Documentation

Mathlib.Algebra.Ring.NegOnePow

Integer powers of (-1) #

This file defines the map negOnePow : ℤ → ℤˣ which sends n to (-1 : ℤˣ) ^ n.

The definition of negOnePow and some lemmas first appeared in contributions by Johan Commelin to the Liquid Tensor Experiment.

The map ℤ → ℤˣ which sends n to (-1 : ℤˣ) ^ n.

Equations
Instances For
    @[simp]
    @[simp]
    theorem Int.negOnePow_even (n : ) (hn : Even n) :
    @[simp]
    theorem Int.negOnePow_odd (n : ) (hn : Odd n) :
    @[simp]
    @[simp]
    theorem Int.abs_negOnePow (n : ) :
    |n.negOnePow| = 1
    @[simp]
    @[deprecated Int.cast_negOnePow (since := "2024-10-20")]
    theorem Int.coe_negOnePow (K : Type u_1) (n : ) [Field K] :

    Alias of Int.cast_negOnePow.