Under CommRingCat
#
In this file we provide basic API for Under R
when R : CommRingCat
. Under R
is
(equivalent to) the category of commutative R
-algebras. For not necessarily commutative
algebras, use AlgebraCat R
instead.
instance
CommRingCat.instCoeSortUnderType
{R : CommRingCat}
:
CoeSort (CategoryTheory.Under R) (Type u)
Equations
- CommRingCat.instCoeSortUnderType = { coe := fun (A : CategoryTheory.Under R) => ↑A.right }
Turn a morphism in Under R
into an algebra homomorphism.
Equations
- CommRingCat.toAlgHom f = { toRingHom := CommRingCat.Hom.hom f.right, commutes' := ⋯ }
Instances For
@[simp]
theorem
CommRingCat.toAlgHom_apply
{R : CommRingCat}
{A B : CategoryTheory.Under R}
(f : A ⟶ B)
(a : ↑A.right)
:
Make an object of Under R
from an R
-algebra.
Instances For
@[simp]
def
AlgHom.toUnder
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (↑R) A]
[Algebra (↑R) B]
(f : A →ₐ[↑R] B)
:
Make a morphism in Under R
from an algebra map.
Instances For
def
AlgEquiv.toUnder
{R : CommRingCat}
{A B : Type u}
[CommRing A]
[CommRing B]
[Algebra (↑R) A]
[Algebra (↑R) B]
(f : A ≃ₐ[↑R] B)
:
Make an isomorphism in Under R
from an algebra isomorphism.
Equations
Instances For
The base change functor A ↦ S ⊗[R] A
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommRingCat.tensorProd_map_right
(R S : CommRingCat)
[Algebra ↑R ↑S]
{X✝ Y✝ : CategoryTheory.Under R}
(f : X✝ ⟶ Y✝)
:
def
CommRingCat.tensorProdObjIsoPushoutObj
{R : CommRingCat}
(S : CommRingCat)
[Algebra ↑R ↑S]
(A : CategoryTheory.Under R)
:
The natural isomorphism S ⊗[R] A ≅ pushout A.hom (algebraMap R S)
in Under S
.
Instances For
@[simp]
theorem
CommRingCat.pushout_inl_tensorProdObjIsoPushoutObj_inv_right
{R S : CommRingCat}
[Algebra ↑R ↑S]
(A : CategoryTheory.Under R)
:
@[simp]
theorem
CommRingCat.pushout_inr_tensorProdObjIsoPushoutObj_inv_right
{R S : CommRingCat}
[Algebra ↑R ↑S]
(A : CategoryTheory.Under R)
:
A ↦ S ⊗[R] A
is naturally isomorphic to A ↦ pushout A.hom (algebraMap R S)
.