Documentation

Mathlib.Algebra.Order.Group.Pointwise.Interval

(Pre)images of intervals #

In this file we prove a bunch of trivial lemmas like “if we add a to all points of [b, c], then we get [a + b, a + c]”. For the functions x ↦ x ± a, x ↦ a ± x, and x ↦ -x we prove lemmas about preimages and images of all intervals. We also prove a few lemmas about images under x ↦ a * x, x ↦ x * a and x ↦ x⁻¹.

Binary pointwise operations #

Note that the subset operations below only cover the cases with the largest possible intervals on the LHS: to conclude that Ioo a b * Ioo c d ⊆ Ioo (a * c) (c * d), you can use monotonicity of * and Set.Ico_mul_Ioc_subset.

TODO: repeat these lemmas for the generality of mul_le_mul (which assumes nonnegativity), which the unprimed names have been reserved for

theorem Set.Icc_mul_Icc_subset' {α : Type u_1} [Mul α] [Preorder α] [MulLeftMono α] [MulRightMono α] (a b c d : α) :
Icc a b * Icc c d Icc (a * c) (b * d)
theorem Set.Icc_add_Icc_subset {α : Type u_1} [Add α] [Preorder α] [AddLeftMono α] [AddRightMono α] (a b c d : α) :
Icc a b + Icc c d Icc (a + c) (b + d)
theorem Set.Iic_mul_Iic_subset' {α : Type u_1} [Mul α] [Preorder α] [MulLeftMono α] [MulRightMono α] (a b : α) :
Iic a * Iic b Iic (a * b)
theorem Set.Iic_add_Iic_subset {α : Type u_1} [Add α] [Preorder α] [AddLeftMono α] [AddRightMono α] (a b : α) :
Iic a + Iic b Iic (a + b)
theorem Set.Ici_mul_Ici_subset' {α : Type u_1} [Mul α] [Preorder α] [MulLeftMono α] [MulRightMono α] (a b : α) :
Ici a * Ici b Ici (a * b)
theorem Set.Ici_add_Ici_subset {α : Type u_1} [Add α] [Preorder α] [AddLeftMono α] [AddRightMono α] (a b : α) :
Ici a + Ici b Ici (a + b)
theorem Set.Icc_mul_Ico_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b c d : α) :
Icc a b * Ico c d Ico (a * c) (b * d)
theorem Set.Icc_add_Ico_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b c d : α) :
Icc a b + Ico c d Ico (a + c) (b + d)
theorem Set.Ico_mul_Icc_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b c d : α) :
Ico a b * Icc c d Ico (a * c) (b * d)
theorem Set.Ico_add_Icc_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b c d : α) :
Ico a b + Icc c d Ico (a + c) (b + d)
theorem Set.Ioc_mul_Ico_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b c d : α) :
Ioc a b * Ico c d Ioo (a * c) (b * d)
theorem Set.Ioc_add_Ico_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b c d : α) :
Ioc a b + Ico c d Ioo (a + c) (b + d)
theorem Set.Ico_mul_Ioc_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b c d : α) :
Ico a b * Ioc c d Ioo (a * c) (b * d)
theorem Set.Ico_add_Ioc_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b c d : α) :
Ico a b + Ioc c d Ioo (a + c) (b + d)
theorem Set.Iic_mul_Iio_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b : α) :
Iic a * Iio b Iio (a * b)
theorem Set.Iic_add_Iio_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b : α) :
Iic a + Iio b Iio (a + b)
theorem Set.Iio_mul_Iic_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b : α) :
Iio a * Iic b Iio (a * b)
theorem Set.Iio_add_Iic_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b : α) :
Iio a + Iic b Iio (a + b)
theorem Set.Ioi_mul_Ici_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b : α) :
Ioi a * Ici b Ioi (a * b)
theorem Set.Ioi_add_Ici_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b : α) :
Ioi a + Ici b Ioi (a + b)
theorem Set.Ici_mul_Ioi_subset' {α : Type u_1} [Mul α] [PartialOrder α] [MulLeftStrictMono α] [MulRightStrictMono α] (a b : α) :
Ici a * Ioi b Ioi (a * b)
theorem Set.Ici_add_Ioi_subset {α : Type u_1} [Add α] [PartialOrder α] [AddLeftStrictMono α] [AddRightStrictMono α] (a b : α) :
Ici a + Ioi b Ioi (a + b)
@[simp]
theorem Set.smul_Icc {α : Type u_1} [LinearOrderedCommMonoid α] [MulLeftReflectLE α] [ExistsMulOfLE α] (a b c : α) :
a Icc b c = Icc (a * b) (a * c)
@[simp]
theorem Set.vadd_Icc {α : Type u_1} [LinearOrderedAddCommMonoid α] [AddLeftReflectLE α] [ExistsAddOfLE α] (a b c : α) :
a +ᵥ Icc b c = Icc (a + b) (a + c)
theorem Set.Icc_mul_Icc {α : Type u_1} [LinearOrderedCommMonoid α] [MulLeftReflectLE α] [ExistsMulOfLE α] {a b c d : α} (hab : a b) (hcd : c d) :
Icc a b * Icc c d = Icc (a * c) (b * d)
theorem Set.Icc_add_Icc {α : Type u_1} [LinearOrderedAddCommMonoid α] [AddLeftReflectLE α] [ExistsAddOfLE α] {a b c d : α} (hab : a b) (hcd : c d) :
Icc a b + Icc c d = Icc (a + c) (b + d)
@[simp]
theorem Set.inv_Ici {α : Type u_1} [OrderedCommGroup α] (a : α) :
@[simp]
theorem Set.neg_Ici {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Ici a = Iic (-a)
@[simp]
theorem Set.inv_Iic {α : Type u_1} [OrderedCommGroup α] (a : α) :
@[simp]
theorem Set.neg_Iic {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Iic a = Ici (-a)
@[simp]
theorem Set.inv_Ioi {α : Type u_1} [OrderedCommGroup α] (a : α) :
@[simp]
theorem Set.neg_Ioi {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Ioi a = Iio (-a)
@[simp]
theorem Set.inv_Iio {α : Type u_1} [OrderedCommGroup α] (a : α) :
@[simp]
theorem Set.neg_Iio {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Iio a = Ioi (-a)
@[simp]
theorem Set.inv_Icc {α : Type u_1} [OrderedCommGroup α] (a b : α) :
@[simp]
theorem Set.neg_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Icc a b = Icc (-b) (-a)
@[simp]
theorem Set.inv_Ico {α : Type u_1} [OrderedCommGroup α] (a b : α) :
@[simp]
theorem Set.neg_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ico a b = Ioc (-b) (-a)
@[simp]
theorem Set.inv_Ioc {α : Type u_1} [OrderedCommGroup α] (a b : α) :
@[simp]
theorem Set.neg_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ioc a b = Ico (-b) (-a)
@[simp]
theorem Set.inv_Ioo {α : Type u_1} [OrderedCommGroup α] (a b : α) :
@[simp]
theorem Set.neg_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ioo a b = Ioo (-b) (-a)
@[deprecated Set.neg_Ici (since := "2024-11-23")]
theorem Set.preimage_neg_Ici {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Ici a = Iic (-a)

Alias of Set.neg_Ici.

@[deprecated Set.neg_Iic (since := "2024-11-23")]
theorem Set.preimage_neg_Iic {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Iic a = Ici (-a)

Alias of Set.neg_Iic.

@[deprecated Set.neg_Ioi (since := "2024-11-23")]
theorem Set.preimage_neg_Ioi {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Ioi a = Iio (-a)

Alias of Set.neg_Ioi.

@[deprecated Set.neg_Iio (since := "2024-11-23")]
theorem Set.preimage_neg_Iio {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
-Iio a = Ioi (-a)

Alias of Set.neg_Iio.

@[deprecated Set.neg_Icc (since := "2024-11-23")]
theorem Set.preimage_neg_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Icc a b = Icc (-b) (-a)

Alias of Set.neg_Icc.

