Documentation

Mathlib.Algebra.Group.Subgroup.Lattice

Lattice structure of subgroups #

We prove subgroups of a group form a complete lattice.

There are also theorems about the subgroups generated by an element or a subset of a group, defined both inductively and as the infimum of the set of subgroups containing a given element/subset.

Special thanks goes to Amelia Livingston and Yury Kudryashov for their help and inspiration.

Main definitions #

Notation used here:

Definitions in the file:

Implementation notes #

Subgroup inclusion is denoted rather than , although is defined as membership of a subgroup's underlying set.

Tags #

subgroup, subgroups

Conversion to/from Additive/Multiplicative #

Subgroups of a group G are isomorphic to additive subgroups of Additive G.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    Additive subgroup of an additive group Additive G are isomorphic to subgroup of G.

    Equations
    Instances For

      Additive subgroups of an additive group A are isomorphic to subgroups of Multiplicative A.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[reducible, inline]

        Subgroups of an additive group Multiplicative A are isomorphic to additive subgroups of A.

        Equations
        Instances For
          instance Subgroup.instTop {G : Type u_1} [Group G] :

          The subgroup G of the group G.

          Equations
          instance AddSubgroup.instTop {G : Type u_1} [AddGroup G] :

          The AddSubgroup G of the AddGroup G.

          Equations
          def Subgroup.topEquiv {G : Type u_1} [Group G] :

          The top subgroup is isomorphic to the group.

          This is the group version of Submonoid.topEquiv.

          Equations
          Instances For

            The top additive subgroup is isomorphic to the additive group.

            This is the additive group version of AddSubmonoid.topEquiv.

            Equations
            Instances For
              @[simp]
              @[simp]
              theorem Subgroup.topEquiv_apply {G : Type u_1} [Group G] (x : ) :
              topEquiv x = x
              @[simp]
              theorem AddSubgroup.topEquiv_apply {G : Type u_1} [AddGroup G] (x : ) :
              topEquiv x = x
              @[simp]
              theorem Subgroup.topEquiv_symm_apply_coe {G : Type u_1} [Group G] (x : G) :
              instance Subgroup.instBot {G : Type u_1} [Group G] :

              The trivial subgroup {1} of a group G.

              Equations
              instance AddSubgroup.instBot {G : Type u_1} [AddGroup G] :

              The trivial AddSubgroup {0} of an AddGroup G.

              Equations
              instance Subgroup.instInhabited {G : Type u_1} [Group G] :
              Equations
              @[simp]
              theorem Subgroup.mem_bot {G : Type u_1} [Group G] {x : G} :
              @[simp]
              theorem AddSubgroup.mem_bot {G : Type u_1} [AddGroup G] {x : G} :
              @[simp]
              theorem Subgroup.mem_top {G : Type u_1} [Group G] (x : G) :
              @[simp]
              theorem AddSubgroup.mem_top {G : Type u_1} [AddGroup G] (x : G) :
              @[simp]
              theorem Subgroup.coe_top {G : Type u_1} [Group G] :
              @[simp]
              @[simp]
              theorem Subgroup.coe_bot {G : Type u_1} [Group G] :
              @[simp]
              theorem AddSubgroup.coe_bot {G : Type u_1} [AddGroup G] :
              Equations
              Equations
              theorem Subgroup.eq_bot_iff_forall {G : Type u_1} [Group G] (H : Subgroup G) :
              H = xH, x = 1
              theorem AddSubgroup.eq_bot_iff_forall {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = xH, x = 0
              @[simp]
              theorem Subgroup.nontrivial_iff_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
              Nontrivial H xH, x 1
              theorem Subgroup.exists_ne_one_of_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) [Nontrivial H] :
              xH, x 1
              theorem AddSubgroup.exists_ne_zero_of_nontrivial {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [Nontrivial H] :
              xH, x 0
              theorem Subgroup.bot_or_nontrivial {G : Type u_1} [Group G] (H : Subgroup G) :

              A subgroup is either the trivial subgroup or nontrivial.

