Documentation

Mathlib.Algebra.Order.AddTorsor

Ordered scalar multiplication and vector addition #

This file defines ordered scalar multiplication and vector addition, and proves some properties. In the additive case, a motivating example is given by the additive action of on subsets of reals that are closed under integer translation. The order compatibility allows for a treatment of the R((z))-module structure on (z ^ s) V((z)) for an R-module V, using the formalism of Hahn series. In the multiplicative case, a standard example is the action of non-negative rationals on an ordered field.

Implementation notes #

Definitions #

Instances #

TODO #

class IsOrderedVAdd (G : Type u_3) (P : Type u_4) [LE G] [LE P] [VAdd G P] :

An ordered vector addition is a bi-monotone vector addition.

Instances
    class IsOrderedSMul (G : Type u_3) (P : Type u_4) [LE G] [LE P] [SMul G P] :

    An ordered scalar multiplication is a bi-monotone scalar multiplication. Note that this is different from OrderedSMul, which uses strict inequality, requires G to be a semiring, and the defining conditions are restricted to positive elements of G.

    Instances
      instance instCovariantClassHSMulLeOfIsOrderedSMul {G : Type u_1} {P : Type u_2} [LE G] [LE P] [SMul G P] [IsOrderedSMul G P] :
      CovariantClass G P (fun (x1 : G) (x2 : P) => x1 x2) fun (x1 x2 : P) => x1 x2
      instance instCovariantClassHVAddLeOfIsOrderedVAdd {G : Type u_1} {P : Type u_2} [LE G] [LE P] [VAdd G P] [IsOrderedVAdd G P] :
      CovariantClass G P (fun (x1 : G) (x2 : P) => x1 +ᵥ x2) fun (x1 x2 : P) => x1 x2
      theorem IsOrderedSMul.smul_le_smul {G : Type u_1} {P : Type u_2} [Preorder G] [Preorder P] [SMul G P] [IsOrderedSMul G P] {a b : G} {c d : P} (hab : a b) (hcd : c d) :
      theorem IsOrderedVAdd.vadd_le_vadd {G : Type u_1} {P : Type u_2} [Preorder G] [Preorder P] [VAdd G P] [IsOrderedVAdd G P] {a b : G} {c d : P} (hab : a b) (hcd : c d) :
      theorem Monotone.smul {G : Type u_1} {P : Type u_2} {γ : Type u_3} [Preorder G] [Preorder P] [Preorder γ] [SMul G P] [IsOrderedSMul G P] {f : γG} {g : γP} (hf : Monotone f) (hg : Monotone g) :
      Monotone fun (x : γ) => f x g x
      theorem Monotone.vadd {G : Type u_1} {P : Type u_2} {γ : Type u_3} [Preorder G] [Preorder P] [Preorder γ] [VAdd G P] [IsOrderedVAdd G P] {f : γG} {g : γP} (hf : Monotone f) (hg : Monotone g) :
      Monotone fun (x : γ) => f x +ᵥ g x
      class IsCancelVAdd (G : Type u_3) (P : Type u_4) [VAdd G P] :

      A vector addition is cancellative if it is pointwise injective on the left and right.

      Instances
        class IsCancelSMul (G : Type u_3) (P : Type u_4) [SMul G P] :

        A scalar multiplication is cancellative if it is pointwise injective on the left and right.

        Instances
          class IsOrderedCancelVAdd (G : Type u_3) (P : Type u_4) [LE G] [LE P] [VAdd G P] extends IsOrderedVAdd G P :

          An ordered cancellative vector addition is an ordered vector addition that is cancellative.

          Instances
            class IsOrderedCancelSMul (G : Type u_3) (P : Type u_4) [LE G] [LE P] [SMul G P] extends IsOrderedSMul G P :

            An ordered cancellative scalar multiplication is an ordered scalar multiplication that is cancellative.

            Instances
              @[instance 200]
              instance instContravariantClassHSMulLeOfIsOrderedCancelSMul {G : Type u_1} {P : Type u_2} [LE G] [LE P] [SMul G P] [IsOrderedCancelSMul G P] :
              ContravariantClass G P (fun (x1 : G) (x2 : P) => x1 x2) fun (x1 x2 : P) => x1 x2
              @[instance 200]
              instance instContravariantClassHVAddLeOfIsOrderedCancelVAdd {G : Type u_1} {P : Type u_2} [LE G] [LE P] [VAdd G P] [IsOrderedCancelVAdd G P] :
              ContravariantClass G P (fun (x1 : G) (x2 : P) => x1 +ᵥ x2) fun (x1 x2 : P) => x1 x2
              theorem SMul.smul_lt_smul_of_le_of_lt {G : Type u_1} {P : Type u_2} [LE G] [Preorder P] [SMul G P] [IsOrderedCancelSMul G P] {a b : G} {c d : P} (h₁ : a b) (h₂ : c < d) :
              theorem VAdd.vadd_lt_vadd_of_le_of_lt {G : Type u_1} {P : Type u_2} [LE G] [Preorder P] [VAdd G P] [IsOrderedCancelVAdd G P] {a b : G} {c d : P} (h₁ : a b) (h₂ : c < d) :
              theorem SMul.smul_lt_smul_of_lt_of_le {G : Type u_1} {P : Type u_2} [Preorder G] [Preorder P] [SMul G P] [IsOrderedCancelSMul G P] {a b : G} {c d : P} (h₁ : a < b) (h₂ : c d) :
              theorem VAdd.vadd_lt_vadd_of_lt_of_le {G : Type u_1} {P : Type u_2} [Preorder G] [Preorder P] [VAdd G P] [IsOrderedCancelVAdd G P] {a b : G} {c d : P} (h₁ : a < b) (h₂ : c d) :