The exterior powers as functors on the category of modules #
In this file, given M : ModuleCat R
and n : ℕ
, we define M.exteriorPower n : ModuleCat R
,
and this extends to a functor ModuleCat.exteriorPower.functor : ModuleCat R ⥤ ModuleCat R
.
The exterior power of an object in ModuleCat R
.
Instances For
instance
ModuleCat.instFunLikeAlternatingMapForallFinCarrier
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(N : ModuleCat R)
(n : ℕ)
:
FunLike (M.AlternatingMap N n) (Fin n → ↑M) ↑N
def
ModuleCat.AlternatingMap.postcomp
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{N : ModuleCat R}
{n : ℕ}
(φ : M.AlternatingMap N n)
{N' : ModuleCat R}
(g : N ⟶ N')
:
M.AlternatingMap N' n
The postcomposition of an alternating map by a linear map.
Instances For
def
ModuleCat.exteriorPower.mk
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{n : ℕ}
:
M.AlternatingMap (M.exteriorPower n) n
Constructor for elements in M.exteriorPower n
when M
is an object of ModuleCat R
and n : ℕ
.
Equations
Instances For
theorem
ModuleCat.exteriorPower.hom_ext
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{N : ModuleCat R}
{n : ℕ}
{f g : M.exteriorPower n ⟶ N}
(h : mk.postcomp f = mk.postcomp g)
:
noncomputable def
ModuleCat.exteriorPower.desc
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{n : ℕ}
{N : ModuleCat R}
(φ : M.AlternatingMap N n)
:
The morphism M.exteriorPower n ⟶ N
induced by an alternating map.
Equations
Instances For
@[simp]
noncomputable def
ModuleCat.exteriorPower.map
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(f : M ⟶ N)
(n : ℕ)
:
The morphism M.exteriorPower n ⟶ N.exteriorPower n
induced by a morphism M ⟶ N
in ModuleCat R
.
Equations
Instances For
noncomputable def
ModuleCat.exteriorPower.functor
(R : Type u)
[CommRing R]
(n : ℕ)
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat R)
The functor ModuleCat R ⥤ ModuleCat R
which sends a module to its
n
th exterior power.
Equations
- One or more equations did not get rendered due to their size.