Documentation

Mathlib.Algebra.Category.CoalgebraCat.Basic

The category of coalgebras over a commutative ring #

We introduce the bundled category CoalgebraCat of coalgebras over a fixed commutative ring R along with the forgetful functor to ModuleCat.

This file mimics Mathlib.LinearAlgebra.QuadraticForm.QuadraticModuleCat.

structure CoalgebraCat (R : Type u) [CommRing R] extends ModuleCat R :
Type (max u (v + 1))

The category of R-coalgebras.

Instances For
    def CoalgebraCat.of (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :

    The object in the category of R-coalgebras associated to an R-coalgebra.

    Equations
    Instances For
      @[simp]
      theorem CoalgebraCat.of_carrier (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      @[simp]
      theorem CoalgebraCat.of_isAddCommGroup (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (of R X).isAddCommGroup = inst✝
      @[simp]
      theorem CoalgebraCat.of_isModule (R : Type u) [CommRing R] (X : Type v) [AddCommGroup X] [Module R X] [Coalgebra R X] :
      (of R X).isModule = inst✝
      structure CoalgebraCat.Hom {R : Type u} [CommRing R] (V W : CoalgebraCat R) :

      A type alias for CoalgHom to avoid confusion between the categorical and algebraic spellings of composition.

      Instances For
        theorem CoalgebraCat.Hom.ext {R : Type u} {inst✝ : CommRing R} {V W : CoalgebraCat R} {x y : V.Hom W} (toCoalgHom : x.toCoalgHom = y.toCoalgHom) :
        x = y
        theorem CoalgebraCat.hom_ext {R : Type u} [CommRing R] {M N : CoalgebraCat R} (f g : M N) (h : f.toCoalgHom = g.toCoalgHom) :
        f = g
        @[reducible, inline]
        abbrev CoalgebraCat.ofHom {R : Type u} [CommRing R] {X Y : Type v} [AddCommGroup X] [Module R X] [AddCommGroup Y] [Module R Y] [Coalgebra R X] [Coalgebra R Y] (f : X →ₗc[R] Y) :
        of R X of R Y

        Typecheck a CoalgHom as a morphism in CoalgebraCat R.

        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Equations
          • One or more equations did not get rendered due to their size.

          Build an isomorphism in the category CoalgebraCat R from a CoalgEquiv.

          Equations
          Instances For

            Build a CoalgEquiv from an isomorphism in the category CoalgebraCat R.

            Equations
            Instances For