              A subgroup is either the trivial subgroup or nontrivial.

              theorem Subgroup.bot_or_exists_ne_one {G : Type u_1} [Group G] (H : Subgroup G) :
              H = xH, x 1

              A subgroup is either the trivial subgroup or contains a non-identity element.

              theorem AddSubgroup.bot_or_exists_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = xH, x 0

              A subgroup is either the trivial subgroup or contains a nonzero element.

              theorem Subgroup.ne_bot_iff_exists_ne_one {G : Type u_1} [Group G] {H : Subgroup G} :
              H ∃ (a : H), a 1
              theorem AddSubgroup.ne_bot_iff_exists_ne_zero {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
              H ∃ (a : H), a 0
              instance Subgroup.instMin {G : Type u_1} [Group G] :

              The inf of two subgroups is their intersection.

              Equations
              instance AddSubgroup.instMin {G : Type u_1} [AddGroup G] :

              The inf of two AddSubgroups is their intersection.

              Equations
              @[simp]
              theorem Subgroup.coe_inf {G : Type u_1} [Group G] (p p' : Subgroup G) :
              (p p') = p p'
              @[simp]
              theorem AddSubgroup.coe_inf {G : Type u_1} [AddGroup G] (p p' : AddSubgroup G) :
              (p p') = p p'
              @[simp]
              theorem Subgroup.mem_inf {G : Type u_1} [Group G] {p p' : Subgroup G} {x : G} :
              @[simp]
              theorem AddSubgroup.mem_inf {G : Type u_1} [AddGroup G] {p p' : AddSubgroup G} {x : G} :
              instance Subgroup.instInfSet {G : Type u_1} [Group G] :
              Equations
              Equations
              @[simp]
              theorem Subgroup.coe_sInf {G : Type u_1} [Group G] (H : Set (Subgroup G)) :
              (sInf H) = sH, s
              @[simp]
              theorem AddSubgroup.coe_sInf {G : Type u_1} [AddGroup G] (H : Set (AddSubgroup G)) :
              (sInf H) = sH, s
              @[simp]
              theorem Subgroup.mem_sInf {G : Type u_1} [Group G] {S : Set (Subgroup G)} {x : G} :
              x sInf S pS, x p
              @[simp]
              theorem AddSubgroup.mem_sInf {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {x : G} :
              x sInf S pS, x p
              theorem Subgroup.mem_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} {x : G} :
              x ⨅ (i : ι), S i ∀ (i : ι), x S i
              theorem AddSubgroup.mem_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} {x : G} :
              x ⨅ (i : ι), S i ∀ (i : ι), x S i
              @[simp]
              theorem Subgroup.coe_iInf {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} :
              (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
              @[simp]
              theorem AddSubgroup.coe_iInf {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} :
              (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)

              Subgroups of a group form a complete lattice.

              Equations

              The AddSubgroups of an AddGroup form a complete lattice.

              Equations
              theorem Subgroup.mem_sup_left {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
              x Sx S T
              theorem AddSubgroup.mem_sup_left {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
              x Sx S T
              theorem Subgroup.mem_sup_right {G : Type u_1} [Group G] {S T : Subgroup G} {x : G} :
              x Tx S T
              theorem AddSubgroup.mem_sup_right {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x : G} :
              x Tx S T
              theorem Subgroup.mul_mem_sup {G : Type u_1} [Group G] {S T : Subgroup G} {x y : G} (hx : x S) (hy : y T) :
              theorem AddSubgroup.add_mem_sup {G : Type u_1} [AddGroup G] {S T : AddSubgroup G} {x y : G} (hx : x S) (hy : y T) :
              theorem Subgroup.mem_iSup_of_mem {G : Type u_1} [Group G] {ι : Sort u_2} {S : ιSubgroup G} (i : ι) {x : G} :
              x S ix iSup S
              theorem AddSubgroup.mem_iSup_of_mem {G : Type u_1} [AddGroup G] {ι : Sort u_2} {S : ιAddSubgroup G} (i : ι) {x : G} :
              x S ix iSup S
              theorem Subgroup.mem_sSup_of_mem {G : Type u_1} [Group G] {S : Set (Subgroup G)} {s : Subgroup G} (hs : s S) {x : G} :
              x sx sSup S
              theorem AddSubgroup.mem_sSup_of_mem {G : Type u_1} [AddGroup G] {S : Set (AddSubgroup G)} {s : AddSubgroup G} (hs : s S) {x : G} :
              x sx sSup S
              Equations
              theorem Subgroup.eq_top_iff' {G : Type u_1} [Group G] (H : Subgroup G) :
              H = ∀ (x : G), x H
              theorem AddSubgroup.eq_top_iff' {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
              H = ∀ (x : G), x H
              def Subgroup.closure {G : Type u_1} [Group G] (k : Set G) :

