Helper definitions and theorems for constructing linear arithmetic proofs.
@[reducible, inline]
Equations
Instances For
When encoding polynomials. We use fixedVar
for encoding numerals.
The denotation of fixedVar
is always 1
.
Equations
- Nat.Linear.fixedVar = 100000000
Instances For
Equations
Instances For
Equations
- Nat.Linear.instInhabitedExpr = { default := Nat.Linear.Expr.num default }
Equations
- Nat.Linear.Expr.denote ctx (a.add b) = (Nat.Linear.Expr.denote ctx a).add (Nat.Linear.Expr.denote ctx b)
- Nat.Linear.Expr.denote ctx (Nat.Linear.Expr.num k) = k
- Nat.Linear.Expr.denote ctx (Nat.Linear.Expr.var v) = Nat.Linear.Var.denote ctx v
- Nat.Linear.Expr.denote ctx (Nat.Linear.Expr.mulL k e) = k.mul (Nat.Linear.Expr.denote ctx e)
- Nat.Linear.Expr.denote ctx (e.mulR k) = (Nat.Linear.Expr.denote ctx e).mul k
Instances For
@[reducible, inline]
Equations
Instances For
Instances For
Equations
- Nat.Linear.Poly.mul k p = bif k == 0 then [] else bif k == 1 then p else Nat.Linear.Poly.mul.go k p
Instances For
Equations
- One or more equations did not get rendered due to their size.
- Nat.Linear.Poly.cancelAux 0 m₁ m₂ r₁ r₂ = (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂)
- Nat.Linear.Poly.cancelAux fuel_2.succ m₁ [] r₁ r₂ = (List.reverse r₁ ++ m₁, List.reverse r₂)
- Nat.Linear.Poly.cancelAux fuel_2.succ [] m₂ r₁ r₂ = (List.reverse r₁, List.reverse r₂ ++ m₂)
Instances For
Instances For
Instances For
Instances For
Equations
- Nat.Linear.Expr.toPoly.go coeff (Nat.Linear.Expr.num k) = bif k == 0 then id else fun (x : Nat.Linear.Poly) => (coeff * k, Nat.Linear.fixedVar) :: x
- Nat.Linear.Expr.toPoly.go coeff (Nat.Linear.Expr.var i) = fun (x : Nat.Linear.Poly) => (coeff, i) :: x
- Nat.Linear.Expr.toPoly.go coeff (a.add b) = Nat.Linear.Expr.toPoly.go coeff a ∘ Nat.Linear.Expr.toPoly.go coeff b
- Nat.Linear.Expr.toPoly.go coeff (Nat.Linear.Expr.mulL k a) = bif k == 0 then id else Nat.Linear.Expr.toPoly.go (coeff * k) a
- Nat.Linear.Expr.toPoly.go coeff (a.mulR k) = bif k == 0 then id else Nat.Linear.Expr.toPoly.go (coeff * k) a
Instances For
Instances For
Equations
Instances For
Equations
- Nat.Linear.instBEqPolyCnstr = { beq := Nat.Linear.beqPolyCnstr✝ }
Equations
Instances For
Equations
Instances For
Equations
- c.toNormPoly = match c.lhs.toNormPoly.cancel c.rhs.toNormPoly with | (lhs, rhs) => { eq := c.eq, lhs := lhs, rhs := rhs }
Instances For
@[reducible, inline]
Equations
Instances For
Equations
Instances For
Equations
Instances For
Equations
Instances For
theorem
Nat.Linear.Poly.denote_eq_cancelAux
(ctx : Context)
(fuel : Nat)
(m₁ m₂ r₁ r₂ : Poly)
(h : denote_eq ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂))
:
theorem
Nat.Linear.Poly.denote_le_cancelAux
(ctx : Context)
(fuel : Nat)
(m₁ m₂ r₁ r₂ : Poly)
(h : denote_le ctx (List.reverse r₁ ++ m₁, List.reverse r₂ ++ m₂))
:
theorem
Nat.Linear.Expr.eq_of_toNormPoly
(ctx : Context)
(a b : Expr)
(h : a.toNormPoly = b.toNormPoly)
:
theorem
Nat.Linear.Certificate.of_combineHyps
(ctx : Context)
(c : PolyCnstr)
(cs : Certificate)
(h : PolyCnstr.denote ctx (combineHyps c cs) → False)
:
PolyCnstr.denote ctx c → denote ctx cs
theorem
Nat.Linear.Certificate.of_combine
(ctx : Context)
(cs : Certificate)
(h : PolyCnstr.denote ctx cs.combine → False)
:
denote ctx cs
theorem
Nat.Linear.Certificate.of_combine_isUnsat
(ctx : Context)
(cs : Certificate)
(h : cs.combine.isUnsat = true)
:
denote ctx cs
theorem
Nat.Linear.ExprCnstr.eq_of_toNormPoly_eq
(ctx : Context)
(c d : ExprCnstr)
(h : (c.toNormPoly == d.toPoly) = true)
:
theorem
Nat.Linear.Expr.eq_of_toNormPoly_eq
(ctx : Context)
(e e' : Expr)
(h : (e.toNormPoly == e'.toPoly) = true)
: