Documentation

Mathlib.Algebra.Algebra.NonUnitalSubalgebra

Non-unital Subalgebras over Commutative Semirings #

In this file we define NonUnitalSubalgebras and the usual operations on them (map, comap).

TODO #

Embedding of a non-unital subalgebra into the non-unital algebra.

Equations
Instances For
    @[simp]

    A non-unital subalgebra is a sub(semi)ring that is also a submodule.

    Instances For
      Equations
      theorem NonUnitalSubalgebra.ext {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S T : NonUnitalSubalgebra R A} (h : ∀ (x : A), x S x T) :
      S = T

      Copy of a non-unital subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

      Equations
      • S.copy s hs = { toNonUnitalSubsemiring := S.copy s hs, smul_mem' := }
      Instances For
        @[simp]
        theorem NonUnitalSubalgebra.coe_copy {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = S) :
        (S.copy s hs) = s
        theorem NonUnitalSubalgebra.copy_eq {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (S : NonUnitalSubalgebra R A) (s : Set A) (hs : s = S) :
        S.copy s hs = S

        A non-unital subalgebra over a ring is also a Subring.

        Equations
        Instances For

          NonUnitalSubalgebras inherit structure from their NonUnitalSubsemiring / Semiring coercions.

          The forgetful map from NonUnitalSubalgebra to Submodule as an OrderEmbedding

          Equations
          Instances For

            The forgetful map from NonUnitalSubalgebra to NonUnitalSubsemiring as an OrderEmbedding

            Equations
            Instances For

              NonUnitalSubalgebras inherit structure from their Submodule coercions. #

              instance NonUnitalSubalgebra.instIsScalarTower' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
              IsScalarTower R' R S
              instance NonUnitalSubalgebra.instSMulCommClass' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] [SMulCommClass R' R A] :
              SMulCommClass R' R S
              theorem NonUnitalSubalgebra.coe_add {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              (x + y) = x + y
              theorem NonUnitalSubalgebra.coe_mul {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              (x * y) = x * y
              theorem NonUnitalSubalgebra.coe_neg {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : NonUnitalSubalgebra R A} (x : S) :
              (-x) = -x
              theorem NonUnitalSubalgebra.coe_sub {R : Type u} {A : Type v} [CommRing R] [Ring A] [Algebra R A] {S : NonUnitalSubalgebra R A} (x y : S) :
              (x - y) = x - y
              @[simp]
              theorem NonUnitalSubalgebra.coe_smul {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {S : NonUnitalSubalgebra R A} [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :
              (r x) = r x

              Linear equivalence between S : Submodule R A and S. Though these types are equal, we define it as a LinearEquiv to avoid type equalities.

              Equations
              Instances For

                Transport a non-unital subalgebra via an algebra homomorphism.

                Equations
                Instances For
                  theorem NonUnitalSubalgebra.map_mono {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S₁ S₂ : NonUnitalSubalgebra R A} {f : F} :
                  S₁ S₂map f S₁ map f S₂
                  @[simp]
                  theorem NonUnitalSubalgebra.mem_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {y : B} :
                  y map f S xS, f x = y
                  @[simp]
                  theorem NonUnitalSubalgebra.coe_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R A) (f : F) :
                  (map f S) = f '' S

                  Preimage of a non-unital subalgebra under an algebra homomorphism.

                  Equations
                  Instances For
                    theorem NonUnitalSubalgebra.map_le {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] {S : NonUnitalSubalgebra R A} {f : F} {U : NonUnitalSubalgebra R B} :
                    map f S U S comap f U
                    @[simp]
                    theorem NonUnitalSubalgebra.mem_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R B) (f : F) (x : A) :
                    @[simp]
                    theorem NonUnitalSubalgebra.coe_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [NonUnitalNonAssocSemiring B] [Module R A] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (S : NonUnitalSubalgebra R B) (f : F) :
                    def Submodule.toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :

                    A submodule closed under multiplication is a non-unital subalgebra.

                    Equations
                    Instances For
                      @[simp]
                      theorem Submodule.mem_toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] {p : Submodule R A} {h_mul : ∀ (x y : A), x py px * y p} {x : A} :
                      @[simp]
                      theorem Submodule.coe_toNonUnitalSubalgebra {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :
                      theorem Submodule.toNonUnitalSubalgebra_mk {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (hmul : ∀ (x y : A), x py px * y p) :
                      p.toNonUnitalSubalgebra hmul = { carrier := p, add_mem' := , zero_mem' := , mul_mem' := , smul_mem' := }
                      @[simp]
                      theorem Submodule.toNonUnitalSubalgebra_toSubmodule {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] (p : Submodule R A) (h_mul : ∀ (x y : A), x py px * y p) :
                      def NonUnitalAlgHom.range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) :

                      Range of an NonUnitalAlgHom as a non-unital subalgebra.

                      Equations
                      Instances For
                        @[simp]
                        theorem NonUnitalAlgHom.mem_range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ : F) {y : B} :
                        @[simp]
                        def NonUnitalAlgHom.codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) :

                        Restrict the codomain of a non-unital algebra homomorphism.

                        Equations
                        Instances For
                          @[simp]
                          theorem NonUnitalAlgHom.coe_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) (x : A) :
                          ((codRestrict f S hf) x) = f x
                          theorem NonUnitalAlgHom.injective_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (f : F) (S : NonUnitalSubalgebra R B) (hf : ∀ (x : A), f x S) :
                          @[reducible, inline]

                          Restrict the codomain of an NonUnitalAlgHom f to f.range.

                          This is the bundled version of Set.rangeFactorization.

                          Equations
                          Instances For
                            def NonUnitalAlgHom.equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (ϕ ψ : F) :

                            The equalizer of two non-unital R-algebra homomorphisms

                            Equations
                            Instances For
                              @[simp]
                              theorem NonUnitalAlgHom.mem_equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] (φ ψ : F) (x : A) :

                              The range of a morphism of algebras is a fintype, if the domain is a fintype.

                              Note that this instance can cause a diamond with Subtype.fintype if B is also a fintype.

                              Equations

                              The minimal non-unital subalgebra that includes s.

                              Equations
                              Instances For

                                Galois insertion between adjoin and Subtype.val.

                                Equations
                                Instances For
                                  theorem NonUnitalAlgebra.adjoin_le {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : NonUnitalSubalgebra R A} {s : Set A} (hs : s S) :
                                  adjoin R s S
                                  theorem NonUnitalAlgebra.adjoin_induction {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (x : A) → x adjoin R sProp} (mem : ∀ (x : A) (hx : x s), p x ) (add : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x + y) ) (zero : p 0 ) (mul : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x * y) ) (smul : ∀ (r : R) (x : A) (hx : x adjoin R s), p x hxp (r x) ) {x : A} (hx : x adjoin R s) :
                                  p x hx

                                  If some predicate holds for all x ∈ (s : Set A) and this predicate is closed under the algebraMap, addition, multiplication and star operations, then it holds for a ∈ adjoin R s.

                                  @[deprecated NonUnitalAlgebra.adjoin_induction (since := "2024-10-10")]
                                  theorem NonUnitalAlgebra.adjoin_induction' {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (x : A) → x adjoin R sProp} (mem : ∀ (x : A) (hx : x s), p x ) (add : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x + y) ) (zero : p 0 ) (mul : ∀ (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x hxp y hyp (x * y) ) (smul : ∀ (r : R) (x : A) (hx : x adjoin R s), p x hxp (r x) ) {x : A} (hx : x adjoin R s) :
                                  p x hx

                                  Alias of NonUnitalAlgebra.adjoin_induction.


                                  If some predicate holds for all x ∈ (s : Set A) and this predicate is closed under the algebraMap, addition, multiplication and star operations, then it holds for a ∈ adjoin R s.

