@[reducible, inline]
abbrev
Nat.recAux
{motive : Nat → Sort u}
(zero : motive 0)
(succ : (n : Nat) → motive n → motive (n + 1))
(t : Nat)
:
motive t
Recursor identical to Nat.rec
but uses notations 0
for Nat.zero
and · + 1
for Nat.succ
.
Used as the default Nat
eliminator by the induction
tactic.
Equations
Instances For
@[reducible, inline]
abbrev
Nat.casesAuxOn
{motive : Nat → Sort u}
(t : Nat)
(zero : motive 0)
(succ : (n : Nat) → motive (n + 1))
:
motive t
Recursor identical to Nat.casesOn
but uses notations 0
for Nat.zero
and · + 1
for Nat.succ
.
Used as the default Nat
eliminator by the cases
tactic.
Instances For
@[specialize #[]]
Nat.repeat f n a
is f^(n) a
; that is, it iterates f
n
times on a
.
Nat.repeat f 3 a = f <| f <| f <| a
Instances For
@[specialize #[]]