Documentation
Mathlib
.
Algebra
.
Polynomial
.
Degree
.
Monomial
Search
return to top
source
Imports
Init
Mathlib.Algebra.Polynomial.Monomial
Mathlib.Data.Nat.SuccPred
Mathlib.Algebra.Polynomial.Degree.Definitions
Imported by
Polynomial
.
natDegree_le_pred
Polynomial
.
monomial_natDegree_leadingCoeff_eq_self
Polynomial
.
C_mul_X_pow_eq_self
Degree of univariate monomials
#
source
theorem
Polynomial
.
natDegree_le_pred
{R :
Type
u}
{n :
ℕ
}
[
Semiring
R
]
{p :
Polynomial
R
}
(hf :
p
.
natDegree
≤
n
)
(hn :
p
.
coeff
n
=
0
)
:
p
.
natDegree
≤
n
-
1
source
theorem
Polynomial
.
monomial_natDegree_leadingCoeff_eq_self
{R :
Type
u}
[
Semiring
R
]
{p :
Polynomial
R
}
(h :
p
.
support
.
card
≤
1
)
:
(
monomial
p
.
natDegree
)
p
.
leadingCoeff
=
p
source
theorem
Polynomial
.
C_mul_X_pow_eq_self
{R :
Type
u}
[
Semiring
R
]
{p :
Polynomial
R
}
(h :
p
.
support
.
card
≤
1
)
:
C
p
.
leadingCoeff
*
X
^
p
.
natDegree
=
p