Documentation

Mathlib.Algebra.Order.Interval.Set.Group

Lemmas about arithmetic operations and intervals. #

inv_mem_Ixx_iff, sub_mem_Ixx_iff

theorem Set.neg_mem_Icc_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Icc c d a Icc (-d) (-c)
theorem Set.neg_mem_Ico_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ico c d a Ioc (-d) (-c)
theorem Set.neg_mem_Ioc_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ioc c d a Ico (-d) (-c)
theorem Set.neg_mem_Ioo_iff {α : Type u_1} [OrderedAddCommGroup α] {a c d : α} :
-a Ioo c d a Ioo (-d) (-c)

add_mem_Ixx_iff_left

theorem Set.add_mem_Icc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Icc c d a Icc (c - b) (d - b)
theorem Set.add_mem_Ico_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ico c d a Ico (c - b) (d - b)
theorem Set.add_mem_Ioc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioc c d a Ioc (c - b) (d - b)
theorem Set.add_mem_Ioo_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioo c d a Ioo (c - b) (d - b)

add_mem_Ixx_iff_right

theorem Set.add_mem_Icc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Icc c d b Icc (c - a) (d - a)
theorem Set.add_mem_Ico_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ico c d b Ico (c - a) (d - a)
theorem Set.add_mem_Ioc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioc c d b Ioc (c - a) (d - a)
theorem Set.add_mem_Ioo_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a + b Ioo c d b Ioo (c - a) (d - a)

sub_mem_Ixx_iff_left

theorem Set.sub_mem_Icc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Icc c d a Icc (c + b) (d + b)
theorem Set.sub_mem_Ico_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ico c d a Ico (c + b) (d + b)
theorem Set.sub_mem_Ioc_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioc c d a Ioc (c + b) (d + b)
theorem Set.sub_mem_Ioo_iff_left {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioo c d a Ioo (c + b) (d + b)

sub_mem_Ixx_iff_right

theorem Set.sub_mem_Icc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Icc c d b Icc (a - d) (a - c)
theorem Set.sub_mem_Ico_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ico c d b Ioc (a - d) (a - c)
theorem Set.sub_mem_Ioc_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioc c d b Ico (a - d) (a - c)
theorem Set.sub_mem_Ioo_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b c d : α} :
a - b Ioo c d b Ioo (a - d) (a - c)

sub_mem_Ixx_zero_right and sub_mem_Ixx_zero_iff_right; this specializes the previous lemmas to the case of reflecting the interval.

theorem Set.sub_mem_Icc_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Icc 0 b a Icc 0 b
theorem Set.sub_mem_Ico_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ico 0 b a Ioc 0 b
theorem Set.sub_mem_Ioc_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ioc 0 b a Ico 0 b
theorem Set.sub_mem_Ioo_zero_iff_right {α : Type u_1} [OrderedAddCommGroup α] {a b : α} :
b - a Ioo 0 b a Ioo 0 b
theorem Set.nonempty_Ico_sdiff {α : Type u_1} [LinearOrderedAddCommGroup α] {x dx y dy : α} (h : dy < dx) (hx : 0 < dx) :
Nonempty (Ico x (x + dx) \ Ico y (y + dy))

If we remove a smaller interval from a larger, the result is nonempty

Lemmas about disjointness of translates of intervals #

theorem Set.pairwise_disjoint_Ioc_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioc (a + n) (a + n + 1))
theorem Set.pairwise_disjoint_Ico_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ico (a + n) (a + n + 1))
theorem Set.pairwise_disjoint_Ioo_add_intCast {α : Type u_1} [OrderedRing α] (a : α) :
Pairwise (Function.onFun Disjoint fun (n : ) => Ioo (a + n) (a + n + 1))