@[deprecated Set.neg_Ico (since := "2024-11-23")]
theorem Set.preimage_neg_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ico a b = Ioc (-b) (-a)

Alias of Set.neg_Ico.

@[deprecated Set.neg_Ioc (since := "2024-11-23")]
theorem Set.preimage_neg_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ioc a b = Ico (-b) (-a)

Alias of Set.neg_Ioc.

@[deprecated Set.neg_Ioo (since := "2024-11-23")]
theorem Set.preimage_neg_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
-Ioo a b = Ioo (-b) (-a)

Alias of Set.neg_Ioo.

Preimages under x ↦ a + x #

@[simp]
theorem Set.preimage_const_add_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_add_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_add_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_add_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Preimages under x ↦ x + a #

@[simp]
theorem Set.preimage_add_const_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_add_const_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_add_const_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_add_const_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Preimages under x ↦ x - a #

@[simp]
theorem Set.preimage_sub_const_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_sub_const_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_sub_const_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_sub_const_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Preimages under x ↦ a - x #

@[simp]
theorem Set.preimage_const_sub_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_sub_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_sub_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.preimage_const_sub_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Images under x ↦ a + x #

Images under x ↦ x + a #

Images under x ↦ -x #

theorem Set.image_neg_Ici {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
theorem Set.image_neg_Iic {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
theorem Set.image_neg_Ioi {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
theorem Set.image_neg_Iio {α : Type u_1} [OrderedAddCommGroup α] (a : α) :
theorem Set.image_neg_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Neg.neg '' Icc a b = Icc (-b) (-a)
theorem Set.image_neg_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Neg.neg '' Ico a b = Ioc (-b) (-a)
theorem Set.image_neg_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Neg.neg '' Ioc a b = Ico (-b) (-a)
theorem Set.image_neg_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
Neg.neg '' Ioo a b = Ioo (-b) (-a)

Images under x ↦ a - x #

@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Set.image_const_sub_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_const_sub_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_const_sub_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_const_sub_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Images under x ↦ x - a #

@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem Set.image_sub_const_Icc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_sub_const_Ico {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_sub_const_Ioc {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :
@[simp]
theorem Set.image_sub_const_Ioo {α : Type u_1} [OrderedAddCommGroup α] (a b c : α) :

Bijections #

theorem Set.Iic_add_bij {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
BijOn (fun (x : α) => x + a) (Iic b) (Iic (b + a))
theorem Set.Iio_add_bij {α : Type u_1} [OrderedAddCommGroup α] (a b : α) :
BijOn (fun (x : α) => x + a) (Iio b) (Iio (b + a))
@[simp]
theorem Set.inv_uIcc {α : Type u_1} [LinearOrderedCommGroup α] (a b : α) :
@[simp]
theorem Set.neg_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] (a b : α) :
-uIcc a b = uIcc (-a) (-b)
@[deprecated Set.neg_uIcc (since := "2024-11-23")]
theorem Set.preimage_neg_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] (a b : α) :
-uIcc a b = uIcc (-a) (-b)
@[simp]
@[simp]
theorem Set.image_neg_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] (a b : α) :
theorem Set.abs_sub_le_of_uIcc_subset_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] {a b c d : α} (h : uIcc c d uIcc a b) :

If [c, d] is a subinterval of [a, b], then the distance between c and d is less than or equal to that of a and b

theorem Set.abs_sub_left_of_mem_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] {a b c : α} (h : c uIcc a b) :

If c ∈ [a, b], then the distance between a and c is less than or equal to that of a and b

theorem Set.abs_sub_right_of_mem_uIcc {α : Type u_1} [LinearOrderedAddCommGroup α] {a b c : α} (h : c uIcc a b) :

If x ∈ [a, b], then the distance between c and b is less than or equal to that of a and b