              The Subgroup generated by a set.

              Equations
              Instances For
                def AddSubgroup.closure {G : Type u_1} [AddGroup G] (k : Set G) :

                The AddSubgroup generated by a set

                Equations
                Instances For
                  theorem Subgroup.mem_closure {G : Type u_1} [Group G] {k : Set G} {x : G} :
                  x closure k ∀ (K : Subgroup G), k Kx K
                  theorem AddSubgroup.mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {x : G} :
                  x closure k ∀ (K : AddSubgroup G), k Kx K
                  @[simp]
                  theorem Subgroup.subset_closure {G : Type u_1} [Group G] {k : Set G} :
                  k (closure k)

                  The subgroup generated by a set includes the set.

                  @[simp]
                  theorem AddSubgroup.subset_closure {G : Type u_1} [AddGroup G] {k : Set G} :
                  k (closure k)

                  The AddSubgroup generated by a set includes the set.

                  theorem Subgroup.not_mem_of_not_mem_closure {G : Type u_1} [Group G] {k : Set G} {P : G} (hP : Pclosure k) :
                  Pk
                  theorem AddSubgroup.not_mem_of_not_mem_closure {G : Type u_1} [AddGroup G] {k : Set G} {P : G} (hP : Pclosure k) :
                  Pk
                  @[simp]
                  theorem Subgroup.closure_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} :
                  closure k K k K

                  A subgroup K includes closure k if and only if it includes k.

                  @[simp]
                  theorem AddSubgroup.closure_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} :
                  closure k K k K

                  An additive subgroup K includes closure k if and only if it includes k

                  theorem Subgroup.closure_eq_of_le {G : Type u_1} [Group G] (K : Subgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
                  theorem AddSubgroup.closure_eq_of_le {G : Type u_1} [AddGroup G] (K : AddSubgroup G) {k : Set G} (h₁ : k K) (h₂ : K closure k) :
                  theorem Subgroup.closure_induction {G : Type u_1} [Group G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 1 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x * y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp x⁻¹ ) {x : G} (hx : x closure k) :
                  p x hx

                  An induction principle for closure membership. If p holds for 1 and all elements of k, and is preserved under multiplication and inverse, then p holds for all elements of the closure of k.

                  See also Subgroup.closure_induction_left and Subgroup.closure_induction_right for versions that only require showing p is preserved by multiplication by elements in k.

                  theorem AddSubgroup.closure_induction {G : Type u_1} [AddGroup G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 0 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x + y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp (-x) ) {x : G} (hx : x closure k) :
                  p x hx

                  An induction principle for additive closure membership. If p holds for 0 and all elements of k, and is preserved under addition and inverses, then p holds for all elements of the additive closure of k.

                  See also AddSubgroup.closure_induction_left and AddSubgroup.closure_induction_left for versions that only require showing p is preserved by addition by elements in k.

                  @[deprecated Subgroup.closure_induction (since := "2024-10-10")]
                  theorem Subgroup.closure_induction' {G : Type u_1} [Group G] {k : Set G} {p : (g : G) → g closure kProp} (mem : ∀ (x : G) (hx : x k), p x ) (one : p 1 ) (mul : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x hxp y hyp (x * y) ) (inv : ∀ (x : G) (hx : x closure k), p x hxp x⁻¹ ) {x : G} (hx : x closure k) :
                  p x hx

                  Alias of Subgroup.closure_induction.


