
)
(hdb :
d
∣
b
)
:
a
.
tdiv
d
=
b
.
tdiv
d
↔
a
=
b
source
theorem
Int
.
tdiv_sign
(a b :
Int
)
:
a
.
tdiv
b
.
sign
=
a
*
b
.
sign
source
theorem
Int
.
sign_eq_tdiv_abs
(a :
Int
)
:
a
.
sign
=
a
.
tdiv
↑
a
.
natAbs
fdiv
#
source
theorem
Int
.
fdiv_nonneg
{a b :
Int
}
(Ha :
0
≤
a
)
(Hb :
0
≤
b
)
:
0
≤
a
.
fdiv
b
source
theorem
Int
.
fdiv_nonpos
{a b :
Int
}
:
0
≤
a
→
b
≤
0
→
a
.
fdiv
b
≤
0
source
theorem
Int
.
fdiv_neg'
{a b :
Int
}
:
a
<
0
→
0
<
b
→
a
.
fdiv
b
<
0
source
@[simp]
theorem
Int
.
fdiv_one
(a :
Int
)
:
a
.
fdiv
1
=
a
source
@[simp]
theorem
Int
.
mul_fdiv_cancel
(a :
Int
)
{b :
Int
}
(H :
b
≠
0
)
:
(
a
*
b
)
.
fdiv
b
=
a
source
@[simp]
theorem
Int
.
mul_fdiv_cancel_left
{a :
Int
}
(b :
Int
)
(H :
a
≠
0
)
:
(
a
*
b
)
.
fdiv
a
=
b
source
@[simp]
theorem
Int
.
fdiv_self
{a :
Int
}
(H :
a
≠
0
)
:
a
.
fdiv
a
=
1
source
theorem
Int
.
lt_fdiv_add_one_mul_self
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
<
(
a
.
fdiv
b
+
1
)
*
b
fmod
#
source
theorem
Int
.
ofNat_fmod
(m n :
Nat
)
:
↑
(
m
%
n
)
=
(↑
m
)
.
fmod
↑
n
source
@[simp]
theorem
Int
.
fmod_one
(a :
Int
)
:
a
.
fmod
1
=
0
source
theorem
Int
.
fmod_eq_of_lt
{a b :
Int
}
(H1 :
0
≤
a
)
(H2 :
a
<
b
)
:
a
.
fmod
b
=
a
source
theorem
Int
.
fmod_nonneg
{a b :
Int
}
(ha :
0
≤
a
)
(hb :
0
≤
b
)
:
0
≤
a
.
fmod
b
source
theorem
Int
.
fmod_nonneg'
(a :
Int
)
{b :
Int
}
(hb :
0
<
b
)
:
0
≤
a
.
fmod
b
source
theorem
Int
.
fmod_lt_of_pos
(a :
Int
)
{b :
Int
}
(H :
0
<
b
)
:
a
.
fmod
b
<
b
source
@[simp]
theorem
Int
.
mul_fmod_left
(a b :
Int
)
:
(
a
*
b
)
.
fmod
b
=
0
source
@[simp]
theorem
Int
.
mul_fmod_right
(a b :
Int
)
:
(
a
*
b
)
.
fmod
a
=
0
source
@[simp]
theorem
Int
.
fmod_self
{a :
Int
}
:
a
.
fmod
a
=
0
Theorems crossing div/mod versions
#
source
theorem
Int
.
tdiv_eq_ediv_of_dvd
{a b :
Int
}
(h :
b
∣
a
)
:
a
.
tdiv
b
=
a
/
b
source
theorem
Int
.
fdiv_eq_ediv_of_dvd
{a b :
Int
}
:
b
∣
a
→
a
.
fdiv
b
=
a
/
b
bmod
#
source
@[simp]
theorem
Int
.
bmod_emod
{x :
Int
}
{m :
Nat
}
:
x
.
bmod
m
%
↑
m
=
x
%
↑
m
source
@[simp]
theorem
Int
.
