Documentation

Init.Grind.Lemmas

theorem Lean.Grind.intro_with_eq (p p' q : Prop) (he : p = p') (h : p'q) :
pq

And

Or

Implies

Not

Eq

theorem Lean.Grind.eq_congr {α : Sort u} {a₁ b₁ a₂ b₂ : α} (h₁ : a₁ = a₂) (h₂ : b₁ = b₂) :
(a₁ = b₁) = (a₂ = b₂)
theorem Lean.Grind.eq_congr' {α : Sort u} {a₁ b₁ a₂ b₂ : α} (h₁ : a₁ = b₂) (h₂ : b₁ = a₂) :
(a₁ = b₁) = (a₂ = b₂)

Bool.and

Bool.or

Bool.not

theorem Lean.Grind.of_eq_eq_true {a b : Prop} (h : (a = b) = True) :
(¬a b) (¬b a)

Forall

theorem Lean.Grind.forall_propagator (p : Prop) (q : pProp) (q' : Prop) (h₁ : p = True) (h₂ : q = q') :
theorem Lean.Grind.of_forall_eq_false (α : Sort u) (p : αProp) (h : (∀ (x : α), p x) = False) :
(x : α), ¬p x

dite

theorem Lean.Grind.dite_cond_eq_true' {α : Sort u} {c : Prop} {x✝ : Decidable c} {a : cα} {b : ¬cα} {r : α} (h₁ : c = True) (h₂ : a = r) :
dite c a b = r
theorem Lean.Grind.dite_cond_eq_false' {α : Sort u} {c : Prop} {x✝ : Decidable c} {a : cα} {b : ¬cα} {r : α} (h₁ : c = False) (h₂ : b = r) :
dite c a b = r

Casts

theorem Lean.Grind.eqRec_heq {α : Sort u_2} {a : α} {motive : (x : α) → a = xSort u_1} (v : motive a ) {b : α} (h : a = b) :
HEq (h v) v
theorem Lean.Grind.eqRecOn_heq {α : Sort u_2} {a : α} {motive : (x : α) → a = xSort u_1} {b : α} (h : a = b) (v : motive a ) :
HEq (Eq.recOn h v) v
theorem Lean.Grind.eqNDRec_heq {α : Sort u_2} {a : α} {motive : αSort u_1} (v : motive a) {b : α} (h : a = b) :
HEq (h v) v

decide