                  An induction principle for closure membership. If p holds for 1 and all elements of k, and is preserved under multiplication and inverse, then p holds for all elements of the closure of k.

                  See also Subgroup.closure_induction_left and Subgroup.closure_induction_right for versions that only require showing p is preserved by multiplication by elements in k.

                  theorem Subgroup.closure_induction₂ {G : Type u_1} [Group G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 1 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 1 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x * y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y * z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x⁻¹ y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x y⁻¹ hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
                  p x y hx hy

                  An induction principle for closure membership for predicates with two arguments.

                  theorem AddSubgroup.closure_induction₂ {G : Type u_1} [AddGroup G] {k : Set G} {p : (x y : G) → x closure ky closure kProp} (mem : ∀ (x y : G) (hx : x k) (hy : y k), p x y ) (one_left : ∀ (x : G) (hx : x closure k), p 0 x hx) (one_right : ∀ (x : G) (hx : x closure k), p x 0 hx ) (mul_left : ∀ (x y z : G) (hx : x closure k) (hy : y closure k) (hz : z closure k), p x z hx hzp y z hy hzp (x + y) z hz) (mul_right : ∀ (y z x : G) (hy : y closure k) (hz : z closure k) (hx : x closure k), p x y hx hyp x z hx hzp x (y + z) hx ) (inv_left : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp (-x) y hy) (inv_right : ∀ (x y : G) (hx : x closure k) (hy : y closure k), p x y hx hyp x (-y) hx ) {x y : G} (hx : x closure k) (hy : y closure k) :
                  p x y hx hy

                  An induction principle for additive closure membership, for predicates with two arguments.

                  closure forms a Galois insertion with the coercion to set.

                  Equations
                  Instances For

                    closure forms a Galois insertion with the coercion to set.

                    Equations
                    Instances For
                      theorem Subgroup.closure_mono {G : Type u_1} [Group G] ⦃h k : Set G (h' : h k) :

                      Subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k.

                      theorem AddSubgroup.closure_mono {G : Type u_1} [AddGroup G] ⦃h k : Set G (h' : h k) :

                      Additive subgroup closure of a set is monotone in its argument: if h ⊆ k, then closure h ≤ closure k

                      @[simp]
                      theorem Subgroup.closure_eq {G : Type u_1} [Group G] (K : Subgroup G) :
                      closure K = K

                      Closure of a subgroup K equals K.

                      @[simp]
                      theorem AddSubgroup.closure_eq {G : Type u_1} [AddGroup G] (K : AddSubgroup G) :
                      closure K = K

                      Additive closure of an additive subgroup K equals K

                      @[simp]
                      @[simp]
                      theorem Subgroup.closure_union {G : Type u_1} [Group G] (s t : Set G) :
                      theorem Subgroup.sup_eq_closure {G : Type u_1} [Group G] (H H' : Subgroup G) :
                      theorem Subgroup.closure_iUnion {G : Type u_1} [Group G] {ι : Sort u_2} (s : ιSet G) :
                      closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
                      theorem AddSubgroup.closure_iUnion {G : Type u_1} [AddGroup G] {ι : Sort u_2} (s : ιSet G) :
                      closure (⋃ (i : ι), s i) = ⨆ (i : ι), closure (s i)
                      @[simp]
                      theorem Subgroup.closure_eq_bot_iff {G : Type u_1} [Group G] {k : Set G} :
                      @[simp]
                      theorem Subgroup.iSup_eq_closure {G : Type u_1} [Group G] {ι : Sort u_2} (p : ιSubgroup G) :
                      ⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
                      theorem AddSubgroup.iSup_eq_closure {G : Type u_1} [AddGroup G] {ι : Sort u_2} (p : ιAddSubgroup G) :
                      ⨆ (i : ι), p i = closure (⋃ (i : ι), (p i))
                      theorem Subgroup.mem_closure_singleton {G : Type u_1} [Group G] {x y : G} :
                      y closure {x} ∃ (n : ), x ^ n = y

                      The subgroup generated by an element of a group equals the set of integer number powers of the element.

                      theorem AddSubgroup.mem_closure_singleton {G : Type u_1} [AddGroup G] {x y : G} :
                      y closure {x} ∃ (n : ), n x = y

                      The AddSubgroup generated by an element of an AddGroup equals the set of natural number multiples of the element.

