Instances For
def
Lean.HashMapBucket.update
{α : Type u}
{β : Type v}
(data : HashMapBucket α β)
(i : USize)
(d : AssocList α β)
(h : i.toNat < data.val.size)
:
HashMapBucket α β
Equations
- data.update i d h = ⟨data.val.uset i d h, ⋯⟩
Instances For
@[deprecated Std.HashMap.Raw (since := "2024-08-08")]
- size : Nat
- buckets : HashMapBucket α β
Instances For
@[deprecated Std.HashMap.Raw.empty (since := "2024-08-08")]
Equations
- Lean.mkHashMapImp capacity = { size := 0, buckets := ⟨mkArray (Lean.numBucketsForCapacity✝ capacity).nextPowerOfTwo Lean.AssocList.nil, ⋯⟩ }
Instances For
@[inline]
def
Lean.HashMapImp.reinsertAux
{α : Type u}
{β : Type v}
(hashFn : α → UInt64)
(data : HashMapBucket α β)
(a : α)
(b : β)
:
HashMapBucket α β
Equations
Instances For
@[inline]
def
Lean.HashMapImp.foldBucketsM
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
(data : HashMapBucket α β)
(d : δ)
(f : δ → α → β → m δ)
:
m δ
Equations
Instances For
@[inline]
def
Lean.HashMapImp.foldBuckets
{α : Type u}
{β : Type v}
{δ : Type w}
(data : HashMapBucket α β)
(d : δ)
(f : δ → α → β → δ)
:
δ
Instances For
@[inline]
def
Lean.HashMapImp.foldM
{α : Type u}
{β : Type v}
{δ : Type w}
{m : Type w → Type w}
[Monad m]
(f : δ → α → β → m δ)
(d : δ)
(h : HashMapImp α β)
:
m δ
Instances For
@[inline]
def
Lean.HashMapImp.fold
{α : Type u}
{β : Type v}
{δ : Type w}
(f : δ → α → β → δ)
(d : δ)
(m : HashMapImp α β)
:
δ
Instances For
@[inline]
def
Lean.HashMapImp.forBucketsM
{α : Type u}
{β : Type v}
{m : Type w → Type w}
[Monad m]
(data : HashMapBucket α β)
(f : α → β → m PUnit)
:
m PUnit
Equations
Instances For
@[inline]
def
Lean.HashMapImp.forM
{α : Type u}
{β : Type v}
{m : Type w → Type w}
[Monad m]
(f : α → β → m PUnit)
(h : HashMapImp α β)
:
m PUnit
Instances For
def
Lean.HashMapImp.findEntry?
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
:
Equations
Instances For
def
Lean.HashMapImp.find?
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
:
Option β
Equations
- { size := size, buckets := buckets }.find? a = match Lean.HashMapImp.mkIdx✝ (hash a) ⋯ with | ⟨i, h⟩ => Lean.AssocList.find? a buckets.val[i]
Instances For
def
Lean.HashMapImp.contains
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
:
Equations
Instances For
@[irreducible]
def
Lean.HashMapImp.moveEntries
{α : Type u}
{β : Type v}
[Hashable α]
(i : Nat)
(source : Array (AssocList α β))
(target : HashMapBucket α β)
:
HashMapBucket α β
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Lean.HashMapImp.expand
{α : Type u}
{β : Type v}
[Hashable α]
(size : Nat)
(buckets : HashMapBucket α β)
:
HashMapImp α β
Equations
Instances For
@[inline]
def
Lean.HashMapImp.insert
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
(b : β)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[inline]
def
Lean.HashMapImp.insertIfNew
{α : Type u}
{β : Type v}
[beq : BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
(b : β)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
Lean.HashMapImp.erase
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(m : HashMapImp α β)
(a : α)
:
HashMapImp α β
Equations
- One or more equations did not get rendered due to their size.
Instances For
inductive
Lean.HashMapImp.WellFormed
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
:
HashMapImp α β → Prop
- mkWff {α : Type u} {β : Type v} [BEq α] [Hashable α] (n : Nat) : (mkHashMapImp n).WellFormed
- insertWff {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) (b : β) : m.WellFormed → (m.insert a b).fst.WellFormed
- insertIfNewWff {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) (b : β) : m.WellFormed → (m.insertIfNew a b).fst.WellFormed
- eraseWff {α : Type u} {β : Type v} [BEq α] [Hashable α] (m : HashMapImp α β) (a : α) : m.WellFormed → (m.erase a).WellFormed
Instances For
@[deprecated Std.HashMap (since := "2024-08-08")]
Instances For
Equations
- Lean.HashMap.instInhabited = { default := Lean.mkHashMap }
instance
Lean.HashMap.instEmptyCollection
{α : Type u_1}
{β : Type u_2}
[BEq α]
[Hashable α]
:
EmptyCollection (HashMap α β)
Equations
- Lean.HashMap.instEmptyCollection = { emptyCollection := Lean.mkHashMap }
@[inline, deprecated Std.HashMap.empty (since := "2024-08-08")]
Equations
Instances For
@[deprecated Std.HashMap.insert (since := "2024-08-08")]
def
Lean.HashMap.insert
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : HashMap α β)
(a : α)
(b : β)
:
HashMap α β
Equations
- Lean.HashMap.insert ⟨m_2, hw⟩ a b = match h : m_2.insert a b with | (m', snd) => ⟨m', ⋯⟩
Instances For
@[deprecated Std.HashMap.containsThenInsert (since := "2024-08-08")]
def
Lean.HashMap.insert'
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : HashMap α β)
(a : α)
(b : β)
:
Similar to insert
, but also returns a Boolean flag indicating whether an existing entry has been replaced with a -> b
.
Equations
- Lean.HashMap.insert' ⟨m_2, hw⟩ a b = match h : m_2.insert a b with | (m', replaced) => (⟨m', ⋯⟩, replaced)
Instances For
@[deprecated Std.HashMap.insertIfNew (since := "2024-08-08")]
def
Lean.HashMap.insertIfNew
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
(m : HashMap α β)
(a : α)
(b : β)
:
Similar to insert
, but returns some old
if the map already had an entry α → old
.
If the result is some old
, the resulting map is equal to m
.
Equations
- Lean.HashMap.insertIfNew ⟨m_2, hw⟩ a b = match h : m_2.insertIfNew a b with | (m', old) => (⟨m', ⋯⟩, old)
Instances For
instance
Lean.HashMap.instGetElemOptionTrue
{α : Type u}
{β : Type v}
{x✝ : BEq α}
{x✝¹ : Hashable α}
:
Equations
- Lean.HashMap.instGetElemOptionTrue = { getElem := fun (m : Lean.HashMap α β) (k : α) (x : True) => m.find? k }
@[deprecated Std.HashMap.ofList (since := "2024-08-08")]
def
Lean.HashMap.ofList
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(l : List (α × β))
:
HashMap α β
Builds a HashMap
from a list of key-value pairs. Values of duplicated keys are replaced by their respective last occurrences.
Equations
- Lean.HashMap.ofList l = List.foldl (fun (m : Lean.HashMap α β) (p : α × β) => m.insert p.fst p.snd) Lean.HashMap.empty l
Instances For
@[deprecated "Deprecateed without a replacement." (since := "2024-08-08")]
def
Lean.HashMap.ofListWith
{α : Type u}
{β : Type v}
[BEq α]
[Hashable α]
(l : List (α × β))
(f : β → β → β)
:
HashMap α β
Variant of ofList
which accepts a function that combines values of duplicated keys.
Equations
- One or more equations did not get rendered due to their size.