emod_bmod_congr
(x :
Int
)
(n :
Nat
)
:
(
x
%
↑
n
)
.
bmod
n
=
x
.
bmod
n
source
theorem
Int
.
bmod_def
(x :
Int
)
(m :
Nat
)
:
x
.
bmod
m
=
if
x
%
↑
m
<
(
↑
m
+
1
)
/
2
then
x
%
↑
m
else
x
%
↑
m
-
↑
m
source
theorem
Int
.
bdiv_add_bmod
(x :
Int
)
(m :
Nat
)
:
↑
m
*
x
.
bdiv
m
+
x
.
bmod
m
=
x
source
theorem
Int
.
bmod_add_bdiv
(x :
Int
)
(m :
Nat
)
:
x
.
bmod
m
+
↑
m
*
x
.
bdiv
m
=
x
source
theorem
Int
.
bdiv_add_bmod'
(x :
Int
)
(m :
Nat
)
:
x
.
bdiv
m
*
↑
m
+
x
.
bmod
m
=
x
source
theorem
Int
.
bmod_add_bdiv'
(x :
Int
)
(m :
Nat
)
:
x
.
bmod
m
+
x
.
bdiv
m
*
↑
m
=
x
source
theorem
Int
.
bmod_eq_self_sub_mul_bdiv
(x :
Int
)
(m :
Nat
)
:
x
.
bmod
m
=
x
-
↑
m
*
x
.
bdiv
m
source
theorem
Int
.
bmod_eq_self_sub_bdiv_mul
(x :
Int
)
(m :
Nat
)
:
x
.
bmod
m
=
x
-
x
.
bdiv
m
*
↑
m
source
theorem
Int
.
bmod_pos
(x :
Int
)
(m :
Nat
)
(p :
x
%
↑
m
<
(
↑
m
+
1
)
/
2
)
:
x
.
bmod
m
=
x
%
↑
m
source
theorem
Int
.
bmod_neg
(x :
Int
)
(m :
Nat
)
(p :
x
%
↑
m
≥
(
↑
m
+
1
)
/
2
)
:
x
.
bmod
m
=
x
%
↑
m
-
↑
m
source
@[simp]
theorem
Int
.
bmod_one_is_zero
(x :
Int
)
:
x
.
bmod
1
=
0
source
@[simp]
theorem
Int
.
bmod_add_cancel
(x :
Int
)
(n :
Nat
)
:
(
x
+
↑
n
)
.
bmod
n
=
x
.
bmod
n
source
@[simp]
theorem
Int
.
bmod_add_mul_cancel
(x :
Int
)
(n :
Nat
)
(k :
Int
)
:
(
x
+
↑
n
*
k
).
bmod
n
=
x
.
bmod
n
source
@[simp]
theorem
Int
.
bmod_sub_cancel
(x :
Int
)
(n :
Nat
)
:
(
x
-
↑
n
)
.
bmod
n
=
x
.
bmod
n
source
@[simp]
theorem
Int
.
emod_add_bmod_congr
{y :
Int
}
(x :
Int
)
(n :
Nat
)
:
(
x
%
↑
n
+
y
).
bmod
n
=
(
x
+
y
).
bmod
n
source
@[simp]
theorem
Int
.
emod_sub_bmod_congr
{y :
Int
}
(x :
Int
)
(n :
Nat
)
:
(
x
%
↑
n
-
y
).
bmod
n
=
(
x
-
y
).
bmod
n
source
@[simp]
theorem
Int
.
sub_emod_bmod_congr
{y :
Int
}
(x :
Int
)
(n :
Nat
)
:
(
x
-
y
%
↑
n
).
bmod
n
=
(
x
-
y
).
bmod
n
source
@[simp]
theorem
Int
.
emod_mul_bmod_congr
{y :
Int
}
(x :
Int
)
(n :
Nat
)
:
(
x
%
↑
n
*
y
).
bmod
n
=
(
x
*
y
).
bmod
n
source
@[simp]
theorem
Int
.
