Documentation

Mathlib.Algebra.Order.Ring.Unbundled.Rat

The rational numbers possess a linear order #

This file constructs the order on and proves various facts relating the order to ring structure on . This only uses unbundled type classes, eg CovariantClass, relating the order structure and algebra structure on . For the bundled LinearOrderedCommRing instance on , see Algebra.Order.Ring.Rat.

Tags #

rat, rationals, field, ℚ, numerator, denominator, num, denom, order, ordering

@[simp]
@[simp]
theorem Rat.divInt_nonneg {a b : } (ha : 0 a) (hb : 0 b) :
@[simp]
theorem Rat.mkRat_nonneg {a : } (ha : 0 a) (b : ) :
Equations
@[simp]

Casting a scientific literal via ℚ≥0 is the same as casting directly.

theorem Rat.add_nonneg {a b : } :
0 a0 b0 a + b
theorem Rat.mul_nonneg {a b : } :
0 a0 b0 a * b
theorem Rat.divInt_le_divInt {a b c d : } (b0 : 0 < b) (d0 : 0 < d) :
divInt a b divInt c d a * d c * b
theorem Rat.le_total {a b : } :
theorem Rat.not_le {a b : } :

Extra instances to short-circuit type class resolution #

These also prevent non-computable instances being used to construct these instances non-computably.

Miscellaneous lemmas #

theorem Rat.le_def {p q : } :
p q p.num * q.den q.num * p.den
theorem Rat.lt_def {p q : } :
p < q p.num * q.den < q.num * p.den
theorem Rat.add_le_add_left {a b c : } :
@[simp]
theorem Rat.num_nonpos {a : } :
@[simp]
theorem Rat.num_pos {a : } :
@[simp]
theorem Rat.num_neg {a : } :
theorem Rat.div_lt_div_iff_mul_lt_mul {a b c d : } (b_pos : 0 < b) (d_pos : 0 < d) :
a / b < c / d a * d < c * b
theorem Rat.abs_def (q : ) :
|q| = divInt q.num.natAbs q.den