Documentation

Mathlib.Algebra.Order.AddTorsor

Ordered AddTorsors #

This file defines ordered vector addition and proves some properties. A motivating example is given by the additive action of on subsets of reals that are closed under integer translation. The order compatibility allows for a treatment of the R((z))-module structure on (z ^ s) V((z)) for an R-module V, using the formalism of Hahn series.

Implementation notes #

We write our conditions as Prop-valued mixins.

Definitions #

Instances #

TODO #

class OrderedVAdd (G : Type u_3) (P : Type u_4) [LE G] [LE P] [VAdd G P] :

An ordered vector addition is a bi-monotone vector addition.

  • vadd_le_vadd_left : ∀ (a b : P), a b∀ (c : G), c +ᵥ a c +ᵥ b
  • vadd_le_vadd_right : ∀ (c d : G), c d∀ (a : P), c +ᵥ a d +ᵥ a
Instances
    theorem OrderedVAdd.vadd_le_vadd_left {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : OrderedVAdd G P] (a : P) (b : P) :
    a b∀ (c : G), c +ᵥ a c +ᵥ b
    theorem OrderedVAdd.vadd_le_vadd_right {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : OrderedVAdd G P] (c : G) (d : G) :
    c d∀ (a : P), c +ᵥ a d +ᵥ a
    instance OrderedVAdd.toCovariantClassLeft {G : Type u_1} {P : Type u_2} [LE G] [LE P] [VAdd G P] [OrderedVAdd G P] :
    CovariantClass G P (fun (x : G) (x_1 : P) => x +ᵥ x_1) fun (x x_1 : P) => x x_1
    Equations
    • =
    class CancelVAdd (G : Type u_3) (P : Type u_4) [LE G] [LE P] [VAdd G P] :

    A vector addition is cancellative if it is pointwise injective on the left and right.

    • left_cancel : ∀ (a : G) (b c : P), a +ᵥ b = a +ᵥ cb = c
    • right_cancel : ∀ (a b : G) (c : P), a +ᵥ c = b +ᵥ ca = b
    Instances
      theorem CancelVAdd.left_cancel {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : CancelVAdd G P] (a : G) (b : P) (c : P) :
      a +ᵥ b = a +ᵥ cb = c
      theorem CancelVAdd.right_cancel {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : CancelVAdd G P] (a : G) (b : G) (c : P) :
      a +ᵥ c = b +ᵥ ca = b
      class OrderedCancelVAdd (G : Type u_3) (P : Type u_4) [LE G] [LE P] [VAdd G P] extends OrderedVAdd :

      An ordered cancellative vector addition is an ordered vector addition that is cancellative.

      • vadd_le_vadd_left : ∀ (a b : P), a b∀ (c : G), c +ᵥ a c +ᵥ b
      • vadd_le_vadd_right : ∀ (c d : G), c d∀ (a : P), c +ᵥ a d +ᵥ a
      • le_of_vadd_le_vadd_left : ∀ (a : G) (b c : P), a +ᵥ b a +ᵥ cb c
      • le_of_vadd_le_vadd_right : ∀ (a b : G) (c : P), a +ᵥ c b +ᵥ ca b
      Instances
        theorem OrderedCancelVAdd.le_of_vadd_le_vadd_left {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : OrderedCancelVAdd G P] (a : G) (b : P) (c : P) :
        a +ᵥ b a +ᵥ cb c
        theorem OrderedCancelVAdd.le_of_vadd_le_vadd_right {G : Type u_3} {P : Type u_4} [LE G] [LE P] [VAdd G P] [self : OrderedCancelVAdd G P] (a : G) (b : G) (c : P) :
        a +ᵥ c b +ᵥ ca b
        Equations
        • =
        theorem VAdd.vadd_lt_vadd_of_le_of_lt {G : Type u_1} {P : Type u_2} [LE G] [Preorder P] [VAdd G P] [OrderedCancelVAdd G P] {a : G} {b : G} {c : P} {d : P} (h₁ : a b) (h₂ : c < d) :
        a +ᵥ c < b +ᵥ d
        theorem VAdd.vadd_lt_vadd_of_lt_of_le {G : Type u_1} {P : Type u_2} [Preorder G] [Preorder P] [VAdd G P] [OrderedCancelVAdd G P] {a : G} {b : G} {c : P} {d : P} (h₁ : a < b) (h₂ : c d) :
        a +ᵥ c < b +ᵥ d
        @[instance 200]
        instance OrderedCancelVAdd.toContravariantClassLeLeft {G : Type u_1} {P : Type u_2} [LE G] [LE P] [VAdd G P] [OrderedCancelVAdd G P] :
        ContravariantClass G P (fun (x : G) (x_1 : P) => x +ᵥ x_1) fun (x x_1 : P) => x x_1
        Equations
        • =