Red-Black Dictionary #
Defines an insertion-ordered key-value mapping backed by an red-black tree.
Implemented via a key-index RBMap
into an Array
of key-value pairs.
@[reducible, inline]
Instances For
instance
Lake.Toml.RBDict.instEmptyCollection
{α : Type u_1}
{β : Type u_2}
{cmp : α → α → Ordering}
:
EmptyCollection (RBDict α β cmp)
Equations
- Lake.Toml.RBDict.instEmptyCollection = { emptyCollection := Lake.Toml.RBDict.empty }
instance
Lake.Toml.RBDict.instBEqOfProd
{α : Type u_1}
{β : Type u_2}
{cmp : α → α → Ordering}
[BEq (α × β)]
:
Equations
- Lake.Toml.RBDict.instBEqOfProd = { beq := Lake.Toml.RBDict.beq }
def
Lake.Toml.RBDict.contains
{α : Type u_1}
{β : Type u_2}
{cmp : α → α → Ordering}
(k : α)
(t : RBDict α β cmp)
:
Instances For
def
Lake.Toml.RBDict.findEntry?
{α β : Type}
{cmp : α → α → Ordering}
(k : α)
(t : RBDict α β cmp)
:
Equations
Instances For
@[inline]
def
Lake.Toml.RBDict.find?
{α β : Type}
{cmp : α → α → Ordering}
(k : α)
(t : RBDict α β cmp)
:
Option β
Equations
Instances For
def
Lake.Toml.RBDict.appendArray
{α : Type u_1}
{β : Type u_2}
{cmp : α → α → Ordering}
(self : RBDict α β cmp)
(other : Array (α × β))
:
RBDict α β cmp
Equations
- self.appendArray other = Array.foldl (fun (t : Lake.Toml.RBDict α β cmp) (x : α × β) => match x with | (k, v) => Lake.Toml.RBDict.insert k v t) self other
Instances For
instance
Lake.Toml.RBDict.instHAppendArrayProd
{α : Type u_1}
{β : Type u_2}
{cmp : α → α → Ordering}
:
Equations
- Lake.Toml.RBDict.instHAppendArrayProd = { hAppend := Lake.Toml.RBDict.appendArray }
Equations
- Lake.Toml.RBDict.instAppend = { append := Lake.Toml.RBDict.append }