Multiplication and inverse in a field #

@[simp]
theorem Set.preimage_mul_const_Iio {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Ioi {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Iic {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Ici {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Ioo {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Ioc {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Ico {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Icc {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_mul_const_Iio_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Ioi_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Iic_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Ici_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Ioo_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Ioc_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Ico_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_Icc_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Iio {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Ioi {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Iic {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Ici {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Ioo {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Ioc {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Ico {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Icc {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
@[simp]
theorem Set.preimage_const_mul_Iio_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Ioi_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Iic_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Ici_of_neg {α : Type u_1} [LinearOrderedField α] (a : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Ioo_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Ioc_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Ico_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_const_mul_Icc_of_neg {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : c < 0) :
@[simp]
theorem Set.preimage_mul_const_uIcc {α : Type u_1} [LinearOrderedField α] {a : α} (ha : a 0) (b c : α) :
@[simp]
theorem Set.preimage_const_mul_uIcc {α : Type u_1} [LinearOrderedField α] {a : α} (ha : a 0) (b c : α) :
@[simp]
theorem Set.preimage_div_const_uIcc {α : Type u_1} [LinearOrderedField α] {a : α} (ha : a 0) (b c : α) :
theorem Set.preimage_const_mul_Ioi_or_Iio {α : Type u_1} [LinearOrderedField α] {a : α} (hb : a 0) {U V : Set α} (hU : U {s : Set α | ∃ (a : α), s = Ioi a s = Iio a}) (hV : V = HMul.hMul a ⁻¹' U) :
V {s : Set α | ∃ (a : α), s = Ioi a s = Iio a}
@[simp]
theorem Set.image_mul_const_uIcc {α : Type u_1} [LinearOrderedField α] (a b c : α) :
@[simp]
theorem Set.image_const_mul_uIcc {α : Type u_1} [LinearOrderedField α] (a b c : α) :
@[simp]
theorem Set.image_div_const_uIcc {α : Type u_1} [LinearOrderedField α] (a b c : α) :
theorem Set.image_mul_right_Icc' {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
theorem Set.image_mul_right_Icc {α : Type u_1} [LinearOrderedField α] {a b c : α} (hab : a b) (hc : 0 c) :
theorem Set.image_mul_left_Icc' {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c : α) :
theorem Set.image_mul_left_Icc {α : Type u_1} [LinearOrderedField α] {a b c : α} (ha : 0 a) (hbc : b c) :
theorem Set.image_mul_right_Ioo {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
theorem Set.image_mul_left_Ioo {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c : α) :
theorem Set.image_mul_right_Ico {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
theorem Set.image_mul_left_Ico {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c : α) :
theorem Set.image_mul_right_Ioc {α : Type u_1} [LinearOrderedField α] (a b : α) {c : α} (h : 0 < c) :
theorem Set.image_mul_left_Ioc {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c : α) :
theorem Set.inv_Ioo_0_left {α : Type u_1} [LinearOrderedField α] {a : α} (ha : 0 < a) :

The (pre)image under inv of Ioo 0 a is Ioi a⁻¹.

theorem Set.inv_Ioo_0_right {α : Type u_1} [LinearOrderedField α] {a : α} (ha : a < 0) :

The (pre)image under inv of Ioo a 0 is Iio a⁻¹.

theorem Set.inv_Ioi₀ {α : Type u_1} [LinearOrderedField α] {a : α} (ha : 0 < a) :
theorem Set.inv_Iio₀ {α : Type u_1} [LinearOrderedField α] {a : α} (ha : a < 0) :

Images under x ↦ a * x + b #

@[simp]
theorem Set.image_affine_Icc' {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c d : α) :
(fun (x : α) => a * x + b) '' Icc c d = Icc (a * c + b) (a * d + b)
@[simp]
theorem Set.image_affine_Ico {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c d : α) :
(fun (x : α) => a * x + b) '' Ico c d = Ico (a * c + b) (a * d + b)
@[simp]
theorem Set.image_affine_Ioc {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c d : α) :
(fun (x : α) => a * x + b) '' Ioc c d = Ioc (a * c + b) (a * d + b)
@[simp]
theorem Set.image_affine_Ioo {α : Type u_1} [LinearOrderedField α] {a : α} (h : 0 < a) (b c d : α) :
(fun (x : α) => a * x + b) '' Ioo c d = Ioo (a * c + b) (a * d + b)