Theory of degrees of polynomials #
Some of the main results include
natDegree_comp_le
: The degree of the composition is at most the product of degrees
theorem
Polynomial.natDegree_add_le_iff_left
{R : Type u}
[Semiring R]
{n : ℕ}
(p q : Polynomial R)
(qn : q.natDegree ≤ n)
:
theorem
Polynomial.natDegree_add_le_iff_right
{R : Type u}
[Semiring R]
{n : ℕ}
(p q : Polynomial R)
(pn : p.natDegree ≤ n)
:
theorem
Polynomial.eq_natDegree_of_le_mem_support
{R : Type u}
{n : ℕ}
[Semiring R]
{p : Polynomial R}
(pn : p.natDegree ≤ n)
(ns : n ∈ p.support)
:
theorem
Polynomial.natDegree_mul_C_eq_of_mul_ne_zero
{R : Type u}
{a : R}
[Semiring R]
{p : Polynomial R}
(h : p.leadingCoeff * a ≠ 0)
:
Although not explicitly stated, the assumptions of lemma nat_degree_mul_C_eq_of_mul_ne_zero
force the polynomial p
to be non-zero, via p.leading_coeff ≠ 0
.
theorem
Polynomial.natDegree_C_mul_of_mul_ne_zero
{R : Type u}
{a : R}
[Semiring R]
{p : Polynomial R}
(h : a * p.leadingCoeff ≠ 0)
:
Although not explicitly stated, the assumptions of lemma nat_degree_C_mul_eq_of_mul_ne_zero
force the polynomial p
to be non-zero, via p.leading_coeff ≠ 0
.
@[deprecated Polynomial.natDegree_C_mul_of_mul_ne_zero (since := "2025-01-03")]
theorem
Polynomial.natDegree_C_mul_eq_of_mul_ne_zero
{R : Type u}
{a : R}
[Semiring R]
{p : Polynomial R}
(h : a * p.leadingCoeff ≠ 0)
:
Alias of Polynomial.natDegree_C_mul_of_mul_ne_zero
.
Although not explicitly stated, the assumptions of lemma nat_degree_C_mul_eq_of_mul_ne_zero
force the polynomial p
to be non-zero, via p.leading_coeff ≠ 0
.
theorem
Polynomial.coeff_add_eq_left_of_lt
{R : Type u}
{n : ℕ}
[Semiring R]
{p q : Polynomial R}
(qn : q.natDegree < n)
:
theorem
Polynomial.coeff_add_eq_right_of_lt
{R : Type u}
{n : ℕ}
[Semiring R]
{p q : Polynomial R}
(pn : p.natDegree < n)
:
@[simp]
theorem
Polynomial.degree_map_eq_iff
{R : Type u}
{S : Type v}
[Semiring R]
[Semiring S]
{f : R →+* S}
{p : Polynomial R}
:
@[simp]
theorem
Polynomial.natDegree_pos_of_nextCoeff_ne_zero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.nextCoeff ≠ 0)
:
theorem
Polynomial.natDegree_sub_le_iff_left
{R : Type u}
{n : ℕ}
[Ring R]
{p q : Polynomial R}
(qn : q.natDegree ≤ n)
:
theorem
Polynomial.natDegree_sub_le_iff_right
{R : Type u}
{n : ℕ}
[Ring R]
{p q : Polynomial R}
(pn : p.natDegree ≤ n)
:
theorem
Polynomial.coeff_sub_eq_left_of_lt
{R : Type u}
{n : ℕ}
[Ring R]
{p q : Polynomial R}
(dg : q.natDegree < n)
:
theorem
Polynomial.degree_mul_C
{R : Type u}
[Semiring R]
{p : Polynomial R}
{a : R}
[NoZeroDivisors R]
(a0 : a ≠ 0)
:
theorem
Polynomial.degree_C_mul
{R : Type u}
[Semiring R]
{p : Polynomial R}
{a : R}
[NoZeroDivisors R]
(a0 : a ≠ 0)
:
theorem
Polynomial.natDegree_mul_C
{R : Type u}
[Semiring R]
{p : Polynomial R}
{a : R}
[NoZeroDivisors R]
(a0 : a ≠ 0)
:
theorem
Polynomial.natDegree_C_mul
{R : Type u}
[Semiring R]
{p : Polynomial R}
{a : R}
[NoZeroDivisors R]
(a0 : a ≠ 0)
:
@[simp]
theorem
Polynomial.natDegree_iterate_comp
{R : Type u}
[Semiring R]
{p q : Polynomial R}
[NoZeroDivisors R]
(k : ℕ)
:
@[simp]
Useful lemmas for the "monicization" of a nonzero polynomial p
.
@[simp]
theorem
Polynomial.dvd_mul_leadingCoeff_inv
{K : Type u_1}
[DivisionRing K]
{p q : Polynomial K}
(hp0 : p ≠ 0)
:
theorem
Polynomial.monic_mul_leadingCoeff_inv
{K : Type u_1}
[DivisionRing K]
{p : Polynomial K}
(h : p ≠ 0)
:
@[simp]
@[simp]