Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf

Presheaves of modules over a presheaf of rings. #

Given a presheaf of rings R : Cᵒᵖ ⥤ RingCat, we define the category PresheafOfModules R. An object M : PresheafOfModules R consists of a family of modules M.obj X : ModuleCat (R.obj X) for all X : Cᵒᵖ, together with the data, for all f : X ⟶ Y, of a functorial linear map M.map f from M.obj X to the restriction of scalars of M.obj Y via R.map f.

Future work #

structure PresheafOfModules {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] (R : CategoryTheory.Functor Cᵒᵖ RingCat) :
Type (max (max (max u u₁) (v + 1)) v₁)

A presheaf of modules over R : Cᵒᵖ ⥤ RingCat consists of family of objects obj X : ModuleCat (R.obj X) for all X : Cᵒᵖ together with functorial maps obj X ⟶ (ModuleCat.restrictScalars (R.map f)).obj (obj Y) for all f : X ⟶ Y in Cᵒᵖ.

A morphism of presheaves of modules consists of a family of linear maps which satisfy the naturality condition.

theorem PresheafOfModules.Hom.ext {C : Type u₁} {inst✝ : CategoryTheory.Category.{v₁, u₁} C} {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M₁ M₂ : PresheafOfModules R} {x y : M₁.Hom M₂} (app : x.app = y.app) :
x = y
def PresheafOfModules.isoMk {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M₁ M₂ : PresheafOfModules R} (app : (X : Cᵒᵖ) → M₁.obj X M₂.obj X) (naturality : ∀ ⦃X Y : Cᵒᵖ⦄ (f : X Y), CategoryTheory.CategoryStruct.comp (M₁.map f) ((ModuleCat.restrictScalars (RingCat.Hom.hom (R.map f))).map (app Y).hom) = CategoryTheory.CategoryStruct.comp (app X).hom (M₂.map f) := by aesop_cat) :

Constructor for isomorphisms in the category of presheaves of modules.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem PresheafOfModules.isoMk_inv_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M₁ M₂ : PresheafOfModules R} (app : (X : Cᵒᵖ) → M₁.obj X M₂.obj X) (naturality : ∀ ⦃X Y : Cᵒᵖ⦄ (f : X Y), CategoryTheory.CategoryStruct.comp (M₁.map f) ((ModuleCat.restrictScalars (RingCat.Hom.hom (R.map f))).map (app Y).hom) = CategoryTheory.CategoryStruct.comp (app X).hom (M₂.map f) := by aesop_cat) (X : Cᵒᵖ) :
(isoMk app naturality).inv.app X = (app X).inv
@[simp]
theorem PresheafOfModules.isoMk_hom_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M₁ M₂ : PresheafOfModules R} (app : (X : Cᵒᵖ) → M₁.obj X M₂.obj X) (naturality : ∀ ⦃X Y : Cᵒᵖ⦄ (f : X Y), CategoryTheory.CategoryStruct.comp (M₁.map f) ((ModuleCat.restrictScalars (RingCat.Hom.hom (R.map f))).map (app Y).hom) = CategoryTheory.CategoryStruct.comp (app X).hom (M₂.map f) := by aesop_cat) (X : Cᵒᵖ) :
(isoMk app naturality).hom.app X = (app X).hom

The underlying presheaf of abelian groups of a presheaf of modules.

Equations
  • One or more equations did not get rendered due to their size.

The forgetful functor PresheafOfModules R ⥤ Cᵒᵖ ⥤ Ab.

Equations
  • One or more equations did not get rendered due to their size.

The object in PresheafOfModules R that is obtained from M : Cᵒᵖ ⥤ Ab.{v} such that for all X : Cᵒᵖ, M.obj X is a R.obj X module, in such a way that the restriction maps are semilinear. (This constructor should be used only in cases when the preferred constructor PresheafOfModules.mk is not as convenient as this one.)

