Positive & negative parts #
Mathematical structures possessing an absolute value often also possess a unique decomposition of elements into "positive" and "negative" parts which are in some sense "disjoint" (e.g. the Jordan decomposition of a measure).
This file provides instances of PosPart
and NegPart
, the positive and negative parts of an
element in a lattice ordered group.
Main statements #
posPart_sub_negPart
: Every elementa
can be decomposed intoa⁺ - a⁻
, the difference of its positive and negative parts.posPart_inf_negPart_eq_zero
: The positive and negative parts are coprime.
References #
- [Birkhoff, Lattice-ordered Groups][birkhoff1942]
- [Bourbaki, Algebra II][bourbaki1981]
- [Fuchs, Partially Ordered Algebraic Systems][fuchs1963]
- [Zaanen, Lectures on "Riesz Spaces"][zaanen1966]
- [Banasiak, Banach Lattices in Applications][banasiak]
Tags #
positive part, negative part
The positive part of an element a
in a lattice ordered group is a ⊔ 1
, denoted a⁺ᵐ
.
Equations
- instOneLePart = { oneLePart := fun (a : α) => a ⊔ 1 }
The positive part of an element a
in a lattice ordered group is a ⊔ 0
, denoted a⁺
.
Equations
- instPosPart = { posPart := fun (a : α) => a ⊔ 0 }
The negative part of an element a
in a lattice ordered group is (-a) ⊔ 0
, denoted a⁻
.
Equations
- instNegPart = { negPart := fun (a : α) => -a ⊔ 0 }
@[simp]
Alias of the reverse direction of leOnePart_eq_inv
.
@[simp]
Alias of the reverse direction of leOnePart_eq_one
.
theorem
leOnePart_eq_inv_inf_one
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
negPart_eq_neg_inf_zero
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
oneLePart_mul_leOnePart
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
posPart_add_negPart
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
leOnePart_mul_oneLePart
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
negPart_add_posPart
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
oneLePart_inf_leOnePart_eq_one
{α : Type u_1}
[Lattice α]
[Group α]
[MulLeftMono α]
[MulRightMono α]
(a : α)
:
theorem
posPart_inf_negPart_eq_zero
{α : Type u_1}
[Lattice α]
[AddGroup α]
[AddLeftMono α]
[AddRightMono α]
(a : α)
:
theorem
sup_eq_add_posPart_sub
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a b : α)
:
theorem
inf_eq_sub_posPart_sub
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a b : α)
:
theorem
abs_add_eq_two_nsmul_posPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
theorem
add_abs_eq_two_nsmul_posPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
theorem
abs_sub_eq_two_nsmul_negPart
{α : Type u_1}
[Lattice α]
[AddCommGroup α]
[AddLeftMono α]
(a : α)
:
@[simp]
@[simp]
@[simp]
theorem
leOnePart_lt
{α : Type u_1}
[LinearOrder α]
[Group α]
{a b : α}
[MulLeftMono α]
[MulRightMono α]
:
@[simp]
theorem
negPart_lt
{α : Type u_1}
[LinearOrder α]
[AddGroup α]
{a b : α}
[AddLeftMono α]
[AddRightMono α]
: