Lemmas about commuting pairs of elements involving units. #
theorem
AddCommute.addUnits_neg_right
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
:
AddCommute a ↑u → AddCommute a ↑(-u)
@[simp]
theorem
AddCommute.addUnits_neg_left
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
:
AddCommute (↑u) a → AddCommute (↑(-u)) a
@[simp]
theorem
AddCommute.addUnits_val
{M : Type u_1}
[AddMonoid M]
{u₁ u₂ : AddUnits M}
:
AddCommute u₁ u₂ → AddCommute ↑u₁ ↑u₂
theorem
AddCommute.addUnits_of_val
{M : Type u_1}
[AddMonoid M]
{u₁ u₂ : AddUnits M}
:
AddCommute ↑u₁ ↑u₂ → AddCommute u₁ u₂
@[simp]
@[simp]
def
AddUnits.leftOfAdd
{M : Type u_1}
[AddMonoid M]
(u : AddUnits M)
(a b : M)
(hu : a + b = ↑u)
(hc : AddCommute a b)
:
AddUnits M
If the sum of two commuting elements is an additive unit, then the left summand is an additive unit.
Instances For
def
AddUnits.rightOfAdd
{M : Type u_1}
[AddMonoid M]
(u : AddUnits M)
(a b : M)
(hu : a + b = ↑u)
(hc : AddCommute a b)
:
AddUnits M
If the sum of two commuting elements is an additive unit, then the right summand is an additive unit.
Equations
Instances For
@[simp]
@[simp]
@[simp]
theorem
AddCommute.addUnits_zsmul_right
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
(h : AddCommute a ↑u)
(m : ℤ)
:
AddCommute a ↑(m • u)
@[simp]
theorem
AddCommute.addUnits_zsmul_left
{M : Type u_1}
[AddMonoid M]
{a : M}
{u : AddUnits M}
(h : AddCommute (↑u) a)
(m : ℤ)
:
AddCommute (↑(m • u)) a
If a ^ n = 1
, n ≠ 0
, then a
is a unit.