bmod_add_bmod_congr
{x :
Int
}
{n :
Nat
}
{y :
Int
}
:
(
x
.
bmod
n
+
y
)
.
bmod
n
=
(
x
+
y
).
bmod
n
source
@[simp]
theorem
Int
.
bmod_sub_bmod_congr
{x :
Int
}
{n :
Nat
}
{y :
Int
}
:
(
x
.
bmod
n
-
y
)
.
bmod
n
=
(
x
-
y
).
bmod
n
source
theorem
Int
.
add_bmod_eq_add_bmod_right
{x :
Int
}
{n :
Nat
}
{y :
Int
}
(i :
Int
)
(H :
x
.
bmod
n
=
y
.
bmod
n
)
:
(
x
+
i
)
.
bmod
n
=
(
y
+
i
).
bmod
n
source
theorem
Int
.
bmod_add_cancel_right
{x :
Int
}
{n :
Nat
}
{y :
Int
}
(i :
Int
)
:
(
x
+
i
)
.
bmod
n
=
(
y
+
i
).
bmod
n
↔
x
.
bmod
n
=
y
.
bmod
n
source
@[simp]
theorem
Int
.
add_bmod_bmod
{x y :
Int
}
{n :
Nat
}
:
(
x
+
y
.
bmod
n
)
.
bmod
n
=
(
x
+
y
).
bmod
n
source
@[simp]
theorem
Int
.
sub_bmod_bmod
{x y :
Int
}
{n :
Nat
}
:
(
x
-
y
.
bmod
n
)
.
bmod
n
=
(
x
-
y
).
bmod
n
source
@[simp]
theorem
Int
.
bmod_mul_bmod
{x :
Int
}
{n :
Nat
}
{y :
Int
}
:
(
x
.
bmod
n
*
y
)
.
bmod
n
=
(
x
*
y
).
bmod
n
source
@[simp]
theorem
Int
.
mul_bmod_bmod
{x y :
Int
}
{n :
Nat
}
:
(
x
*
y
.
bmod
n
)
.
bmod
n
=
(
x
*
y
).
bmod
n
source
theorem
Int
.
add_bmod
(a b :
Int
)
(n :
Nat
)
:
(
a
+
b
)
.
bmod
n
=
(
a
.
bmod
n
+
b
.
bmod
n
).
bmod
n
source
theorem
Int
.
emod_bmod
{x :
Int
}
{m :
Nat
}
:
(
x
%
↑
m
)
.
bmod
m
=
x
.
bmod
m
source
@[simp]
theorem
Int
.
bmod_bmod
{x :
Int
}
{m :
Nat
}
:
(
x
.
bmod
m
)
.
bmod
m
=
x
.
bmod
m
source
@[simp]
theorem
Int
.
bmod_zero
{m :
Nat
}
:
bmod
0
m
=
0
source
theorem
Int
.
dvd_bmod_sub_self
{x :
Int
}
{m :
Nat
}
:
↑
m
∣
x
.
bmod
m
-
x
source
theorem
Int
.
le_bmod
{x :
Int
}
{m :
Nat
}
(h :
0
<
m
)
:
-
(
↑
m
/
2
)
≤
x
.
bmod
m
source
theorem
Int
.
bmod_lt
{x :
Int
}
{m :
Nat
}
(h :
0
<
m
)
:
x
.
bmod
m
<
(
↑
m
+
1
)
/
2
source
theorem
Int
.
bmod_le
{x :
Int
}
{m :
Nat
}
(h :
0
<
m
)
:
x
.
bmod
m
≤
(
↑
m
-
1
)
/
2
source
theorem
Int
.
bmod_natAbs_plus_one
(x :
Int
)
(w :
1
<
x
.
natAbs
)
:
x
.
bmod
(
x
.
natAbs
+
1
)
=
-
x
.
sign
source
@[simp]
theorem
Int
.
bmod_neg_bmod
{x :
Int
}
{n :
Nat
}
:
(
-
x
.
bmod
n
)
.
bmod
n
=
(
-
x
).
bmod
n