Documentation
Mathlib
.
Algebra
.
Ring
.
NonZeroDivisors
Search
return to top
source
Imports
Init
Mathlib.Algebra.GroupWithZero.NonZeroDivisors
Mathlib.Algebra.Ring.Defs
Imported by
mul_cancel_right_mem_nonZeroDivisors
mul_cancel_right_coe_nonZeroDivisors
isUnit_iff_mem_nonZeroDivisors_of_finite
mul_cancel_left_mem_nonZeroDivisors
mul_cancel_left_coe_nonZeroDivisors
dvd_cancel_right_mem_nonZeroDivisors
dvd_cancel_right_coe_nonZeroDivisors
dvd_cancel_left_mem_nonZeroDivisors
dvd_cancel_left_coe_nonZeroDivisors
Non-zero divisors in a ring
#
source
theorem
mul_cancel_right_mem_nonZeroDivisors
{R :
Type
u_1}
[
Ring
R
]
{x y r :
R
}
(hr :
r
∈
nonZeroDivisors
R
)
:
x
*
r
=
y
*
r
↔
x
=
y
source
theorem
mul_cancel_right_coe_nonZeroDivisors
{R :
Type
u_1}
[
Ring
R
]
{x y :
R
}
{c :
↥
(
nonZeroDivisors
R
)
}
:
x
*
↑
c
=
y
*
↑
c
↔
x
=
y
source
theorem
isUnit_iff_mem_nonZeroDivisors_of_finite
{R :
Type
u_1}
[
Ring
R
]
{a :
R
}
[
Finite
R
]
:
IsUnit
a
↔
a
∈
nonZeroDivisors
R
In a finite ring, an element is a unit iff it is a non-zero-divisor.
source
@[simp]
theorem
mul_cancel_left_mem_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{r x y :
R
}
(hr :
r
∈
nonZeroDivisors
R
)
:
r
*
x
=
r
*
y
↔
x
=
y
source
theorem
mul_cancel_left_coe_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{x y :
R
}
{c :
↥
(
nonZeroDivisors
R
)
}
:
↑
c
*
x
=
↑
c
*
y
↔
x
=
y
source
theorem
dvd_cancel_right_mem_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{r x y :
R
}
(hr :
r
∈
nonZeroDivisors
R
)
:
x
*
r
∣
y
*
r
↔
x
∣
y
source
theorem
dvd_cancel_right_coe_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{x y :
R
}
{c :
↥
(
nonZeroDivisors
R
)
}
:
x
*
↑
c
∣
y
*
↑
c
↔
x
∣
y
source
theorem
dvd_cancel_left_mem_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{r x y :
R
}
(hr :
r
∈
nonZeroDivisors
R
)
:
r
*
x
∣
r
*
y
↔
x
∣
y
source
theorem
dvd_cancel_left_coe_nonZeroDivisors
{R :
Type
u_1}
[
CommRing
R
]
{x y :
R
}
{c :
↥
(
nonZeroDivisors
R
)
}
:
↑
c
*
x
∣
↑
c
*
y
↔
x
∣
y