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem PresheafOfModules.ofPresheaf_map {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} (M : CategoryTheory.Functor Cᵒᵖ Ab) [(X : Cᵒᵖ) → Module (R.obj X) (M.obj X)] (map_smul : ∀ ⦃X Y : Cᵒᵖ⦄ (f : X Y) (r : (R.obj X)) (m : (M.obj X)), (CategoryTheory.ConcreteCategory.hom (M.map f)) (r m) = (CategoryTheory.ConcreteCategory.hom (R.map f)) r (CategoryTheory.ConcreteCategory.hom (M.map f)) m) {X Y : Cᵒᵖ} (f : X Y) :
(ofPresheaf M map_smul).map f = ModuleCat.ofHom { toFun := fun (x : (M.obj X)) => (CategoryTheory.ConcreteCategory.hom (M.map f)) x, map_add' := , map_smul' := }
@[simp]

The morphism of presheaves of modules M₁ ⟶ M₂ given by a morphism of abelian presheaves M₁.presheaf ⟶ M₂.presheaf which satisfy a suitable linearity condition.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem PresheafOfModules.homMk_app {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M₁ M₂ : PresheafOfModules R} (φ : M₁.presheaf M₂.presheaf) (hφ : ∀ (X : Cᵒᵖ) (r : (R.obj X)) (m : (M₁.obj X)), (CategoryTheory.ConcreteCategory.hom (φ.app X)) (r m) = r (CategoryTheory.ConcreteCategory.hom (φ.app X)) m) (X : Cᵒᵖ) :
(homMk φ ).app X = ModuleCat.ofHom { toFun := (CategoryTheory.ConcreteCategory.hom (φ.app X)), map_add' := , map_smul' := }
Equations
Equations
Equations
Equations

Evaluation on an object X gives a functor PresheafOfModules R ⥤ ModuleCat (R.obj X).

Equations

The restriction natural transformation on presheaves of modules, considered as linear maps to restriction of scalars.

Equations

The obvious free presheaf of modules of rank 1.

Equations
  • One or more equations did not get rendered due to their size.

The type of sections of a presheaf of modules.

Equations
@[reducible, inline]

Given a presheaf of modules M, s : M.sections and X : Cᵒᵖ, this is the induced element in M.obj X.

Equations

Constructor for sections of a presheaf of modules.

Equations
@[simp]
theorem PresheafOfModules.sectionsMk_coe {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {R : CategoryTheory.Functor Cᵒᵖ RingCat} {M : PresheafOfModules R} (s : (X : Cᵒᵖ) → (M.obj X)) (hs : ∀ ⦃X Y : Cᵒᵖ⦄ (f : X Y), (CategoryTheory.ConcreteCategory.hom (M.map f)) (s X) = s Y) (X : Cᵒᵖ) :
(sectionsMk s hs) X = s X

The map M.sections → N.sections induced by a morphisms M ⟶ N of presheaves of modules.

Equations

The bijection (unit R ⟶ M) ≃ M.sections for M : PresheafOfModules R.

Equations
  • One or more equations did not get rendered due to their size.

PresheafOfModules R ⥤ Cᵒᵖ ⥤ ModuleCat (R.obj X) when X is initial #

When X is initial, we have Module (R.obj X) (M.obj c) for any c : Cᵒᵖ.

Implementation of the functor PresheafOfModules R ⥤ Cᵒᵖ ⥤ ModuleCat (R.obj X) when X is initial.

The functor is implemented as, on object level M ↦ (c ↦ M(c)) where the R(X)-module structure on M(c) is given by restriction of scalars along the unique morphism R(c) ⟶ R(X); and on morphism level (f : M ⟶ N) ↦ (c ↦ f(c)).

Equations
  • One or more equations did not get rendered due to their size.

Implementation of the functor PresheafOfModules R ⥤ Cᵒᵖ ⥤ ModuleCat (R.obj X) when X is initial.

The functor is implemented as, on object level M ↦ (c ↦ M(c)) where the R(X)-module structure on M(c) is given by restriction of scalars along the unique morphism R(c) ⟶ R(X); and on morphism level (f : M ⟶ N) ↦ (c ↦ f(c)).

Equations
  • One or more equations did not get rendered due to their size.

The forgetful functor from presheaves of modules over a presheaf of rings R to presheaves of R(X)-modules where X is an initial object.

The functor is implemented as, on object level M ↦ (c ↦ M(c)) where the R(X)-module structure on M(c) is given by restriction of scalars along the unique morphism R(c) ⟶ R(X); and on morphism level (f : M ⟶ N) ↦ (c ↦ f(c)).

Equations
  • One or more equations did not get rendered due to their size.