Documentation

Mathlib.Algebra.Polynomial.Monic

Theory of monic polynomials #

We give several tools for proving that polynomials are monic, e.g. Monic.mul, Monic.map, Monic.pow.

theorem Polynomial.Monic.as_sum {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) :
p = X ^ p.natDegree + iFinset.range p.natDegree, C (p.coeff i) * X ^ i
theorem Polynomial.ne_zero_of_ne_zero_of_monic {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p 0) (hq : q.Monic) :
theorem Polynomial.Monic.map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (hp : p.Monic) :
theorem Polynomial.monic_of_degree_le {R : Type u} [Semiring R] {p : Polynomial R} (n : ) (H1 : p.degree n) (H2 : p.coeff n = 1) :
theorem Polynomial.monic_X_pow_add {R : Type u} [Semiring R] {p : Polynomial R} {n : } (H : p.degree < n) :
(X ^ n + p).Monic
theorem Polynomial.monic_X_pow_add_C {R : Type u} (a : R) [Semiring R] {n : } (h : n 0) :
(X ^ n + C a).Monic
theorem Polynomial.monic_X_add_C {R : Type u} [Semiring R] (x : R) :
(X + C x).Monic
theorem Polynomial.Monic.mul {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (hq : q.Monic) :
theorem Polynomial.Monic.pow {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) (n : ) :
theorem Polynomial.Monic.add_of_left {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (hpq : q.degree < p.degree) :
theorem Polynomial.Monic.add_of_right {R : Type u} [Semiring R] {p q : Polynomial R} (hq : q.Monic) (hpq : p.degree < q.degree) :
theorem Polynomial.Monic.of_mul_monic_left {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (hpq : (p * q).Monic) :
theorem Polynomial.Monic.of_mul_monic_right {R : Type u} [Semiring R] {p q : Polynomial R} (hq : q.Monic) (hpq : (p * q).Monic) :
theorem Polynomial.Monic.comp {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (hq : q.Monic) (h : q.natDegree 0) :
(p.comp q).Monic
theorem Polynomial.Monic.comp_X_add_C {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) (r : R) :
(p.comp (X + C r)).Monic
theorem Polynomial.Monic.not_dvd_of_degree_lt {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (h0 : q 0) (hl : q.degree < p.degree) :
theorem Polynomial.Monic.eq_one_of_map_eq_one {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] [Nontrivial S] (f : R →+* S) (hp : p.Monic) (map_eq : Polynomial.map f p = 1) :
p = 1
@[simp]
theorem Polynomial.natDegree_pow_X_add_C {R : Type u} [Semiring R] [Nontrivial R] (n : ) (r : R) :
((X + C r) ^ n).natDegree = n
theorem Polynomial.Monic.eq_one_of_isUnit {R : Type u} [Semiring R] {p : Polynomial R} (hm : p.Monic) (hpu : IsUnit p) :
p = 1
theorem Polynomial.Monic.isUnit_iff {R : Type u} [Semiring R] {p : Polynomial R} (hm : p.Monic) :
theorem Polynomial.eq_of_monic_of_associated {R : Type u} [Semiring R] {p q : Polynomial R} (hp : p.Monic) (hq : q.Monic) (hpq : Associated p q) :
p = q
theorem Polynomial.monic_multiset_prod_of_monic {R : Type u} {ι : Type y} [CommSemiring R] (t : Multiset ι) (f : ιPolynomial R) (ht : it, (f i).Monic) :
theorem Polynomial.monic_prod_of_monic {R : Type u} {ι : Type y} [CommSemiring R] (s : Finset ι) (f : ιPolynomial R) (hs : is, (f i).Monic) :
(∏ is, f i).Monic
theorem Polynomial.Monic.nextCoeff_multiset_prod {R : Type u} {ι : Type y} [CommSemiring R] (t : Multiset ι) (f : ιPolynomial R) (h : it, (f i).Monic) :
(Multiset.map f t).prod.nextCoeff = (Multiset.map (fun (i : ι) => (f i).nextCoeff) t).sum
theorem Polynomial.Monic.nextCoeff_prod {R : Type u} {ι : Type y} [CommSemiring R] (s : Finset ι) (f : ιPolynomial R) (h : is, (f i).Monic) :
theorem Polynomial.irreducible_of_monic {R : Type u} [CommSemiring R] [NoZeroDivisors R] {p : Polynomial R} (hp : p.Monic) (hp1 : p 1) :
Irreducible p ∀ (f g : Polynomial R), f.Monicg.Monicf * g = pf = 1 g = 1

Alternate phrasing of Polynomial.Monic.irreducible_iff_natDegree' where we only have to check one divisor at a time.

@[simp]
theorem Polynomial.Monic.natDegree_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] [Nontrivial S] {P : Polynomial R} (hmo : P.Monic) (f : R →+* S) :
@[simp]
theorem Polynomial.Monic.degree_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] [Nontrivial S] {P : Polynomial R} (hmo : P.Monic) (f : R →+* S) :
theorem Polynomial.nextCoeff_map {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : R →+* S} (hf : Function.Injective f) (p : Polynomial R) :
theorem Polynomial.monic_of_injective {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : R →+* S} (hf : Function.Injective f) {p : Polynomial R} (hp : (map f p).Monic) :
theorem Function.Injective.monic_map_iff {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : R →+* S} (hf : Injective f) {p : Polynomial R} :
theorem Polynomial.monic_X_sub_C {R : Type u} [Ring R] (x : R) :
(X - C x).Monic
theorem Polynomial.monic_X_pow_sub {R : Type u} [Ring R] {p : Polynomial R} {n : } (H : p.degree < n) :
(X ^ n - p).Monic
theorem Polynomial.monic_X_pow_sub_C {R : Type u} [Ring R] (a : R) {n : } (h : n 0) :
(X ^ n - C a).Monic

X ^ n - a is monic.

theorem Polynomial.Monic.comp_X_sub_C {R : Type u} [Ring R] {p : Polynomial R} (hp : p.Monic) (r : R) :
(p.comp (X - C r)).Monic
theorem Polynomial.Monic.sub_of_left {R : Type u} [Ring R] {p q : Polynomial R} (hp : p.Monic) (hpq : q.degree < p.degree) :
theorem Polynomial.Monic.sub_of_right {R : Type u} [Ring R] {p q : Polynomial R} (hq : q.leadingCoeff = -1) (hpq : p.degree < q.degree) :
theorem Polynomial.Monic.mul_left_ne_zero {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) {q : Polynomial R} (hq : q 0) :
q * p 0
theorem Polynomial.Monic.mul_right_ne_zero {R : Type u} [Semiring R] {p : Polynomial R} (hp : p.Monic) {q : Polynomial R} (hq : q 0) :
p * q 0
theorem Polynomial.Monic.mul_left_eq_zero_iff {R : Type u} [Semiring R] {p : Polynomial R} (h : p.Monic) {q : Polynomial R} :
q * p = 0 q = 0
theorem Polynomial.Monic.isRegular {R : Type u_1} [Ring R] {p : Polynomial R} (hp : p.Monic) :
theorem Polynomial.degree_smul_of_smul_regular {R : Type u} [Semiring R] {S : Type u_1} [Monoid S] [DistribMulAction S R] {k : S} (p : Polynomial R) (h : IsSMulRegular R k) :