                                  theorem NonUnitalAlgebra.adjoin_induction₂ {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (x y : A) → x adjoin R sy adjoin R sProp} (mem_mem : ∀ (x y : A) (hx : x s) (hy : y s), p x y ) (zero_left : ∀ (x : A) (hx : x adjoin R s), p 0 x hx) (zero_right : ∀ (x : A) (hx : x adjoin R s), p x 0 hx ) (add_left : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x z hx hzp y z hy hzp (x + y) z hz) (add_right : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x y hx hyp x z hx hzp x (y + z) hx ) (mul_left : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x z hx hzp y z hy hzp (x * y) z hz) (mul_right : ∀ (x y z : A) (hx : x adjoin R s) (hy : y adjoin R s) (hz : z adjoin R s), p x y hx hyp x z hx hzp x (y * z) hx ) (smul_left : ∀ (r : R) (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x y hx hyp (r x) y hy) (smul_right : ∀ (r : R) (x y : A) (hx : x adjoin R s) (hy : y adjoin R s), p x y hx hyp x (r y) hx ) {x y : A} (hx : x adjoin R s) (hy : y adjoin R s) :
                                  p x y hx hy
                                  @[deprecated NonUnitalAlgebra.adjoin_induction (since := "2024-10-11")]
                                  theorem NonUnitalAlgebra.adjoin_induction_subtype {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {p : (adjoin R s)Prop} (a : (adjoin R s)) (mem : ∀ (x : A) (h : x s), p x, ) (add : ∀ (x y : (adjoin R s)), p xp yp (x + y)) (zero : p 0) (mul : ∀ (x y : (adjoin R s)), p xp yp (x * y)) (smul : ∀ (r : R) (x : (adjoin R s)), p xp (r x)) :
                                  p a

                                  The difference with NonUnitalAlgebra.adjoin_induction is that this acts on the subtype.

                                  @[simp]
                                  theorem NonUnitalAlgebra.mul_mem_sup {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} {x y : A} (hx : x S) (hy : y T) :
                                  @[simp]
                                  @[simp]
                                  theorem NonUnitalAlgebra.coe_sInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (S : Set (NonUnitalSubalgebra R A)) :
                                  (sInf S) = sS, s
                                  theorem NonUnitalAlgebra.mem_sInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : Set (NonUnitalSubalgebra R A)} {x : A} :
                                  x sInf S pS, x p
                                  @[simp]
                                  theorem NonUnitalAlgebra.coe_iInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} {S : ιNonUnitalSubalgebra R A} :
                                  (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
                                  theorem NonUnitalAlgebra.mem_iInf {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} {S : ιNonUnitalSubalgebra R A} {x : A} :
                                  x ⨅ (i : ι), S i ∀ (i : ι), x S i
                                  theorem NonUnitalAlgebra.map_iInf {F : Type u_1} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Sort u_2} [Nonempty ι] [IsScalarTower R B B] [SMulCommClass R B B] (f : F) (hf : Function.Injective f) (S : ιNonUnitalSubalgebra R A) :
                                  NonUnitalSubalgebra.map f (⨅ (i : ι), S i) = ⨅ (i : ι), NonUnitalSubalgebra.map f (S i)
                                  @[simp]
                                  @[deprecated NonUnitalAlgebra.range_eq_top (since := "2024-11-11")]

                                  Alias of NonUnitalAlgebra.range_eq_top.

                                  The product of two non-unital subalgebras is a non-unital subalgebra.

                                  Equations
                                  • S.prod S₁ = { carrier := S ×ˢ S₁, add_mem' := , zero_mem' := , mul_mem' := , smul_mem' := }
                                  Instances For
                                    theorem NonUnitalSubalgebra.prod_mono {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] [IsScalarTower R B B] [SMulCommClass R B B] {S T : NonUnitalSubalgebra R A} {S₁ T₁ : NonUnitalSubalgebra R B} :
                                    S TS₁ T₁S.prod S₁ T.prod T₁
                                    @[simp]

                                    The map S → T when S is a non-unital subalgebra contained in the non-unital subalgebra T.

