Documentation

Mathlib.Algebra.Polynomial.Derivative

The derivative map on polynomials #

Main definitions #

derivative p is the formal derivative of the polynomial p

Equations
Instances For
    theorem Polynomial.derivative_apply {R : Type u} [Semiring R] (p : Polynomial R) :
    derivative p = p.sum fun (n : ) (a : R) => C (a * n) * X ^ (n - 1)
    @[simp]
    @[simp]
    theorem Polynomial.derivative_monomial {R : Type u} [Semiring R] (a : R) (n : ) :
    derivative ((monomial n) a) = (monomial (n - 1)) (a * n)
    theorem Polynomial.derivative_C_mul_X {R : Type u} [Semiring R] (a : R) :
    theorem Polynomial.derivative_C_mul_X_pow {R : Type u} [Semiring R] (a : R) (n : ) :
    derivative (C a * X ^ n) = C (a * n) * X ^ (n - 1)
    theorem Polynomial.derivative_C_mul_X_sq {R : Type u} [Semiring R] (a : R) :
    derivative (C a * X ^ 2) = C (a * 2) * X
    @[simp]
    theorem Polynomial.derivative_X_pow {R : Type u} [Semiring R] (n : ) :
    derivative (X ^ n) = C n * X ^ (n - 1)
    @[simp]
    theorem Polynomial.derivative_C {R : Type u} [Semiring R] {a : R} :
    derivative (C a) = 0
    @[simp]
    @[simp]
    theorem Polynomial.derivative_sum {R : Type u} {ι : Type y} [Semiring R] {s : Finset ι} {f : ιPolynomial R} :
    derivative (∑ bs, f b) = bs, derivative (f b)
    theorem Polynomial.iterate_derivative_sum {R : Type u} {ι : Type y} [Semiring R] (k : ) (s : Finset ι) (f : ιPolynomial R) :
    (⇑derivative)^[k] (∑ bs, f b) = bs, (⇑derivative)^[k] (f b)
    @[simp]
    @[simp]
    theorem Polynomial.iterate_derivative_C_mul {R : Type u} [Semiring R] (a : R) (p : Polynomial R) (k : ) :
    theorem Polynomial.derivative_C_mul {R : Type u} [Semiring R] (a : R) (p : Polynomial R) :
    @[simp]
    theorem Polynomial.derivative_natCast {R : Type u} [Semiring R] {n : } :
    derivative n = 0
    @[simp]
    theorem Polynomial.iterate_derivative_C {R : Type u} {a : R} [Semiring R] {k : } (h : 0 < k) :
    @[simp]
    theorem Polynomial.iterate_derivative_one {R : Type u} [Semiring R] {k : } (h : 0 < k) :
    @[simp]
    theorem Polynomial.iterate_derivative_X {R : Type u} [Semiring R] {k : } (h : 1 < k) :
    theorem Polynomial.derivative_eval {R : Type u} [Semiring R] (p : Polynomial R) (x : R) :
    eval x (derivative p) = p.sum fun (n : ) (a : R) => a * n * x ^ (n - 1)
    @[simp]
    theorem Polynomial.derivative_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (p : Polynomial R) (f : R →+* S) :
    @[simp]
    theorem Polynomial.iterate_derivative_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (p : Polynomial R) (f : R →+* S) (k : ) :

    Iterated derivatives as a finite support function.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Polynomial.dvd_iterate_derivative_pow {R : Type u} [CommSemiring R] (f : Polynomial R) (n : ) {m : } (c : R) (hm : m 0) :
      theorem Polynomial.derivative_X_add_C_pow {R : Type u} [CommSemiring R] (c : R) (m : ) :
      derivative ((X + C c) ^ m) = C m * (X + C c) ^ (m - 1)
      theorem Polynomial.derivative_X_add_C_sq {R : Type u} [CommSemiring R] (c : R) :
      derivative ((X + C c) ^ 2) = C 2 * (X + C c)

      Chain rule for formal derivative of polynomials.

      theorem Polynomial.derivative_prod {R : Type u} {ι : Type y} [CommSemiring R] [DecidableEq ι] {s : Multiset ι} {f : ιPolynomial R} :
      derivative (Multiset.map f s).prod = (Multiset.map (fun (i : ι) => (Multiset.map f (s.erase i)).prod * derivative (f i)) s).sum
      theorem Polynomial.derivative_X_sub_C {R : Type u} [Ring R] (c : R) :
      @[simp]
      theorem Polynomial.derivative_intCast {R : Type u} [Ring R] {n : } :
      derivative n = 0
      theorem Polynomial.eval_multiset_prod_X_sub_C_derivative {R : Type u} [CommRing R] [DecidableEq R] {S : Multiset R} {r : R} (hr : r S) :
      eval r (derivative (Multiset.map (fun (a : R) => X - C a) S).prod) = (Multiset.map (fun (a : R) => r - a) (S.erase r)).prod
      theorem Polynomial.derivative_X_sub_C_pow {R : Type u} [CommRing R] (c : R) (m : ) :
      derivative ((X - C c) ^ m) = C m * (X - C c) ^ (m - 1)
      theorem Polynomial.derivative_X_sub_C_sq {R : Type u} [CommRing R] (c : R) :
      derivative ((X - C c) ^ 2) = C 2 * (X - C c)