                      @[simp]
                      theorem Subgroup.mem_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [hι : Nonempty ι] {K : ιSubgroup G} (hK : Directed (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
                      x iSup K ∃ (i : ι), x K i
                      theorem AddSubgroup.mem_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [hι : Nonempty ι] {K : ιAddSubgroup G} (hK : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
                      x iSup K ∃ (i : ι), x K i
                      theorem Subgroup.coe_iSup_of_directed {G : Type u_1} [Group G] {ι : Sort u_2} [Nonempty ι] {S : ιSubgroup G} (hS : Directed (fun (x1 x2 : Subgroup G) => x1 x2) S) :
                      (⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
                      theorem AddSubgroup.coe_iSup_of_directed {G : Type u_1} [AddGroup G] {ι : Sort u_2} [Nonempty ι] {S : ιAddSubgroup G} (hS : Directed (fun (x1 x2 : AddSubgroup G) => x1 x2) S) :
                      (⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
                      theorem Subgroup.mem_sSup_of_directedOn {G : Type u_1} [Group G] {K : Set (Subgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : Subgroup G) => x1 x2) K) {x : G} :
                      x sSup K sK, x s
                      theorem AddSubgroup.mem_sSup_of_directedOn {G : Type u_1} [AddGroup G] {K : Set (AddSubgroup G)} (Kne : K.Nonempty) (hK : DirectedOn (fun (x1 x2 : AddSubgroup G) => x1 x2) K) {x : G} :
                      x sSup K sK, x s
                      theorem Subgroup.mem_sup {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
                      x s t ys, zt, y * z = x
                      theorem AddSubgroup.mem_sup {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
                      x s t ys, zt, y + z = x
                      theorem Subgroup.mem_sup' {C : Type u_2} [CommGroup C] {s t : Subgroup C} {x : C} :
                      x s t ∃ (y : s) (z : t), y * z = x
                      theorem AddSubgroup.mem_sup' {C : Type u_2} [AddCommGroup C] {s t : AddSubgroup C} {x : C} :
                      x s t ∃ (y : s) (z : t), y + z = x
                      theorem Subgroup.mem_closure_pair {C : Type u_2} [CommGroup C] {x y z : C} :
                      z closure {x, y} ∃ (m : ) (n : ), x ^ m * y ^ n = z
                      theorem AddSubgroup.mem_closure_pair {C : Type u_2} [AddCommGroup C] {x y z : C} :
                      z closure {x, y} ∃ (m : ) (n : ), m x + n y = z
                      theorem Subgroup.disjoint_def {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 1
                      theorem AddSubgroup.disjoint_def {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x : G}, x H₁x H₂x = 0
                      theorem Subgroup.disjoint_def' {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 1
                      theorem AddSubgroup.disjoint_def' {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x = yx = 0
                      theorem Subgroup.disjoint_iff_mul_eq_one {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x * y = 1x = 1 y = 1
                      theorem AddSubgroup.disjoint_iff_add_eq_zero {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} :
                      Disjoint H₁ H₂ ∀ {x y : G}, x H₁y H₂x + y = 0x = 0 y = 0
                      theorem Subgroup.mul_injective_of_disjoint {G : Type u_1} [Group G] {H₁ H₂ : Subgroup G} (h : Disjoint H₁ H₂) :
                      Function.Injective fun (g : H₁ × H₂) => g.1 * g.2
                      theorem AddSubgroup.add_injective_of_disjoint {G : Type u_1} [AddGroup G] {H₁ H₂ : AddSubgroup G} (h : Disjoint H₁ H₂) :
                      Function.Injective fun (g : H₁ × H₂) => g.1 + g.2