                                    This is the non-unital subalgebra version of Submodule.inclusion, or Subring.inclusion

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem NonUnitalSubalgebra.inclusion_mk {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (x : A) (hx : x S) :
                                      (inclusion h) x, hx = x,
                                      theorem NonUnitalSubalgebra.inclusion_right {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (x : T) (m : x S) :
                                      (inclusion h) x, m = x
                                      @[simp]
                                      theorem NonUnitalSubalgebra.inclusion_inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T U : NonUnitalSubalgebra R A} (hst : S T) (htu : T U) (x : S) :
                                      (inclusion htu) ((inclusion hst) x) = (inclusion ) x
                                      @[simp]
                                      theorem NonUnitalSubalgebra.coe_inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {S T : NonUnitalSubalgebra R A} (h : S T) (s : S) :
                                      ((inclusion h) s) = s
                                      theorem NonUnitalSubalgebra.coe_iSup_of_directed {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {S : ιNonUnitalSubalgebra R A} (dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) S) :
                                      (iSup S) = ⋃ (i : ι), (S i)
                                      noncomputable def NonUnitalSubalgebra.iSupLift {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] (K : ιNonUnitalSubalgebra R A) (dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K) (f : (i : ι) → (K i) →ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)) (T : NonUnitalSubalgebra R A) (hT : T = iSup K) :

                                      Define an algebra homomorphism on a directed supremum of non-unital subalgebras by defining it on each non-unital subalgebra, and proving that it agrees on the intersection of non-unital subalgebras.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (h : K i T) :
                                        (iSupLift K dir f hf T hT) ((inclusion h) x) = (f i) x
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_comp_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (h : K i T) :
                                        (iSupLift K dir f hf T hT).comp (inclusion h) = f i
                                        @[simp]
                                        theorem NonUnitalSubalgebra.iSupLift_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (hx : x T) :
                                        (iSupLift K dir f hf T hT) x, hx = (f i) x
                                        theorem NonUnitalSubalgebra.iSupLift_of_mem {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [NonUnitalNonAssocSemiring B] [Module R B] [IsScalarTower R A A] [SMulCommClass R A A] {ι : Type u_1} [Nonempty ι] {K : ιNonUnitalSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (inclusion h)} {T : NonUnitalSubalgebra R A} {hT : T = iSup K} {i : ι} (x : T) (hx : x K i) :
                                        (iSupLift K dir f hf T hT) x = (f i) x, hx
                                        theorem Set.smul_mem_center {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (r : R) {a : A} (ha : a center A) :

                                        The center of a non-unital algebra is the set of elements which commute with every element. They form a non-unital subalgebra.

                                        Equations
                                        Instances For
                                          theorem NonUnitalSubalgebra.mem_center_iff {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a : A} :
                                          a center R A ∀ (b : A), b * a = a * b
                                          @[simp]
                                          theorem Set.smul_mem_centralizer {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (r : R) {a : A} (ha : a s.centralizer) :

                                          The centralizer of a set as a non-unital subalgebra.

                                          Equations
                                          Instances For
                                            theorem NonUnitalSubalgebra.mem_centralizer_iff (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {z : A} :
                                            z centralizer R s gs, g * z = z * g
                                            theorem NonUnitalSubalgebra.centralizer_le (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] (s t : Set A) (h : s t) :
                                            theorem NonUnitalAlgebra.commute_of_mem_adjoin_of_forall_mem_commute {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a b : A} {s : Set A} (hb : b adjoin R s) (h : bs, Commute a b) :
                                            theorem NonUnitalAlgebra.commute_of_mem_adjoin_self {R : Type u_1} {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a b : A} (hb : b adjoin R {a}) :
                                            @[reducible, inline]
                                            abbrev NonUnitalAlgebra.adjoinNonUnitalCommSemiringOfComm (R : Type u_1) {A : Type u_2} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (hcomm : as, bs, a * b = b * a) :

                                            If all elements of s : Set A commute pairwise, then adjoin R s is a non-unital commutative semiring.

                                            See note [reducible non-instances].

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev NonUnitalAlgebra.adjoinNonUnitalCommRingOfComm (R : Type u_3) {A : Type u_4} [CommRing R] [NonUnitalRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} (hcomm : as, bs, a * b = b * a) :

                                              If all elements of s : Set A commute pairwise, then adjoin R s is a non-unital commutative ring.

                                              See note [reducible non-instances].

                                              Equations
                                              Instances For

                                                A non-unital subsemiring is a non-unital -subalgebra.

                                                Equations
                                                Instances For

                                                  A non-unital subring is a non-unital -subalgebra.

                                                  Equations
                                                  Instances For