The total complex of a bicomplex #
Given a preadditive category C
, two complex shapes c₁ : ComplexShape I₁
,
c₂ : ComplexShape I₂
, a bicomplex K : HomologicalComplex₂ C c₁ c₂
,
and a third complex shape c₁₂ : ComplexShape I₁₂
equipped
with [TotalComplexShape c₁ c₂ c₁₂]
, we construct the total complex
K.total c₁₂ : HomologicalComplex C c₁₂
.
In particular, if c := ComplexShape.up ℤ
and K : HomologicalComplex₂ c c
, then for any
n : ℤ
, (K.total c).X n
identifies to the coproduct of the (K.X p).X q
such that
p + q = n
, and the differential on (K.total c).X n
is induced by the sum of horizontal
differentials (K.X p).X q ⟶ (K.X (p + 1)).X q
and (-1) ^ p
times the vertical
differentials (K.X p).X q ⟶ (K.X p).X (q + 1)
.
A bicomplex has a total bicomplex if for any i₁₂ : I₁₂
, the coproduct
of the objects (K.X i₁).X i₂
such that ComplexShape.π c₁ c₂ c₁₂ ⟨i₁, i₂⟩ = i₁₂
exists.
Equations
Instances For
The horizontal differential in the total complex on a given summand.
Equations
- K.d₁ c₁₂ i₁ i₂ i₁₂ = c₁.ε₁ c₂ c₁₂ (i₁, i₂) • CategoryTheory.CategoryStruct.comp ((K.d i₁ (c₁.next i₁)).f i₂) (K.toGradedObject.ιMapObjOrZero (c₁.π c₂ c₁₂) (c₁.next i₁, i₂) i₁₂)
Instances For
The vertical differential in the total complex on a given summand.
Equations
- K.d₂ c₁₂ i₁ i₂ i₁₂ = c₁.ε₂ c₂ c₁₂ (i₁, i₂) • CategoryTheory.CategoryStruct.comp ((K.X i₁).d i₂ (c₂.next i₂)) (K.toGradedObject.ιMapObjOrZero (c₁.π c₂ c₁₂) (i₁, c₂.next i₂) i₁₂)
Instances For
Lemmas in the totalAux
namespace should be used only in the internals of
the construction of the total complex HomologicalComplex₂.total
. Once that
definition is done, similar lemmas shall be restated, but with
terms like K.toGradedObject.ιMapObj
replaced by K.ιTotal
. This is done in order
to prevent API leakage from definitions involving graded objects.
The horizontal differential in the total complex.
Equations
- K.D₁ c₁₂ i₁₂ i₁₂' = K.toGradedObject.descMapObj (c₁.π c₂ c₁₂) fun (x : I₁ × I₂) (x_1 : c₁.π c₂ c₁₂ x = i₁₂) => match x, x_1 with | (i₁, i₂), x => K.d₁ c₁₂ i₁ i₂ i₁₂'
Instances For
The vertical differential in the total complex.
Equations
- K.D₂ c₁₂ i₁₂ i₁₂' = K.toGradedObject.descMapObj (c₁.π c₂ c₁₂) fun (x : I₁ × I₂) (x_1 : c₁.π c₂ c₁₂ x = i₁₂) => match x, x_1 with | (i₁, i₂), x => K.d₂ c₁₂ i₁ i₂ i₁₂'
Instances For
The total complex of a bicomplex.
Equations
- K.total c₁₂ = { X := K.toGradedObject.mapObj (c₁.π c₂ c₁₂), d := fun (i₁₂ i₁₂' : I₁₂) => K.D₁ c₁₂ i₁₂ i₁₂' + K.D₂ c₁₂ i₁₂ i₁₂', shape := ⋯, d_comp_d' := ⋯ }
Instances For
The inclusion of a summand in the total complex.
Equations
- K.ιTotal c₁₂ i₁ i₂ i₁₂ h = K.toGradedObject.ιMapObj (c₁.π c₂ c₁₂) (i₁, i₂) i₁₂ h
Instances For
The inclusion of a summand in the total complex, or zero if the degrees do not match.
Equations
Instances For
Given a bicomplex K
, this is a constructor for morphisms from (K.total c₁₂).X i₁₂
.
Equations
- K.totalDesc f = K.toGradedObject.descMapObj (c₁.π c₂ c₁₂) fun (x : I₁ × I₂) (hi : c₁.π c₂ c₁₂ x = i₁₂) => match x, hi with | (i₁, i₂), hi => f i₁ i₂ hi
Instances For
The morphism K.total c₁₂ ⟶ L.total c₁₂
of homological complexes induced
by a morphism of bicomplexes K ⟶ L
.
Equations
Instances For
The isomorphism K.total c₁₂ ≅ L.total c₁₂
of homological complexes induced
by an isomorphism of bicomplexes K ≅ L
.
Equations
- HomologicalComplex₂.total.mapIso e c₁₂ = { hom := HomologicalComplex₂.total.map e.hom c₁₂, inv := HomologicalComplex₂.total.map e.inv c₁₂, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
The functor which sends a bicomplex to its total complex.
Equations
- One or more equations did not get rendered due to their size.